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Abstract. We define a new model of learning called the Always Ap-
prozimately Correct or AAC model. In this model the learner does not
have random bits at its disposal, and instead learns by making the usual
membership queries from a deterministic “training set.” This model is an
extension of Angluin’s Query model of exact learning with membership
queries alone.

We discuss crucial issues and questions that arise when this model is
used. One such question is whether a uniform training set is available for
learning any concept in the concept class. This issue seems not to have
been studied in the context of Angluin’s Query model. Another question
is whether the training set can be found quickly if partial information
about the function is given to the learner (in addition to the answers to
membership queries); for example information about a subclass in which
the concept belongs. We formalize the latter scenario by introducing the
notion of “subclass queries.”

Using this new model of learning, we prove three learnability results
for classes of Boolean functions that are approximable (with respect to
various norms) by linear combinations of a set of few Parity functions.
We compare and contrast these results with several existing results for
similar classes in the PAC model of learning with and without member-
ship queries — these classes have not been previously emphasized under
Angluin’s Query model for exact learning.

Moreover, we point out the significance - in various contexts - of the
classes of Boolean functions being learnt, for example in the context of
probabilistic communication complexity.

1 Introduction

Learning algorithms for several classes of Boolean functions have exploited the
(Fourier) spectral properties of functions in the class. These include the learning
algorithms for AC® functions in [21], [12], [24], for decision trees in [20], for DNF
formulae in [19], and for monotone Boolean functions in [8].

These algorithms, in effect, deal with classes of Boolean functions f that
are approximable by some linear combination g of few Parity (or Fourier basis)
functions, with respect to a chosen norm, and the algorithms obtain such an
approximation g as a hypothesis. The Parity functions can also be viewed as a



monomial basis for the space of functions over the cube, if the cube is taken as
{-1,1}"

In some cases, the set of Parity functions that define the approximating class
is fixed (and known to the learner), as in [21], [24], and [12], and in others, its
size is fixed (and known to the learner), but the set itself is variable and left for
the learner to decipher, as in [20] and [19].

For some of these algorithms, the bound on the probability € that the hy-
pothesis is erroneous on a random input is determined by the distance of the
best approximation g to the function f from the given class, or is otherwise
determined by some characteristics of the class being learnt. I.e, the hypothesis
and learning algorithm are “weak.” This includes the algorithms for learning
functions approximable in the 2-norm by polynomially many Parity functions
in [20]. In other cases, € can be chosen freely and the hypothesis class can be
appropriately enlarged. The running time of such “strong” learning algorithms
typically depends (polynomially) on 1/e. This includes the algorithm in [20] for
learning functions whose Fourier expansion has a small L; norm, which applies
(as observed in [11]) to learning functions whose sign can be expressed as a linear
combination of polynomially many Parity functions, i.e, the class PT*. This also
includes the algorithms in [19] for learning DNF functions, and functions that
are approximable in sign by a small linear combination of polynomially many
Parity functions; and algorithms for learning AC® functions in [21] and [24].

In a few cases, the function f is exactly reproduced (i.e, with error € = 0),
with high probability in polynomial time as in the case of a learning algorithm
of [20] for learning decision trees.

All of the above algorithms (except [24]) use the PAC model of learning with
respect to the uniform distribution, and certain other distributions; sometimes
the algorithms use learner-specified membership queries, in addition. The setting
is therefore apriori assumed to be probabilistic: the queries are chosen randomly
with respect to some distribution D and with high probability the algorithm
outputs a hypothesis with small probability of error on an input chosen ran-
domly with respect to the same distribution D. In these models, even “exact”
learning algorithms such as the algorithm in [20], rely on random sampling in
addition to membership queries and output the (correct) hypothesis only with
high probability.

In [24], in contrast, it was shown that in some cases the PAC model is unnec-
essary, and, in a sense misleading. One result of this paper was a derandomization
of the PAC learning algorithm of [21] for AC® functions.

The algorithm in [21] relies on their elegant result (based on Hastad’s switch-
ing lemma [16]) that AC® functions are approximable in the 2-norm, within any
chosen €, by a linear combination of the Parity functions in a certain class.
This class consists of small weight Parity functions, i.e, Parity functions which
evaluate the parity of a set of at most polylogarithmically many bits. If Parity
functions are viewed as monomials, then these linear combinations are small
degree polynomials. In [21], a strong learning algorithm is given which runs in
moderately superpolynomial time and learns AC° functions using membership



queries, which are chosen randomly with respect to the uniform distribution. The
strong hypothesis produced (with high probability) is the sign (or Booleaniza-
tion) of a linear combination of small weight Parity functions. The bound € on the
probability that the hypothesis is erroneous on a random input can be chosen as
desired. The running time of the algorithm grows as a moderate superpolynomial
in O(1/e).

The result in [24] shows that for any desired error probability e, there is a
single, deterministic set of membership queries or a training set that applies
to all AC® functions (computable within a circuit size and depth bound) and
achieves the same purpose in the same time. In fact, it was shown that any set
of inputs that appear random and “fool” AC® functions, can serve this purpose
as a uniform training set.

The algorithm in [24] almost, (but not quite), fits the framework of Angluin’s
well-studied, deterministic Query model of exact learning [2]. In this model as
well, the queries are deterministically chosen by the learner, but the hypothesis
produced always, exactly matches the concept being learnt. The algorithm in
[24], however, allows a hypothesis error, and allowing this error is crucial to the
existence of the algorithm.

Several classes of Boolean functions have been studied, and nice results have
been obtained under Angluin’s Query model, such as [3], [4] [7]. However, many
of these algorithms use other types of queries in addition to membership queries
in order to obtain exact hypotheses. Moreover, notice that none of the classes
studied under the Query model is defined based on approximability from few
Parity or Fourier basis functions, or sparse multilinear real polynomials over
the cube domain, i.e, {—1,1}" These classes of functions, are however, the
primary interest in this paper (and have been studied under the PAC model, as
described earlier). These classes have been dealt with in the query model, only
when the domain is Z", in [6], and [25] (which uses counterexamples in addition
to membership queries); and for the case of polynomials over finite fields, in [9].
For the cube domain, Furthermore, while the algorithms studied under Angluin’s
Query model make a deterministic (training) set of queries, the natural issue -
of whether this training set is uniform over the concept class - has not been
emphasized or well-investigated.

Model and Relevant Issues. The result in [24], in effect, used a stronger
model of learning than the PAC model with membership queries, and a more
general model than Angluin’s Query model. The new model defined here is called
AAC or Always Approximately Correct. In this model, the learner needs no ran-
dom bits, and produces a hypothesis that is alwaeys approximately correct to
within some fixed, reasonable € that depends on the class being learnt. The hy-
pothesis error is measured with respect to the uniform distribution on the inputs.
We restrict the definition to the learning of Boolean functions with respect to
the uniform distribution. The definition can be generalized to other concepts
and distributions; it can be made distribution independent; and a strong learn-
ing version can be defined by allowing a free choice of € which influences the



running time, but we avoid these generalizations in this paper since we do not
require them. Crucial questions that arise in this model of learning are:

— Do deterministic training sets exist for the functions in the given class?

— Do these sets have small size (since this affects the running time)?

— Is the set a single, uniform set independent of the particular function being
learnt, and depending only on the class?

— What characterizes the structure of training sets? In particular, what is the
relationship of a training set to sets of pseudorandom strings that appear
random and fool functions in the class?

— How much time does it take to find a training set, given some finite, partial
description of the function to be learnt, in addition to answers to the usual
membership queries?

Scope, Results and Significance. In this paper, we limit our scope to func-
tions over the vertices of the cube {0,1}"™ or {—1,1}", not necessarily Boolean
valued, which are approximable by a linear combination of a set of Parity func-
tions. The set is either fixed, and known to the learner prior to the learning
phase, or it is variable, but input to the learner during the learning phase along
with the membership query information about the function being learnt. In the
latter case, the running time of the algorithm includes the time required by the
learner to find the training set to use during the learning phase.

More specifically, we prove 3 results. Below we discuss the results and their
significance.

(1) The first result concerns functions f over the cube that are exactly expressible
as a linear combination of a set of m Parity functions. If the set @) of Parity
functions is variable and unknown to the learner, the problem reduces to a
blackbox-interpolation question by m-sparse, real-valued polynomials. This has
been dealt with, e.g, in [6], and [25] (which uses counterexamples in addition to
membership queries) when the domain is Z", and for the case of polynomials
over finite fields, in [9]. For the cube domain, the learning algorithm of [20] gives
an exact reproduction of the function f, but since it works in the PAC model, it
uses randomly chosen membership queries, and the exact reproduction is output
with high probability, but not always.

On the other hand, if the set @ of parity functions is fixed and known to
the learner, reproducing the function f exactly - i,e, determining the (Fourier)
coefficients of the linear combination that gives f - is a simple black-box in-
terpolation question which can be solved deterministically, with no randomness
required of the learner. The (uniform) training set for all functions approximable
from () is hard-coded into the learner, the learner poses one point-evaluation or
membership query to the black-box/teacher for each element of the training set;
and solves a Vandermonde-type interpolation system to obtain the coefficients,
and therefore f. The uniform training set for functions in @ is chosen apriori to
ensure that the interpolation system for () is non-singular and can be solved.



In this paper, we consider the case where the set () is neither fixed nor known
to the learner. It is variable, but its elements are input to the learner during the
learning phase as an answer to a subclass query from the learner, distinct from
a membership query. The learner is required to find the uniform training set for
each specific () which would ensure that the Vandermonde interpolation system
is nonsingular. The time to find the training set is included in the running time
of the learning algorithm.

We obtain a learning algorithm in the A AC model with subclass queries, that
exactly reproduces functions f that are linear combinations of a set @) of parity
functions where the set is variable, but is a subspace of IF5. The algorithm runs
in time O(|Q|*). The algorithm utilizes a clean description of the structure of
training sets (called subspace-like) that are appropriate for subspaces @. The
description of the structure of good training sets extends to the case when @
itself is only subspace-like although there is no obvious corresponding extension
of the learning algorithm.

(2) The second result considers the efficacy of the AAC model for learning
Boolean functions that are only approzimable in the 2 norm by linear combi-
nations of Parity functions in a set (). Here we simply observe that there is no
uniform training set that applies to all functions in this class, unlike the situation
in the first result. Note that this does not, however, preclude the existence of an
AAC algorithm for learning functions in this class, since the training sets could
be constructed dynamically depending on the specific function being learnt, us-
ing the membership queries.

(3) The third result considers the efficacy of the AAC model for learning {+1,—1}
valued Boolean functions that are closely approzimable to within some € < 1/2,
typically, in our cases, € < 1/(4|Q]) is meaningful. The approximation is in the
oo norm, by linear combinations of Parity functions in a set (). (Notice that this

class is a subclass of PT" functions, if |Q| is polynomially bounded).

We consider two cases: when the set @ is fixed and known to the learner, and
when it is variable, but input to the learner via subclass queries. In the former
case, we consider general sets (), as well as sets () that are subspace-like, but in
the latter case, we only consider sets () that are subspaces.

In both cases, we prove the existence of a uniform training set for all functions
in the class, and for the more specific sets (), we utilize the structure of the
training sets developed for the first result described above. In addition, we point
out the relationship between the training sets and sets of pseudorandom strings
for this class.

For @ fixed and subspace-like, we give an algorithm that runs in time O(|Q|?)
to produce a hypothesis that errs on at most O(|Q|€?) fraction of the inputs i.e,
errs on a random input from the uniform distribution with probability at most
O(|Ql€?).

For () that are variable subspaces, we adapt the algorithm obtained in the
first result that uses subclass queries (and obtains the description of @ as input),



finds the uniform training set, makes the corresponding membership queries and
outputs the hypothesis, all in time O(|@Q|*). The hypothesis error is bounded by
by O(|QJ€?).

Classes of Boolean functions with approximations in the co norm have been
studied often in the context of threshold circuits (see [26]), since obtaining the
sign of the Boolean function is the same as approximating it in the oo norm.
However, we study classes of Boolean functions with close approximations. Such
classes have been studied by [22], [23], and [14] in the context of analytic and
combinatorial properties of Boolean functions. In both of these papers, the set @)
is fixed to be the class of small-weight Parity functions or low degree monomials.

Close oo norm approximation - from basis functions that are characteristic
functions of cross-product sets or combinatorial rectangles, rather than directly
from Parity functions - arises naturally in the context of probabilistic communi-
cation complexity, and is hidden in all proofs where probabilistic communication
complexity is used as a tool for proving threshold circuit lower bounds, for ex-
ample in [18] and [13]. The use of this notion of approximation in this context
is clarified in [11] and relies on the following

Fact If the (1 — €)-error probabilistic communication complexity of a Boolean
function f is at most logm, then there is an approximation g with the same

sign as f, of the form g = Y a;r;, where Y |a;| <1, the r; are characteristic
i<m?2 i<m

functions of cross-product sets or combinatorial rectangles, and |g(z)| > €/m

everywhere. In other words f can be well-approximated as a linear combination

of at most m? combinatorial rectangles.

Although we deal with Parity basis rather than a combinatorial rectangle
basis, combinatorial rectangles decompose as special linear combinations of Par-
ity functions, i.e, their Fourier spectra have specific properties, see for example
[15]. For this reason, our results are potentially useful in obtaining learning al-
gorithms for functions that have certain types of probabilistic communication
protocols.

Organization. Section 2 gives basic conventions and background on Fourier
transforms and Hadamard matrices and precisely defines the AAC learning
model for classes of Boolean functions, as well as the concept of subclass queries.
Sections 3, 4 and 5 deal with the first, second and third result described above.
Section 6 discusses conjectures and open problems.

2 Background and Preliminaries

The following terminology and conventions will be used throughout this paper.
IF} is a finite vector space over IF» consisting of all n-tuples with entries from
IF, and inner product (,). If z € Y}, define P, = {y € F¥|(=1)®¥ = 1}. In
general for any subset @ of IFy, the set Q is the complement of @ in IF}, and



Q' is defined as the set of all vectors y that are orthogonal to every vector in
Q, i.e, the vectors that belong in P, for every x € ().

If ) is a subspace of IFy, then so is Q1 and both are also subgroups of IF5.
As such, both group theoretic and vector space properties apply. In this paper
we will often apply group theoretic properties to (), while referring to it in the
larger sense as a subspace of IF7.

If 2,y € FY, define the Parity function x, : IFy — {—1,1} by x.(y) =
(—1){®¥). Notice that if T} is viewed as {—1,1}", then x,(y) is the monomial

II ¢ where z¢ and y® here denote the it" entries in x and y respectively.

iipt=—1
Often, we identify a subset @ of IF with the set of Parity functions {x, : € Q}.

The set of real valued functions on IF3 is a vector space of dimension 2" with
basis {xz|z € IF3}. (Unless otherwise specified, Boolean functions are assumed
to be {-1 1} valued.) If f and g belong to this space, define an inner product
by (f,9) = 3= Zzemg f(z)g(z). Note that {x,|z € 5} is an orthonormal basis
under this inner product, since (x4, Xy) = 0, if z # y and 1 otherwise. The norm

£ll2 = V/{f> £); || flloo is simply maxgemws | f(2)], and || f|]1 is g:F" | f(x)|- Unless

otherwise specified, “polynomially bounded” means “polynomially bounded in
n.”

If f: IF" — IR, then its Fourier transform is a function f :IF7 — IR defined
by f(y) = 3= Swewy F@)X2(¥) = 3= Xpewy F(@)xy(®) = (f, xy)- Furthermore,
for every o € B, f(z) = ¥yemy F)Xs() = Tyemy F6)xy(x). The support
of f:Fy —» Ris {z € IF3|f(z) # 0} and is denoted spt f. If f:Fy — IR, then
by Parseval’s identity 5+ Yoery f (z)? = >yers f (y)?, which follows from the
orthonormality of {x,|z € IF}}

The Hadamard matrix is used extensively. The Hadamard matrix Ha» is a
{+1, —1} matrix consisting of rows z and columns y labeled by elements of IF}
with the z, y** entry being X (y). The Hadamard matrix is an orthogonal matrix.
Furthermore the row and column labels used to form Hs~» can be ordered in such
a way that Ha» is a symmetric matrix, in which case, Hon = 2"H221 =HL.

The Classes and the Model. The following classes of Boolean functions are
considered.

Definition 1. Let n € IN, Q C IF} and € be a nonnegative constant. Then

C¢ = {f:F3 - Rspt f C Q}

C92% = {f:TF} — {0,1}|3g : Fy — IR such that spt § C Q and ||f — g3 < €}
C9>® ={f:Fy — {0,1}|3g: FY — IR such that spt § C Q and ||f —g||ec < €}

In general, C = Uge HC’(? over all sets @ belonging to some class II. and
C€H’°° = UQEHCGQ’OQ.



In dealing with the last class above, we use the following duality theorem for
Boolean functions. See [26] and [10].

Theorem 2. If f € C2, then for dll s € C(?, with ||s|l1 < 1, 2"|(f,s)| =
| > f(z)s(z)| <e. Here Q) is the complement of () in IF5.

Next we define the AAC model for weakly learning Boolean functions with
respect to membership queries and the uniform distribution. As pointed out
in the Introduction, this can be easily extended, if necessary, to other concepts
and distributions; distribution-independent and strong learning versions are also
natural extensions. For example, the algorithm in [24] uses a strong learning
version of the model, since the algorithm works (appropriately fast) for any
desired error bound that is input.

Definition 3. A class C of Boolean functions f over IF} is AAC learnable if
there is a deterministic learning algorithm that uses membership queries to f
from a deterministic training set and outputs a hypothesis h such that h differs
from f on at most an ec < 1/2 fraction of the 2" inputs, where ec is determined
by the characteristics of the class C. The algorithm should run in time bounded
by a polynomial in | f|, which is the size of some finite representation of f (usually
related to the hypothesis class). If the training set used by the algorithm is the
same for all functions in the class C, it is called a uniform training set for C,
and is assumed to be “hard-coded” into the learning algorithm.

Remark. See Section 1 for a description of the relationship of this model to
Angluin’s Query model, and previous results, and issues that have been studied
in the context of that model.

We will use the following simple folklore theorem relating the distance of a
function to its best approximation and the error of its best hypothesis.

Theorem 4. If a Boolean function f € C22 has an approzimation g € C(? such
that ||f — gl|3 <€, (e < 1/2 to be meaningful) then g is a good hypothesis for f
whose sign differs from f on at most an € fraction of IFy. The best approzimation
g is typically taken as the projection of f on the Fourier basis functions given
by Q, i.e, the function that satisfies §(z) = f(z) when z € Q and §(z) = 0 when

Finally we define the concept of learning with subclass-queries.

Definition 5. The class C¥ (or CH>*°) is said to be A AClearnable with subclass
queries if there is a deterministic AAC learning algorithm that receives answers
to membership queries about the function f to be learnt and in addition receives
the set () € IT such that f belongs to the subclass Cég of C{T (or the subclass
C2> of CH:>°). The running time of the algorithm includes the time it takes
to construct the training set.



3 The Class C’(?

We begin this section by recalling that if @ = {q1,-..,¢m} is any subset of IF}
and f € C(?, then f = f(q1)xq +- - -+ f(@m)Xq,, - Thus in order to learn f ezactly

in the AAC model one may select m elements from IF}, say zi,...,Zn, such
that the set of vectors {(Xq, (1), Xgm (@1))s++ s Xagr (@m)s- -+ Xgm (Tm))} is
linearly independent. After sampling f on each of zi,...,2Z,, one formulates

and solves the system:

Xar(@1) *+* Xa (1) | [ Flar) f(@1)

Xq1 (-Tm) 0 Xgm (xm) f(Qm) f(l'm)

to obtain the Fourier coefficients of f, thus learning f exactly. If the set @ is fixed
and known to the learner prior to the learning phase, then it is assumed the set,
{z1,...,Zm}, that makes {(xg (Z1)s-- - Xgm (@1))s+ s (Xqr (Tm)s -+ 5 X (Tm)) }
linearly independent is also known and thus we have a learning algorithm for f
that runs in time polynomial in |@Q|. On the other hand if the set @ is variable
and is given as input to the learner, then finding an appropriate training set,
{z1,...,2Zm}, could require exhaustive search.

In the following we show that for certain subsets @) of IF}, there are training
sets @' which can be found in time polynomial in |Q).

Definition 6. Let S be a subspace of IF} of order m. A subset S’ = {z1,...,2n}
of F} is a subspace-like set derived from S if z; € S*, z; ¢ S+ for i €
{2,3,...,m}, and z; + z; & S, Vi, j, i # j.

Note that every subspace S’ is a subspace-like set derived from some subspace
S. S could be taken as S itself, provided S’ N S'+ = {0}.

Proposition7. Let Q = {q1,...,qm} be a subspace of IFy with basis {q1,...,
Qiog m }- Let z1 be an arbitrary element of Q+. Let {S3,53,...,Sm} be the set of
nonempty subsets of {1,2,...,logm}. For each S;, let z; € IF} be a solution to
the system:

k€ Si, (g, zi) =1

k & Si, (g, zi) =0

Then Q' = {x1,...,zm} is a subspace-like set derived from Q). Moreover, given
Q and a basis for Q, Q' can be found in time at most O(|Q|*).

Proof. Begin by noting that since {q1, ..., giog m } is linearly independent, the sys-
tem in the proposition has a unique solution for each i. By hypothesis z; € Q.
Since S; is nonempty for each i € {2,3,...,m}, (¢, 2;) = 1 and consequently,
x; € Q+ for each i € {2,...,m}.

Claim: If 4,5 € {1,...,m} and i # j, then z; + z; € Q.
Pf. Suppose i,j € {1,2,...,m} and i # j.



CASE 1:¢=1
Since i = 1, z; € Q. Since j # 1, z; Q. Thus there exists g € () such that
(¢, zi + ;) = (¢, %) + (¢, 7;) = 1. Hence z; + z; Q™.

CASE 2: i £ 14 j
In this case either S; \ S; # 0 or S; \ S; # 0. With out loss of generality assume
Si\S; #0. Let k € S; \ Sj. Then {(gx, ;i + ;) = (qk,®i) + (qk, ;) = 1. Thus
T; + x; ¢ QL.
It follows that Q' = {z1,...,zn} is a subspace-like set derived from Q.

Finally note that to find each element of @', the system in the proposition
needs to be solved, which can be done in time at most O(|Q|?). Thus @’ can be
found in time O(|Q[*). O

Proposition 8. If Q is a subspace of IFy and z € F} \ Q*, then |{g € Q :
Xq(x) =1} = [{g € Q : xq(2) = —1}].

Proof. Note that if Q =< 0™ >, then the proposition is vacuously true. So we
assume |@Q| > 2. Let Q = {q1,...,¢2m} be a subspace of IF} of size 2™, where
1 <m < n.Let z € F} \ @+. Then there exists y € @ such that x,(z) = —1.
Consider the map ¢ : Q — @ given by ¢(¢;) =y +¢;, Vie {1,...,2m} = 1.

Claim A: ¢ is a bijection

Pf. Let g;,q; € Q and suppose ¢(g;) = ¢(g;)- Then y +¢; = y + ¢; and ¢; = g;.
Thus ¢ is injective.

Let ¢; € Q. Then ¢;—y € Q and ¢(g;—y) = y+(¢;—y) = ¢;.- Thus ¢ is surjective.

Claim B: For every i € I, x¢(q,) (%) = —1 if and only if x4, (z) =1
Pf. Let i € I. Then x4(q,)(x) = —1 if and only if xy44, (x) = —1 if and only if
Xy(Z) - xq;(x) = —1if and only if —1- x,, () = —1 if and only if x,, (z) = 1.

Claim C: For every i € I, x¢(q;,)(2) = 1 if and only if x,, (2) = -1
Pf. Since x4 (xz) € {—1,1}, Vi € I, this claim follows immediately from Claim
B.

Claim D: [{g € Q : xq(z) =1} = |{g € Q : xq4(z) = —1}]

Pf.Let J={i€I:q; €@ andxgy(z) =1}. Assume |J| > % Then xq, (z) = -1
for less than half the values ¢ € I. By Claim B x4(4,)(z) = —1, Vi € J. Since
¢ is a bijection, this means x4 () = —1 for more than half the values ¢ € I.

Contradiction. Therefore |J| < %

Let K = {i € I : ¢ € Q and x,(z) = —1}. Assume |K| > |2ﬂ Then
Xq: () = —1 for more than half the values ¢ € I. By Claim C g4, (z) = 1,
Vi € K. Since ¢ is a bijection, this means x4 () = 1 for more than half the
values ¢ € I. Contradiction. Therefore |K| < %

Since xq; () € {-1,1}, Vi € I and |J| < %‘ and |K| < %, it follows that

Ha€Q:x(2) =1} =|J] = & = |K| = |{g € Q : x4(z) = —1}I. O



Theorem 9. Let S = {z1,...,Zm} be a subspace-like set derived from a subspace
Q ={q,---,qm} C . If Hg g = [hi;] is the m x m matriz given by h;; =
Xq; (z:), then Hs g is a Hadamard matriz.

Proof. Let i,j € {1,2,...,m} with i # j. Since S = {z1,...,Zn} is a subspace-
like set derived from Q, z; + z; € Q. Thus [{g € Q : x4(z:) = xq(z;)} = |{q €
Q:xqlwit ;) =1} =g € Q : xqlzi + z;) = -1} = [{g € Q : xq(z:) #
Xa(Z)}» by Prop. 8. Therefore ((xg, (70), > Xan (#1)), (Xas (83)s > Xam (5))) =
0, i.e, the i" and j** rows of Hg g are orthogonal. Since i and j where arbitrarily
chosen, Hg g is a Hadamard matrix. O

Corollary 10. When @ is a subspace-like set derived from a subspace S, a uni-
form training set for C(? is S. When Q is a subspace, then any set Q' that is
subspace-like, derived from Q is a uniform training set for ng. Notice that aoll
these training sets have size exactly |Q|. Finally, when II is the set {Q : Q is a
subspace}, the class CL is AAC-learnable exactly with subclass queries, in time

o(Q").

Proof. If @ = {q1,.-.qm} is a subspace-like set derived from a subspace S =
{z1,..., 2}, it follows from Theorem 9 that Hg s = [hy;], where hy; = X, (q;)
is Hadamard. Therefore Hg g = H g, g is Hadamard and consequently invertible.
Thus the system

flar) f(z1)
Hsq|  |=]
f(Qm) f(@m)

has a unique solution. Le. S is a training set for C.

IfQ ={q,.--,qm}is asubspace and Q' = {z1,...,2n,} is subspace-like, derived
from (), then by Theorem 9 Hg o is Hadamard and consequently invertible.
Thus

~

fla) f(@1)
Hey g : = :

Jgm) f(@m)
has a unique solution. i.e. ' is a training set for C’g2 .

Finally note that by Proposition 7 Q' can be found in time O(|Q|*). Thus the
class CI is AAC-learnable ezactly with subclass queries, in time O(|Q|*). O

4 The Class C2?

If f is a function selected from some class C' and we hope to learn f, then it is
required that we produce an algorithm A, i.e. a function A : Fy — {0,1} such
that f(z) = A(z) for most if not all z € IF;. The following definition identifies
those algorithms A which are hypotheses for a function f with error bounded
by some constant c.



Definition11. Let f: IF} — {0,1} and A : IF} — {0,1}. If ;L Zze]Fg |f(z) —
A(z)| < e, where 0 < ¢ < 1, then A is said to be a hypothesis for f with error
bounded by c.

We show that asymptotically C?'2 has no reasonably small uniform training
set if € > 0 and |Q| > 2, with 0" € Q. Le. if C&? = {f : Fy — {0,1}|3g :
F} — IR such that spt § C Q and ||f — g||3 < €} and S, C IF} , then there
exists N € IN such that if n > N, S, can not be a uniform training set for Cg,f.

Observation 12. Let € be positive and Q be a subset of IFY containing 0™ and
of size at least 2. Let p be an arbitrary polynomial. There exists N € IN such
that if n > N, then Cf?;f has no uniform training set of size < p(n) which yields
a hypothesis error bounded by a fized constant ¢ < 1/4.

Proof. Since p(n)/2™ — 0 as n — oo, there exists N € IN such that if n > N,
then p(n)/2™ < min{e,1/4—c}. Let n > N and suppose S is a uniform training
set for Cg;f, |S| < p(n), and S yields a hypothesis error bounded by ¢ < 1/4.

Since |@| > 2, @ has a nonzero element, ¢g. Note that xo~ and ¢; = % Xon +
1x, belong to C$? C C22. Let f : Fy — {0,1} be defined by f(z) =
{iq e %g \ g~ Then [If = g3 <[S1/2" < p(n)/2" < e. Thus f € CZ2.

Let A be the hypothesis for f obtained by sampling on S. Notice that since
f = xo~ on S, A is also the hypothesis for xo» obtained from S. Since |{z €
F2\S|f(z) = cq(z) # xon (z)}] > 2771 —|S| > 27~ —p(n), it follows that either
{z € F3|f(z) # A(@)} > 2" — p(n) or |{z € Fy|xo(z) # A(z)}| > 2" -
p(n). Thus either 5 3, o |f(2) = A(2)] > § = 2 > cor o Y sewy [xon (2) =
A(z)| > ¥ — 1’2(—?) > c¢. Therefore the training set .S yields a hypothesis A which
produces an error greater than c in the case of either f or yo». Contradiction. O

5 The Class C&>

We prove a theorem in the case where () is subspace-like using duality, which
gives us small, uniform training sets such that by processing the values of f €
C9 on these sets appropriately, the values f(z) : € () can be estimated with
small error. We then use the fact that C%> C Cg,z and apply Theorem 4 to
get the required AAC learning results.

Theorem 13. Let Q be subspace-like. Given a function f € C9>, for each
q € Q, there is a function sq such that | )" f(x)sq(z) — f(q)| < 2¢€. Moreover, for

T
each g, |spt s,| is ezactly |Q|. We assume here that |Q| < 2"71, i.e, |Q] < |Q|,
which is true for most learning applications.

Proof. We will show the existence of a function s, such that |[s; —1/2"x,[[1 < 2,
lspt 5] = |Q|; and s, — 1/2"x, € CZ. It will follow by the Duality Theorem 2



that | 37 f(z)(sq(x) — 1/2"x4(2))] = | T f(z)s4(x) — f(g)| < 2, thereby proving
the thezorem. ’

Let @ = {qi,---,9q|} be subspace-like. Note that g € C(? if and only if
>z 9(@)xg (z) =0 for all ¢’ € Q. Thus in order to find an s, (for each ¢ € Q)

such that s, — 1/2"y, € Cg‘) , we can solve a system of |@| equations, one for
each ¢' € @, of the form:

D (sq(@) = 1/2"xy(2))xg (z) = 0

T

> sa@xe (@) = 3 1/2" X1y (2) = {(f 7

o
- ifg =¢q

or

for the 2™ variables, sq(z), z € IFy.

Let S = {z1,...,7|Q|} be a subspace of IFy which derives the subspace-
like set . Then by Theorem 9, Hg s is Hadamard. Furthermore, if IF} =
{#1,...,2)Q,-..,Tan }. then for each ¢; € @ the system described above can
be represented as:

Sg; (xl)
[Ho,s Hg 3] = Ky,
Sq; ($2")
where K, is a |@| x 1 matrix with i*" entry 1 and all other entries 0. Setting
Sg; (Tmt1) = 8q; (Bma2) = ... = 8q; (x2n) = 0, we get:
8¢:(71)
: = Hé,ls Ky,
S (le\)

Since each entry in Hé’ls has absolute value 1/|Q|, |sq; (z;)| = 1/|Q], for 1 < j <
|Q|. Thus for each g € Q, ||sq — 1/2"x4|l1 < 2 and |spt s4| = m = |Q|. Thereby
proving the theorem. O

Corollary 14. If Q is subspace-like, then the class C9> is AAC learnable in
time O(|Q|?) with hypothesis error bounded by O(|Q|€%). Moreover, for the set
T = {Q : Q is a subspace}, CI>° is AAC learnable with subclass queries in
time O(|Q|*), and hypothesis error bounded by O(|Q|€?).

When Q is subspace-like and derived from a subspace S, then each spt sq can be
chosen as the subspace S, and when @ is itself a subspace, then any set Q' that
is subspace-like and derived from Q) can be used as spt sq. All of the resulting
training sets for C2>°, with Q subspace-like, have size |Q)|.

Proof. For () subspace-like, derived from the subspace S, the proof of Theorem
13 yields sampling distributions s, and the uniform training set S, such that by
sampling the function f € C9*> on this training set, one can estimate f (q) for
g € @ to within 2e. Thus if the functions s, are known for each ¢ € @, then



each coefficient f(g) can be calculated in 0O(|Q|) time, providing a hypothesis,
2 gco f(q)xq, which can be calculated in time O(|Q|?).

Let @, subspace-like, be fixed and note that C¢> C 03’2. Thus if f € C9°,
then by Theorem 4, || Y-, - f(@)Xxz — fII2 < €2. Therefore by Parseval’s identity,

> 2e0 f(z)2 < €. So if g is the estimate to f obtained from the sampling
distributions s, it follows that || f —g||3 = Ysery (f(z)—g(z))? = EzeQ(f(x) -
9(@))* + X ,c0 f(@)? <1Q1- (2)* + € = 0(1Q|€?).

If Q € II, then by Proposition 7 a subspace-like set S derived from @) can be
computed in O(|Q|*) time. By Theorem 9 Hg ¢ is Hadamard and consequently
so too is Hg,s. Thus by Theorem 13, S can be used as a training set (i.e. spt
s, = S, Vq € Q) to learn the member of C>*° in question, with hypothesis error
bounded by O(|Ql€?).

The last part of the corollary follows directly from Theorem 9 and the proof
of Theorem 13. O

Remark. Notice that s, for ¢ = 0™ has the property that > f(z)ss(z) is close
(within 2€) to the expected value of f, i.e £(0") = 1/2" " f(z). Hence, so» (and

x

also s, for other ¢’s by Corollary 14), could be chosen as any pseudorandom
distribution that looks uniform to f and fools f. In other words, any set of
pseudorandom strings for C’EQ % where () is subspace-like, can be used as spt
Sq.

Notice that C2> C C%?, but they behave quite differently in that the
former has uniform training sets as shown above, but the latter does not, as
observed in 12.

6 Open Problems and Conjectures

(1) Extend the result of Theorem 13 to include general subsets, @) of IFy. At
present the result holds only for subspace-like sets Q.

(2) Extend the learnability results in Corollary 10 and and Corollary 14 when
subclass queries are allowed. Currently the results only work for the class IT =
{Q : Q is a subspace}. The conjecture is that these results should work for a
larger class, namely A = {@Q : @Q is subspace-like}, for which a good structural
description of of training sets is known from Theorem 9.

(3) As mentioned in the Introduction, the results here only consider weak learn-
ing in the AAC model with respect to the uniform distribution. Extend these
results to the strong learning and distribution-independent models, perhaps with
the use of boosting. The conjecture is that the learnability results in Corollary
14 should be extendible to give strong learning in the A AC model.



(4) All learnability results in the paper now involve to sets Q) of Parity functions
that are fixed or variable but obtainable by the learner using subclass queries.
Extend these results to the case where () is variable and unknown to the learner.

(5) Investigate the use of Corollary 14 in finding algorithms in the AAC model
for functions with specific types of probabilistic communication protocols (as
described in the Introduction). This would require investigating the properties
of the Fourier spectra of the characteristic functions of combinatorial rectangles.
The recent work of [5] may be applicable in this context.

(6) Put the model and results of this paper into the framework of learning in
the presence of noise.

(7) Investigate the relationship of uniform training sets to VC dimension and
e-nets.

(8) When does AAC learnability (with a uniform training set) also imply PAC
learnability and viceversa?
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