APPROXIMATION FROM LINEAR SPACES
AND APPLICATIONS TO COMPLEXITY

MEERA SITHARAM

Abstract. We develop an analytic framework based on linear approx-
imation and duality and point out how a number of apparently diverse
complexity related questions — on circuit and communication complex-
ity lower bounds, as well as pseudorandomness, learnability, and general
combinatorics of Boolean functions — fit neatly into this framework. This
isolates the analytic content of these problems from their combinatorial
content and clarifies the close relationship between the analytic structure
of questions.

(1) We give several results that convert a statement of nonapproxima-
bility from spaces of functions to statements of approximability. We
point how that crucial portions of a significant number of the known
complexity-related results can be unified and given shorter and cleaner
proofs using these general theorems.

(2) We give several new complexity-related applications, including cir-
cuit complexity lower bounds, and results concerning pseudorandom-
ness, learning, and combinatorics of Boolean functions.

i) Even the smallest improvements in weighted threshold circuit com-
plexity bounds have been very hard to obtain. We obtain an expo-
nential lower bound for certain depth-2 weighted linear thresholds
that compute ACP[3] functions that are invariant under a specific
class of permutations. The weighted thresholds we consider have
lower-level gates that belong to a class of threshold functions that
is closed under the same class of permutations. We also obtain
new exponential lower bound for certain weighted thresholds of
And and “flat” functions.

ii) We give fairly strong, new applications about sets of pseudorandom
strings for complexity classes: In particular, we come surprisingly
close to falsifying the Linial Nisan ("90) conjecture that polylogwise
indep distributions fool AC? functions, and go further towards
completely settling the question one way or the other. Further
results give general ways of finding sets of pseudorandom strings
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for complexity classes.

iii) We give results concerning the derandomization of a randomized
learning algorithm that learn functions from general complexity
classes. We give two different ways of achieving this kind of deran-
domization, and relate it to finding sets of pseudorandom strings
for the complexity class being learnt.

Key words. Circuit complexity; Communication complexity; Complex-
ity Lower bounds; Fourier transforms; Linear approximation; Nonlinear
approximation; Learning theory; Pseudorandomness.

Subject classifications. 68Q15, 68Q99.
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1. Introduction

In the context of complexity lower bounds, the “approximation method” usu-
ally refers to the method originated by Razborov in [58] and [60] for proving
monotone lower bounds. The approach was continued by [59] and [67] and sev-
eral others including [6], [68], [9], [69], [72], [78], [40] for general lower bounds,
and further used in monotone lower bounds such as [2] [79] and [10]. Other
complexity lower bounds that can be generally classified as being “based on
nonapproximability by low degree or sparse polynomials, or other basis func-
tions” include many of the lower bounds on threshold circuit complexity and
“yoting polynomial representations” such as [11], [15], [43], [44] [27], [3], [29],
etc. Some of these results have been collected in survey articles by [8] and [61].
Further results that could be seen to involve Boolean (non) approximability
include results on general Boolean functions in [52], [53], [47], [38], and [48].

While these results are viewed as being based, broadly speaking, on the
analytic notion of approximation of Boolean functions by sets of monomials,
or other suitable basis functions, no closer relationship between the analytic
structure of these problems has been established. In particular, the techniques
that have been used for showing (non)approximability have not been unified,
and are in fact considered to be quite different.

In this paper, we develop an analytic framework based on linear approx-
imation and point out how a number of complexity related questions — not
only those considered in the papers above, but also other questions about com-
plexity lower bounds, as well as pseudorandomness, learnability, and general
combinatorics of Boolean functions — fit neatly into this framework. This iso-
lates the analytic content of these problems from their combinatorial content
and clarifies the close relationship between the analytic structure of questions.
In addition, the framework facilitates a systematic study and application of
analytic techniques, and, in particular, shows that many of the above proof
techniques are variations of the same general technique.

It should be noted that the analytic methods studied here reduce complexity-
related questions to their combinatorial essence, at which point possibly ad hoc
combinatorial methods might be required to complete the solution. In other
words, the analytic framework helps to break up complexity related questions
into their constituent analytic and combinatorial subproblems, which are often
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of independent mathematical interest and require new and original techniques
for solution.

The analytic methods used in the paper are various combinations of 2 basic
ingredients

e modifications of the duality principle for linear approximation that hold when
the function to be approximated is Boolean and/or the approximating space
has a Boolean basis, and

e simple norm relationships specific to Boolean functions.

1.1. Organization. Section 2 gives basic preliminaries and conventions used
in the paper. Section 3 introduces the duality principle for linear approxima-
tion and explains its relevance to complexity questions; the section presents
a general analytic framework based on duality, by which one can view vari-
ous complexity-theoretic questions as versions of the same analytic problem
with different choices of parameters; and describes, with examples, the ba-
sic ingredients that constitute the analytic techniques for showing Boolean
(non)approximability. The remaining sections 4, 5 and 6 are organized based
on the type of approximation chosen in the analytic framework. These are:
interpolation, one-sided approximation, and uniform approximation. The final
section 7 covers algorithms for finding approximating functions.

Sections 3 to 7 follow a fixed pattern of exposition.
(1) We give several, general results that characterize approximability from
spaces of functions and hence also represent general analytic methods for show-
ing nonapproximability.
(2) We point out that crucial portions of a significant number of the known
complexity-related situations and results can be unified and made clearer, or
given shorter and cleaner proofs using these general theorems. This clarifies
their common analytic structure. We however provide only a few of the alter-
native proofs.
(3) We give several new complexity-related applications, including circuit com-
plexity lower bounds, and results concerning pseudorandomness, learning, and
combinatorics of Boolean functions.
(4) Finally, we suggest natural and promising directions for further investiga-
tion.

1.2. Scope. We note that our results and techniques are suitable primarily
for spaces of functions whose range is R. Hence we do not deal with other valid
representations of Boolean functions, for example, as functions whose ranges
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are finite fields, as in [67] [6], [9], [72], [78], etc.

Furthermore, it should be noted that most of the general results and meth-
ods in this paper are inherently multivariate, and do not use rely on univariate
approximation which have limited scope and on which, for example, the results
of [52], [53], and some of [48] and [3] are based; we point out the key difference
in Section 3.

In addition, our discussion is directed towards nonapproximability results
and resulting lower bounds. Hence even our approximability results are geared
towards the eventual goal of proving nonapproximability. We pay scant atten-
tion to upper bounds that are obtainable from approximability results including
the numerous threshold circuit complexity upper bounds in the literature (See
[49] and [50]).

Moreover, when it comes to uniform or ||.|| norm approximation, we con-
centrate on the strongest form of nonapproximability which yields a lower
bound on the number of basis functions from a given family that are needed
so that a weighted threshold of them computes a given function. We do not
deal with uniform approximability notions that give methods for establishing
unweighted threshold lower bounds, although we mention them for complete-
ness and comparison. These latter methods are usually based on global prop-
erties like scalar product estimates between the function to be computed (ap-
proximated) and the basis family. More generally, we do not deal with methods
that are based on fairly global properties of the basis family although some of
these methods can be used even to establish weighted threshold lower bounds.
A study of such global properties of the basis family, especially that of “stabil-
ity” and corresponding methods for nonapproximability and lower bounds can
be found in [21].

Finally, our analytic framework is suitable primarily for questions that can
be decomposed into linear approximation questions. Many of the lower bounds
based on [58] and [60], such as [40] [2] [79] and [10], use distinctly non-linear
approximation methods. While it is an open question whether these, too, can
be treated using purely linear approximation methods, we discuss the current
points of difference in Section 3.

1.3. General results. Below, we give an informal description of some of the

general (non) approximability and interpolability characterizations in the order

in which they appear in the paper. In addition, if easy to state, we mention

known results that are generalized by these characterizations. We consider

approximability of Boolean functions f from vector spaces X of functions from

{=1,1}" to R. We will use the inner product < f,g >:=1/2"%" f(x)g(z) and
T
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often refer to simple concepts from linear algebra, such as the orthogonal space
X+ consisting of functions that have 0 inner product with every function in X,
and the projection f|x of a function f onto a space X.

The first result concerns a characterization in [15] which states that PT; func-
tions (i.e, functions whose signs can be represented by linear combinations of
at most polynomially many Parity functions), are defined uniquely by few of
their Fourier coefficients. This gives a bound on the number of distinct PT
functions.
THEOREM 3.4 is stronger, and follows directly from a version of the duality
principle that is specific to Boolean functions. It asserts the equivalence of two
statements: for any Boolean function f, and any subspace X of functions from
{—1,1}" to R, there is a function in X with the same sign as f if and only if
the projections f|x extends to a unique function bounded by 1.

This theorem gives a bound on the number of Boolean functions that are
approximable from any space X in terms of the dimension of X and some
properties of bases for X.

THEOREM 4.1 converts a statement of approximability to an equivalent state-
ment of interpolability. It states that for any subspace X of functions (from
{—=1,1}" to R), and function f in the orthogonal space X, the following two
statements are equivalent.

e No g € X has the the same sign as f on a set S on more than m points.

e For every set S of at most 2" — m points, there is a function h € span((X U
{f})71) that interpolates f on S, and is bounded above by f elsewhere.
Section 4 gives known results that provide context to this theorem.

THEOREM 4.4 converts a statement of non-interpolability to an equivalent
statement of interpolability. let X be a subspace of the usual space of functions
and let f be any function in X+. The following statements are equivalent.
e No function in X of degree < d interpolates f on a set S of > m points
e For every set S of < 2" — m points, there is a function in X+ \ f, that
interpolates f on S.

This gives a different handle on an open problem posed by [67] namely to
extend the results - on the non-interpolability of functions from a space of low
degree polynomials over finite fields - to spaces of polynomials over the reals.

THEOREM 5.1 gives a systematic method of obtaining distributions that mimic
the uniform distribution and “fool” any Boolean function f that is approx-
imable from a given space X of functions. In general, the theorem shows that
if every function in a complexity class C is approximable in the co-norm to
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within, say 1/n, from a subspace X, then any (Boolean) function A in the or-
thogonal space X * is hard for C, and can be expressed as h*+c.One, where One
denotes the constant function; furthermore, h* gives a distribution that fools
every function in C'. Such distributions that are, in addition, easy to generate,
provide a large class of natural pseudorandom generators for all computations
in C', and highlight the close relationship between hardness and pseudorandom-
ness (see, for example, [51]).

THEOREM 5.6 gives an ezact characterization of when a large class of dis-
tributions [ fool a (class of) functions f in terms of a notion of “one-sided”
approximability of the functions f. f. See Section 5 for known results that put
this theorem into context.

THEOREM 6.1 converts nonapproximability in the co-norm (and related ver-
sions) into equivalent approximability results. We give two of them here. Let
f be a Boolean function and B a set of Boolean functions, and let M C B
consist of independent Boolean functions.

(1) The following are equivalent.
e There does not exist an approximation g € span(M) with sign(f) =
sign(g)-
e There exists an approximation | € span(M)* with ||l|/[; > 0 and
sign(f(x)) = sign(l(z)), whenever I(z) # 0.

(2) The following are equivalent.

e There does not exist an approximation g = Y aph with > |as] <1,
heM heM

and € < |g(z)| < 1 everywhere, and sign(f) = sign(g).
e There exists an approximation [ close to span(M)* with ||l||; =1 and
sign(f) = sign(l), where ever [ # 0. By “close to span(M)+” we mean

that | >, l(x)h(z)| < e for all h € M.

Almost all the threshold circuit lower bounds known so far concerning non-
approximability in the co-norm (non expressibility of the sign) of a function f
from the span of small number of LT or other functions involve a restriction
on the approximation: the linear combinations that form the approximant have
polynomially bounded coefficients. These include results in [34], [42], [45], [27].
In other words, these lower bounds apply only to circuits with an unweighted
threshold gate at the top.

These lower bounds mostly use the “correlation/discriminator/discrepancy
lemma,” proved in [34] and [27], which is nothing but 6.1(2), for which we give
give a short and straightforward proof using the duality principle. This and
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very similar methods can also be applied to give the communication complexity
lower bounds in [34], [27], [33], [39], [57], [26], [30], [4], and [25], although the
original proofs of these bounds use more ad hoc methods.

To complete such a lower bound proof that uses 6.1(2), one then needs to
show that the scalar product | < h,l > | is small for each h € M.

In fact, scalar product estimates, and a variant of the approximability no-
tion in 6.1(2) ( close 2-norm approximation), are the crux of the “geometric
or variation rank” method of [45] as well, although, for some reason, this is
commonly considered to be a distinct method of proving unweighted threshold
lower bounds (as opposed to the correlation method).

Moreover, based on another highly related notion of approximation (high
energy approximation, also considered in 6.1), global scalar product estimates
can also be used for proving weighted threshold lower bounds. i.e, the strongest
nonapproximability result as in 6.1(1). To do this, however, the basis family
must have another global property of “stability.” This is observation is made in
[21]. Orthonormality is a special case of stability, and the “spectral method” of
[15] for showing weighted threshold lower bounds is a special case of the above
observation.

Furthermore, the “communication complexity method” for proving thresh-
old circuit lower bounds follows directly from the characterization of nonap-
proximability in 6.1(2), simple properties of Boolean bases, and the transitive
nature of approximability relationships.

Finally, the methods for obtaining the scalar product estimates in turn re-
duce to arguments based on duality and simple norm relationships for Boolean
functions.

NOTE: All of these general methods and complexity applications related to
6.1(2) discussed above, such as scalar product estimates, and other global prop-
erties of the basis family - such as stability - are studied in [21] and will not be
studied here.

The only nonapproximability results without the above restriction are the fol-
lowing: the result of [24] on the nonapproximability of Parity by few functions
computable by AC? circuits, i.e, {A, V, —}- circuits of a fixed polynomial size
and constant depth; related results of [44], for example, on the nonapproxima-
bility of an AC°[3] function by few And functions and the result of [43] on the
nonapproximability of an AC°[3] function by few Mod r functions (which can
be viewed as monomials over the reals, or ZZy characters; in fact, the result ap-
plies to ZZ; characters, for any r). The main analytic technique in all of these
papers reduces to 6.1 (1) (which is based on duality) although the respective
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papers do not state as such.

It should be noted that the last result mentioned above has an alternative proof
using an observation mentioned earlier in this discussion. This proof takes di-
rect advantage of the stability of the Modr functions over a certain distribution
on the domain, uses scalar product estimates, and notions of approximation
similar to 6.1(2). As mentioned earlier, this general method as well as this
particular alternative proof appear in [21].

OBSERVATION 6.3 contains a two methods, both of which show the nonapprox-
imability of functions f in the oo norm (or non-expressibility of the sign) by
decomposing the domain in a systematic way. These results are also useful in
constructing hard f based on previously proven or easier nonapproximability
results. Furthermore, these results give a general method for reducing a non-
approximability question into a combinatorial problem. This method has been
used in several papers, although not stated as such, for example [45], [43], [27].
It is, in effect, also a crucial aspect of the proof of [43] showing that there are
ACy[3] circuits that cannot be simulated by a threshold of quasi-polynomially
many parity functions. Le, ACy[3] Z QT,.

Finally, based on the analytic approximation framework, we are able to relate
several approximation algorithms, some of which have appeared as learning
algorithms, [47] [23], [35], [41], [65], and some of which are classical algorithms
in the approximation theory literature.
THEOREM 7.1 states that to find an approximation with the same sign as a
Boolean function f from a space X, there is a set of dim(X)+ 1 sample points
on which it is sufficient to sample f. Furthermore, these points are the support
of a function in X*. (Recall 5.1 showing that such functions also provide
distributions that fool f).

This result has fairly general consequences for obtaining deterministic ap-
proximation algorithms, which are however listed under the complexity-related
applications below, since they also concern learning and pseudorandomness.

1.4. Specific complexity applications. Some examples of specific, new
complexity related applications are given below in the order in which they
appear in the paper.

It is an elementary fact that no polynomial of degree bounded by n —1 has the
same sign as Parity.

THEOREM 3.5 is a simple generalization of this result and has a two-line proof
using an analytic technique developed in this paper. It states that scalar mul-
tiples of Parity are the only functions (Boolean or otherwise), over {1, —1}"
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whose sign does not coincide with that of any polynomial of degree bounded
by n — 1.

We give fairly strong, new applications about sets of pseudorandom strings
for complexity classes: we come surprisingly close to falsifying the [48] conjec-
ture that polylogwise indep distributions fool AC? functions. OBSERVATION
5.5 states that a modified version of this conjecture - where the distributions
are replaced by functions whose 1-norm is bounded by 1, but are allowed neg-
ative values - is false. By introducing and studying the notion of one-sided
approximation, in THEOREM 5.6 we go further towards completely settling the
question one way or the other, and give general and exact characterizations of
sets of pseudorandom strings for complexity classes.

The conjecture that AC°[3] is not contained in LT, i.e, the class of weighted
thresholds of polynomially many threshold gates, has been posed by [43]. Set-
tling this conjecture, would, in particular, settle the embarassing open question
as to whether LT is different from NP. As mentioned in the general results
section after 6.1, even the smallest improvements in weighted threshold cicuit
complexity bounds have been very hard to obtain.

THEOREM 6.7 is a partial result in this direction. A canonical AC°[3] function
does not have an approximation with the same sign, from the span of a set
M C LT, of polynomially bounded size provided M is closed under all the
permutations of variables under which the canonical function is invariant.

THEOREM 6.8 gives an exponential lower bound that is weaker in some senses,
but stronger in others than similar results concerning nonapproximability of an
explicit function from the spans of And and AC® functions in [44] and [24], but
using a different proof technique, where 6.1 (1) plays a direct and crucial role.
THEOREM 6.9 extends the above result to Flat functions that are more general
than And functions.

REMARK 7.2 is based on Theorems 7.1 and 5.1 listed under the general results,
and points out a direct connection between sets of pseudorandom elements for
a general class of functions C' and (two kinds of) deterministic sample sets for
approximating - in the oo and 2 norms - or for learning functions in C. When
easy to generate, these distributions can be used to derandomize randomized
approximation and learning algorithms and randomized computations in C.
Such a connection was previously established for the special case of AC® in
[65], where the learning algorithm of [47] was derandomized.

Using the more general methods of this paper, we derandomize the learning
algorithm of [23] for AC® functions and portions of the learning algorithm of
[35] for PT functions, and [41] for decision trees.
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2. Background and conventions

Unless otherwise specified, all function domains consist of n-tuples in {—1,1}"
viewed as subsets of both R™ and the finite vector space IF5, with -1 mapping
to 1g, and 1 mapping to Op,. The number of arguments of a function is often
omitted and is assumed to be n. Similarly, the words “polynomially many”
and “polynomially bounded” usually refers to a polynomial in n. The range
of all functions is R, and for Boolean functions, the range is {1, —1}, viewed
primarily as a subset of R, (and occassionally as a subset of IF,). Thus, for
example, the functions A, V etc. map from {1, —1}" to {1, —1} in the obvious
way, with -1 mapping to the usual 1 and 1 mapping to 0.

The number of ‘1’ entries in a vector z € IFy is denoted |z|, and the n-tuple
(a,...,a) is denoted (a™). A vector z € IF} is identified with the set of co-
ordinates 1 < ¢ < n where x; = 1. Thus, given vectors x and y, we will refer
to the vectors x Uy, x Ny, =\ y, T or -z (for the bitwise complement of ),
and expressions such as i € x (meaning x; = 1). The inner product < z,y >
for z,y € IF} is ‘1’ if the parity of |z Ny| is odd.

The Fourier transform of a function f from IF] (or the group Z3) to R is
denoted f and is given by

f(x) = 1/2” Z f(u)(_1)<z,u>;

uelFy

thereby f(z) can be written as ¥ f(u)(—1)<*“>. The functions x,(z) are

u€elF7y
defined as (—1)<®%> and are generally called parity functions. For u = 17, the
function x, is called Parity, and for u = 0", the (constant) function is called
One.

Functions f over {—1,1}" are also representable uniquely as multilinear
polynomials from R" to R. L.e, there is a unique multilinear polynomial over
R™ that interpolates f at its domain points.

We will often use the following: when the range of functions is {1,—1}
then for x € {1,—1}", the functions y,(z) are nothing but [] z;. Thus,

€Y
flz) = X f(y) [T ;. In other words, the coefficient of [] z; in the multi-
yeFy 1€Y 1€Y
linear polynomial over R" that represents f on the domain {1, —1}" is nothing
but the y™ Fourier coefficient of f. Notice that given a polynomial f that
represents f on the domain {0,1}” C R", the Fourier coefficients of f can be
obtained by applying the change of variable z; — 1_2“, and Z; = (1—z;) — %,
to f: and finding the coefficients of the resulting polynomial in standard power

form.
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The finite vector space of functions from any subset S of IF or of {1,—1}"
embedded in R" to R is denoted Fon g, and is equipped with the usual inner
product: for functions f and g, < f, g >s=4es 1/|S| > f(x)g(z). Sometimes the

inner product is defined with respect to a distribution R over S;i.e, R(z) >0
for x € S and ZR( ) =1. Then < f,9 >sr=4des Z’R( )f(z)g(x). When S

consists of all of the 2" domain points, we simply omlt the subscript S. The
set of parity functions x, : v € IF] are mutually orthogonal in Fy., but not
neccessarily in Fon g, for arbitrary subsets S. However, these functions consti-
tute a complete (possibly redundant) basis for Fon g, for any S. The norms

are defined as usual: 1,S =def Es |f(2)]; and || fl|co,s =def Mmazzes|f(x)|.
zTE

However the ||.||, norms for 1 < p < oo are scaled by 1/|S], for convenience.

For example, ||f|lo,s =aef V< f, [ >5 = \/1/|S| > f(z)?. The norms could
z€FYy

also be defined with respect to a distribution R over S in the usual way. For

example, ||f|l2.sr =def \/< f,f >sr- As usual, the norms ||.||, and ||.||, are
said to be dual if 1/p+1/¢ = 1.

Clearly, Fan s consists exactly of all multilinear polynomials over S C
{1,—1}" C R"™. The subspace of this space formed by polynomials of degree
bounded by d is called IIj ¢; the subscript S is often omitted. From the earlier
discussion it is clear that this subspace is spanned by the basis parity functions
{Xu : u € Ty, |u| < d}. For any subspace X of Fon g, the orthogonal space of
functions f € Fon g satisfying < f,g >s= 0, for all g € X, is called Xg. Notice
that this is different from taking X+ and restricting to S. Thus HZ’L is nothing
but the space spanned by the basis parity functions {x, : u € IF}, |u| > d}, but
this is not true over proper subsets S of IF;. The space X SLR can also be defined
for a distribution R over S, by employing the inner product < . >gx in the
definition of orthogonality. Given a subspace X and a function f € X, X & f
denotes the shifted set {g+ f : g € X}, X\ f denotes the space X N span(f)*
and X U f denotes the space X U (X @ f) Given a subspace X and a function
f the function f|x is the projection of f on X. Thus f = f|x + f|x+-

The Boolean functions in Fy» with range {—1,1} or {0, 1} form the vertices
of the cubes, {1, —1}*", or {0,1}?" in R*". We will use the symmetries of these
cubes to transfer results about certain Boolean functions to other Boolean
functions. For example, the statement “Parity is not approximable by functions

in II,,” is equivalent to saying: “One is not approximable by functions in
me .

The following are basic properties of the Fourier spectra of Boolean func-
tions.
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Fact 2.1. For functions f and g over IFy the following hold.

(i) Parseval’s identity:

A5 =@1/2) 3 fla) = X )= IIfI5

z€lFy z€lFy

This identity holds also when the Fourier coefficients f (x) are replaced
by the coefficients when f is expressed as a linear combination of any set
of orthonormal basis functions.

(ii) The value of the transform at 0™ is the expected value of the function:

FOm) = (1/2) 3 f(u).

Complexity (resource) bounds on a function are always expressed in terms
of the number of its variables. In the case of threshold complexity classes, the
complexity of functions is given by the dimension of a good approximating space
spanned by specific kinds of basis functions. Some common functions besides
Parity, One and the parity functions x, are the following: the functions A,
for disjoint u,v € IF} are called the And functions, and are defined as

Aup(@) = N\ zi )\ @

1EU 1€V

i.e, when viewed as mapping from {1, —1}" to {1, —1}, A, () takes the value
—1 exactly when all the x;’s with 7 € u are —1’s, and all the z;’s with ¢ € v are
1’s. The Or functions V,,, are defined analogously.

Some complexity classes that the paper deals with are the following. The
class PT; (QT,) consists of Boolean functions f that are approximable by a
function ¢ in the span of (quasi)polynomially many basis parity functions xs,
with [|f — gllec < 1.

The class LT consists of Boolean functions f that are approximable by a
function g in the span of basis parity functions x;, with |s| < 1 and |[f —¢||e <
1.

In general, LT, is the class of Boolean functions f that are approximable
by a function ¢ in the span of polynomially many basis functions in LT, 1,
with with ||f — g||cc < 1. The class LT is the class of Boolean functions f
that are approximable by a function g which is in the span of polynomially
many basis functions g¢; in LT, 1, with the additional condition that when
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g = >.; a;9;, the coefficients a; are normalized to Y; |a;| < 1, and each a; is a
rational whose denominator is polynomially bounded. It should be noted that
often in the literature, the normalization of 3, |a;| is removed, the condition
[|lf — 9glloo < 1 is simply written as sign(f) = sign(g), and the a;’s are taken
to be polynomially bounded integers. Finally, AC°[d] is the class of functions
computable by (constant) depth d {A, V, —}-circuits of polynomially bounded
size.

3. Analytic framework using linear approximation

In this section, we develop an analytic framework based on linear approxima-
tion and point out how several questions concerning complexity lower bounds,
pseudorandomness and learning algorithms fit naturally into this framework.
This clarifies the relationship between the analytic structure of these questions.
Therefore, the framework facilitates a systematic study of analytic methods
which reduce these questions to their combinatorial essence, if there is any: in
some cases, the analytic methods alone are sufficient to answer the question at
hand, as will be seen in this discussion.

This section is divided into three subsections. The first introduces the dual-
ity principle for linear approximation and explains its relevance to complexity
questions. The second presents a general analytic framework based on duality,
by which one can view various complexity-theoretic questions as versions of
the same analytic problem. The third describes the basic ingredients that con-
stitute the analytic techniques for Boolean approximation, and gives examples
that illustrate the pattern of exposition in the remaining sections.

3.1. The duality principle. The duality principle for any finite dimensional
space of functions is the following. This can be found in any book on approxi-
mation theory. See [63] and [13], for a general treatment.

THEOREM 3.1. Let U be a finite dimensional vector space of finite functions,
with inner product < fi, fo >:=uY_, fi(x)fs(z), and 2-norm defined as
I|fl|3 :==< f,f >. Furthermore, let X be a linear subspace of U. For any
function f € U,

min||f = gll = mag |3 U()f ()],

fpr<s

where ||.||« is the dual norm of ||.]|.

REMARK 3.2. The RHS of the above equality can be viewed as the maximum
of |L(f)| over all linear functionals L in the dual space that annihilate all the
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functions in X (i.e, L(g) = 0, for all g € X ), and have bounded norm. In fact,
the RHS of the general duality principle for arbitrary normed linear spaces is
such a supremum over linear functionals. See [13].

PrRoOOF. The dual norm |[|.||, is defined as:

| 2 (2)f(2)]
|« = maz ———mr—;

rev S]]
We first show that LHS > RHS. For g € X, and | € X+,

Y U@)(f = 9)(@) =D Uz) f(2)
Thus, forall f €U, g€ X, and [ € X+,

|§:l )| <If = gll,

by definition of the dual norm ||.||,, and

1L = gl < 11f = gll;

since ||l|[. < 1.
To show the inequality in the other direction, for each A & X, we will exhibit
a function [, such that

Eﬂh z)| = min [|h - gl|
and additionally show that [, satisfies the required conditions. Let h* € X be
such that ||h — h*|| is minimized. Define

[|h = h*[[u(h — h|x)
[lh = hlx|[3

lh =
Writing h as h — h|x + h|x, and noticing that < (h — hlx), h|x >= 0, we get
that

\Zﬂh z)| = [|h = h*|].

Furthermore, for a general f € span(X U {h}),

e _ <fh—hlx > [[h— B
17— hlx][3
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Now, for any f € X, it holds that < f,h — h|x >= 0, since h — h|x €
X*; therefore I, € X+, thus satisfying the first required condition. Next, we
establish that |||, is bounded by 1 over span(X U {h}); [, can clearly be
modified and extended to the remainder of U without increasing the norm,
(finite dimensional version of the Hahn-Banach theorem).

IS n(@)f (@)

||lh *,span(XU{h}) < max ||f||

— fespan(XU{h})

But
. <f,h,—h‘X>(h—h,|X)

f=
I — hlx|l3

Substituting the expression for [, as well, we obtain that

+ flx.

thII*SM,
[|h — gl

where g = h|x + cf|x, for some scalar c. But since h* is chosen to be the best
approximation for h from X, it follows that the above quantity is at most 1,
thereby satisfying the second required condition on I,. O

As a consequence of the duality principle, the value of the correlation of

any appropriately bounded function ! € X' with a function f gives a lower
bound on the distance from f to its best approximation in X, and viceversa,
the distance ||f — g|| for any g € X gives an upper bound on the correlation
for any bounded function / € X*. We now explain the relevance of the duality
principle to various complexity questions, in a series of paragraphs enclosed by
Ors.
(O To show a complexity lower bound, i.e, to show that a function f is not
in a complexity class C, one chooses an appropriate space X and a norm ||.||,
such that there is a good approximation from X to every function in C'; then,
one proceeds to show that there is a function X+ of bounded norm that has a
high correlation with f. Such a function is usually also a good approximation
to f, and hence the lower bound comes down to showing the existence of an
approzimation from X+ to f.

A number of lower bound results including many of those in [11], [15], [43],
[44], [27], [34], [42], [45], [43], [24], [33], [39], [57], [26], [30], [4], and [25] can be
phrased in the above form as will become clear during the course of this paper.
See especially the next subsection and Sections 4 and 6. O
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(O Notice that if the functions in C' have good approximations from X, then
every function in X+ has a small correlation with every function in C. This
has several useful consequences.

The Boolean functions in X are clearly natural hard functions for C.
Furthermore, assuming, for ease of exposition, that functions in C' have a zero
expected value, any positive function in X+ could serve as a distribution that
functions in C' cannot distinguish from the uniform distribution, in the nar-
row sense of expected values. Elements drawn from these distributions serve as
pseudorandom elements that “fool” randomized algorithms with complexity C'.
This makes a relationship between hardness and randomness (see [51]) trans-
parent, and shows how to systematically characterize sets of pseudorandom
strings and their generators for complexity classes: see Section 5 ()

(O Next, if the functions g in C have good approximations from X, then it is
intuitively clear that dim(X)+ 1 independent pieces of information about such
a function g should be adequate to find the approximation to g from X. If,
in addition, these independent pieces of information can be obtained by sim-
ply sampling g on a distribution supported at dim(|X|+ 1) points, this would
provide a small sampling distribution for approximating functions in the class
C, which could potentially be converted to a fast approximation algorithm for
functions in the class C, if the distribution, is, in addition, easy to generate.
If, moreover, the approximation uniquely defines a (class of) function(s) in
C (that coincide on a subdomain of large measure), then the algorithm is a
learning algorithm, with “membership queries,” for C'. This is the idea behind
the approximation-based learning algorithms of [47], [23] [41], [35], and [65]
although not stated as such. Moreover, natural candidates for these sampling
distributions are those that look uniform to functions in C'. “Uniform” could
be replaced by any other distribution as well, depending on the required ap-
proximation as will be seen in the next subsection and Sections 5 and 7, but
for the moment, we restrict ourselves to uniform for the sake of exposition. We
have seen in the previous paragraph that functions in X+ can be modified to
serve as such “close-to-uniform” distributions in the narrow sense of expected
values. Already this was adequate in the case of the class C being AC?, i.e,
it was shown in [65] that in fact any set of pseudorandom strings that fool
randomized circuits in AC” can also serve as a sampling set for approximating
(and thereby learning) functions in AC?. Since many of these sampling sets
are easy to generate, they permit derandomization of ACY computations, as
well as derandomization of learning algorithms for AC°.

In fact, we will see in Section 7 that also for general classes C, functions
in X+ can be used to provide deterministic sampling sets for derandomizing
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computations in C as well as for approximating or learning functions in C. O

(O Finally, a complexity upper bound of C' can be shown by showing approx-
imability from X. This is a promising direction to investigate, especially in
the case of communication and threshold complexity upper bounds; however,
as mentioned in the Section 1, with few exceptions in Section 6, our interest
in approximability here is geared towards the eventual goal of showing nonap-
proximability. O

3.2. General analytic framework. In using the linear approximation frame-
work of the last subsection to prove computational complexity lower bounds,
etc., one could choose the approximating space X, and the norm ||.|| appro-
priately to suit the problem at hand. In this section, we present a more general
approximation framework that retains the main structure, but allows the choice
of other parameters besides the approximating space and the norm. Thus, not
only can a broader variety of questions be made to fit into this framework, but
also a finer differentiation between questions can be imposed.

We deal with the following kind of approximability of a Boolean function
g, from a class B of Boolean basis functions, all of which are in the universal
space U of functions.

dM C B, with|M| < m,3(V) distributions D on IF} or {1, —-1}"
that induce a measure on subsets S of IF5,
3(V) subsets S C IF} with measure greater than o
dh € span(M) with ||g — hl|s < 7. A
where s, 0 <o <1 and 0 <~ <1 are some fixed constants, and m is typically
a polynomial bound. (Notice that when v = 0, we are dealing with a strict
version of approximability, namely interpolability).

To show the corresponding nonapproximability of a hard function f, one
shows:

VM C B,with|M| < m,V(3) distributions D on IFj or {1,-1}"
that induce a measure on subsets S of IF5,

V(3) subsets S C IF} with measure greater than o

3l € spanMy, with ||f||s <1and Y f(2)l(z) > 1. A
T€ES
We enumerate all the parameters (besides m, o and 7) and show how they can

be appropriately chosen to fit several complexity-related problems.
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e The choice of quantifiers in the definition of approximability: for exam-

ple, the quantifiers on the the distributions D, the subsets S, and the
approximation | € span(M)* can be chosen appropriately, or completely
removed (i.e, the quantified parameter can be fixed to a constant). For
example, for many complexity lower bound questions, the distribution
D is fixed to be the uniform distribution and the subset S is sometimes
fixed to be the entire domain, i.e, 0 = 1. Sometimes, S is existentially
quantified, with ¢ bounded away from 1/2, which is often essential when
the issue is interpolability, i.e, when v = 1, as, for example, in the case
of [59] and [67].

When the approximation of interest is in the co-norm, as, for example,
for threshold circuit complexity lower bounds, the universal quantifier is
implicit for the distribution D: the approximation A in A must have the
same sign as g everywhere. This fact has been extensively used in [27],
[43], [45] and [44] and the usefulness of this universal quantifier is con-
densed in Theorem 6.3.

Notice also that a “PAC” learning algorithm, for functions ¢ in a class C,
is an algorithm for finding an approximation A, in A, where the quanti-
fier on the distribution is a universal quantifier and the quantifier on the
subset S is an existential quantifier.

In some cases, for example, the monotone lower bound of [79], a spe-
cific function [ in A is explicitly constructed to have a a high correlation
with the given hard function f. (In that particular case, the set from
which [ is chosen is not exactly a linear space of the form span(M)+, but
this assumption is reasonable, both intuitively, and for ease of exposi-
tion). Now, to complete the proof that f is not in the complexity class
C, one can, of course, show that every function g in C' has a poor correla-
tion with every function in span(M)=*, or dually speaking, that g has an
approximation from span(M). However, if it can be acheived, it is suf-
ficient to show that the correlation of g with the specifically constructed
function [ is small.

The choice of the universal space U of all functions: this can be chosen,
for example, to be functions from {—1,1}" to R, as is usually the case, or
from IF} to I, (for example, as in [59], [67], [6], [68], [9], [69], [72], [78], as
well as some of the results in [43], and [45]). In the latter case, v is chosen
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to be 0 and o0 < 1 in A, i.e, one is interested only in the interpolability
question over large subdomains, since finer notions of approximation do
not make sense. Furthermore, the duality 3.1 and hence A do not apply,
since inner products and orthogonality are not well-defined for such spaces
of functions.

NOTE. In this paper, however, we restrict ourselves to functions from
{-1,1}" to R.

The choice of the basis functions B: for example, these are the mono-
mials from from IF) to IF, in the case of [67], and the set M is taken
to be just the low degree monomials, whereby span(M) is the space of
all low degree polynomials. In some of the results on threshold circuit
complexity in [43], [15], [27], and others in [47], [41], [35], [65], the basis
functions in B are, in effect, the Parity functions or ZZ; characters; in
the case of [44], the And functions; in [24], AC® functions; in [45], the
basis functions are the symmetric functions; in the case of [34] and [27],
the LT, functions, and, in effect, characteristic functions of cross-product
sets; and in general, in the papers [33], [39], [57], [26], [30], [4], [25], that
deal with communication complexity, the basis functions are character-
istic functions of cross-product sets. Many of these results, however, are
not stated as nonapproximability results. Finally, several of the thresh-
old circuit upper bounds (see [49] and [50]), are in fact approximability
results from the spans of various sets of basis functions, although not
phrased as such.

The choice of norms and inner products: the most common norms are the
2-norm and the oo-norm, and in several situations for Boolean functions,
these are highly related, as we shall see in Section 6.

Sometimes, the distribution D is included in the norm. For example, the
2-norm could be defined based on the inner product <>p.

The linear approximating space span(M) in A is often replaced by a
convex polytope bounded by linear facets in Fan, for example, when one
restricts the coefficients of the linear combination that forms the approx-
imation A to be polynomially bounded, as in the case of “unweighted”
threshold circuit complexity, or positive, as is the case when g is a func-
tion of low communication complexity and the basis functions are cross-
product functions; or if one requires the function [ in A to be a distri-
bution, and hence to be positive, which happens when one is interested
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in a distribution that yields pseudorandom strings, as explained in the
previous subsection on duality. These restrictions on the approximation
nevertheless permit usual linear approximation methods: for example,
modified versions of duality apply, as will be seen in Sections 5 and 6.

Sometimes, however, the space span(M) is replaced by a truly non-linear
and non-convex structure, for example, as in the case of some (mainly
monotone) lower bounds based on the approximation method of [58],
and [60], such as [79], [40], [2], and [10]. However, even when the set
of approximating functions has no linear structure, some of the general
linear approximation methods can nevertheless be adapted. For exam-
ple, to show that a particular function f is not in a class C, [79] chooses
an approximating set M of functions as certain sums and products of
simple functions, and explicitly constructs a function / that is almost
in span(M)* (i.e, it is almost orthogonal to every function in M), and
| >z l(x)f(x)] =1 for the given function f. This establishes, via duality,
that f is not closely approximable from the from the space span(M). In
fact, we will see in Section 6 that the existence of such a function [ is
equivalent - by one of the modified versions of duality mentioned in the
last paragraph - to the statement that the sign of f is not obtainable
by a any small-coefficient linear combination of functions in M. Thus, in
particular, f is not approximable by any single function in M. Therefore,
this part of the proof in [79] is based only on linear approximation ideas.
To complete the proof that f ¢ C, it is shown (as noted in the paragraph
on the “choice of quantifiers”) that the correlation of every function g € C
with the specifically constructed function [ is small. This is, however, done
using a non-linear approximation technique of constructing a sequence of
functions starting from a function in M, which we know to be almost
orthogonal to [, and ending in ¢, in such a way that the functions in the
entire sequence remain almost orthogonal to [. It is an open question
whether the non-linear structure formed by the approximating functions
in M can be replaced by a suitable linear space, by placing appropriate
restrictions on the approximation.

Note that the general methods and results in this paper are meant to be used
after a complexity question has been phrased as a Boolean approximation ques-
tion as in A, i.e, all the choices described above have already been made, which
is a nontrivial process.

The next three sections of the paper are organized based on the type of
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approximation chosen in A, which are broadly classified as:

e Interpolation (when the quantity v in A is chosen to be 0),

e One-sided approximation (when the functions / in A are forced to be positive
and can be treated as distributions), and

e General uniform approximation (where the norm in A is usually chosen to
be co-norm, but sometimes also to be the 2-norm).

The final section concerns

e Algorithms for finding the approximation A in A.

3.3. Basic ingredients of analytic techniques. There are three basic in-
gredients that constitute most analytic methods specific to Boolean (non) ap-
proximability, including those in this paper.

e strong versions and modifications of the duality principle

e simple norm relationships specific to Boolean functions

e essentially univariate analytic techniques that apply in very specific multivari-
ate settings. In providing some introductory examples of how these ingredients
are used, we follow the pattern of exposition to be used in the remaining sec-
tions.

Modifications of the duality principle

Several modifications of the duality principle are used in this paper, for ex-
ample, Theorem 6.1, Theorem (4.1), and Theorem (5.6); these form the back-
bone for several previous complexity bounds as will be seen. Strong versions of
the duality principle such as the one below depend on the Booleanness of the
function to be approximated. Others such as 6.1(2) depend on the Booleanness
of the approximating basis functions.

THEOREM 3.3. Let U be a finite dimensional vector space of functions and let
X be a linear subspace of U. For any Boolean function f € U, the following
are equivalent.
e There is no approximation g € X which is non-zero everywhere and has the
same sign as f.
e There is a non-zero approximation | in X+ with the same sign as f on supp(l).

PROOF. The first statement is equivalent to saying that for all g € X,
[|f — gllo > 1. Since the dual norm of the co-norm is the l-norm, this is
equivalent by 3.1 to saying that there is some [ € X', with ||/||; = 1 such that
>z l(x)f(xz) > 1. Now, since f is Boolean, this happens exactly when [ has the
same sign as f on supp(l).

Notice that the theorem above converts a statement of nonapproximability
into a statement of approximability, and depends on the Booleanness of f. In
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fact, due to the Booleanness of f, a geometric proof exists for the above result.
This is given below, following the proof of 3.4. The first statement in the above
theorem is also equivalent to a notion of orthogonality with respect to the ||.||xo
norm, according to which a function f is orthogonal to a space X, if for every
function g € X, [|f + gl|co < ||f]lco (see [63] for an succinct treatment of ||.||
norm, or uniform approximation).

Next, we give two introductory example applications of the general result of
Theorem 3.3.

THEOREM 3.4. The statement that for a Boolean function f, there is a func-
tion g in X with the same sign as f is equivalent to the following. For every
f* with || f*||cc < 1, the projections f*|x and f|x are identical implies f* = f.
PROOF. First notice that the functions f* with the property that f*|x = f|x
are exactly those that belong to X @ f, i.e, they are of the form [+ f for some
I in X*. Now the proof follows easily from duality for Boolean functions.

dgeX and ||[f—¢gllo <1 <=

(by 3.1)
Vie X+ with [|[f]li <1, |D Uz)f(z)] < 1.

This is equivalent to saying that every non-zero function / in X+ agrees in sign
with f on atleast one point, and disagrees on atleast one point. This is, in
turn, equivalent to saying that

Vie X, [[I+ fllo>1 or 1=0

Vit with [l <L ffx=flx=f"=f

since, f* satisfying f*|x = f|x = f* = f, as observed in the beginning of the
proof, must be of the form: [ + f for some [ in X+. O

The following is a geometric illustration of the the above proof, and in fact
contains a geometric proof of 3.3 as well. The argument depends strongly on
the fact that the function being approximated is Boolean.

View the Boolean functions in Fy. as the vertices of the cube {—1,1}%". This
cube is, in fact, the unit ||.||o ball in R?", thus the points in the interior of this
cube represent vectors (functions) with ||.||s < 1.
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Spaces of functions such as X are plane/subspaces through the origin, and
those such as X @ f are shifted plane/subspaces through the vertex f of this
cube. Now,

dge X and ||f —gllo <1 <=

dge X f with |[g]l<1l <=

The plane/subspace X @ f cuts through the interior of the cube {—1,1}*" <=
(by the orthogonal geometry of cubes)
The orthogonal plane/subspace X+ @ f touches the cube {—1,1}?" only at f
<~

Ve Xt f, ([Iflw>1 <

Vie Xt |l+flle>1 or l=0 <=
Vi* with || <1, fflx=flx= =1,

by the same argument as used in the above proof.

(O The characterization result in [15] for PT; functions states the forward di-
rection of 3.4 for the special case where X is given as the span of orthonormal
parity functions x,. They use the result to show a bound of 24™(X) on the
number of distinct P7T'; functions, since the number of distinct Fourier coeffi-
cient values of a Boolean function is at most 2". The above result gives a bound
on the number of LT'5 functions as follows. Let M be any set of m independent
LT, 2functions. Since there are at most 2°*") LT, functions, there are atmost
(20(" )) such sets. For any Boolean function f, f|an(a) can be uniquely writ-

ten as Y. aph. Let b be a bound on the total number of distinct values that the
heM

20<n2))

coefficients aj, take. Then there are at most ( . )b™ LT9 functions with m

LT, gates at the bottom level. A straightforward upper bound of m™/? exists
on b since LT functions are Boolean, although it is not clear that the bound is
tight. See [1], [73] and [32], for related tight bounds on the inverses of Boolean

matrices. O

THEOREM 3.5. Scalar multiples of Parity are the only functions (Boolean or
otherwise), over {1, —1}" whose sign does not coincide with that of any poly-
nomial of degree bounded by n — 1.

PrROOF. A Boolean f has no approximation g from II,,_; with the same sign,
if and only if, by Theorem 3.3, there is a function [ € II- , such that [ has the
same sign as g wherever | # 0. But IL- , = span(Parity), and hence f must
be a scalar multiple of span(Parity). O
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O It is folklore that Parity cannot be approximated by any by polynomial of
degree bounded by n — 1. That requires only the first line of the above proof.

O

Simple norm relationships specific to Boolean functions We give a few exam-
ples. Notice that if f is Boolean, then

£l =3 If@)l= X (=) =2"lIfll5

T€Fy T€Fy

Thus, for Boolean f, bounds on the 2-norm of f provide bounds on the 1-norm
of f, and furthermore, the 1-norm of f ( f) provides an upper bound on the
(2" times) the 2-norm of f (f). In addition, the 1-norm of f is a lower bound
on the size of the support of f , and an upper bound on the sparsity of an
approximating polynomial having the same sign as f, which, in turn, yields a
lower bound on the L., norm of f . (These properties are illustrated in detail in
[21]). One more property that is specific to Boolean functions and is constantly
used in Section 6 is the following: when a function g has the same sign of as
a Boolean function f, then the 1-norm of g is the magnitude of (2" times) the

scalar product or correlation < f, g >.

Univariate techniques
Any multivariate function f can be “univariatized”

[ar 4.+ zm) =1/mD . f(m(z) .. 7 (zm))),

where the 7 are permutations acting on the set of arguments of f. It is not
hard to see that f* has degree bounded by the degree of f. Furthermore,
univariate analytic techniques can be used to prove properties of f*, which
sometimes transfer partially to f. This is advantageous since much is known
about univariate approximation and far less about multivariate approximation.

REMARK 3.6. It should be noted that most of the general results and methods
in the remaining sections of the paper are inherently multivariate, and do not
rely on univariate techniques. Nevertheless, for completeness, we provide here
a brief discussion of univariate analytic techniques and their applications.

Univariate methods are particularly useful for symmetric functions. For a
symmetric function f, f*(z1+...+xm) = f(x1, ..., Tp). Thus symmetric func-
tions can be treated essentially like univariate functions. The results of [53],
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for example, take full advantage of this fact. This univariate nature extends,
in practice, also to functions f satisfying: f(z1,...,2Zm) = f'(A\Tz), where f’
is univariate, A € R", and, over the cube {—1,1}", it is natural to require
that the size of the set {\"x : z € {—1,1}"} is appropriately, say polynomially
bounded. Such functions are called “ridge functions” in the approximation
theory literature. Notice that LT, functions have this property. It is not sur-
prising, therefore that many complexity bounds involving symmetric functions
transfer to LATl functions as well.

(O The results of [52], [53], and some of [48] and [3], for example, rely almost
entirely on univariate approximation, and deal with local combinatorial prop-
erties of general Boolean functions. However, the related results of [38] do
use inherently multivariate techniques such as Beckner’s inequalities [7]. Many
of these results can be phrased as general combinatorial questions about the
multidimensional unit cube, see for example, [28], and [48]. O

Two classical univariate approximation techniques that have been used for
proving results about Boolean functions are the Bernstein-Markov, and the
complementary Jackson inequalites for which the reader is referred to any in-
troductory book on approximation theory, for example [62], or [56].

The following nonapproximability result of [52] is used later in Section 5.
It relies on a Bernstein-Markov inequality. The complementary approxima-
bility results of [53] for the case of symmetric functions rely on the Jackson
inequalities, but are not presented here.

THEOREM 3.7. The degree of a polynomial g that approximates a Boolean
function f with ||f — g||e < 1/3 (any constant strictly less than 1/2) must be

at least \/sensitivity(f)/6, where the sensitivity of a Boolean function f is the
quantity
maz |{y:x®y =1, and f(z) # f(y)}/.

ProoF. Consider a point x where f attains its maximum sensitivity, denoted
S(f), and let I be the set of S(f) coordinates

{i:3y#ast y=a; Vj#i and (@) # f()}.

We now restrict our domain to the S(f)-dimensional cube defined by the coor-
dinates in I, with the rest of the coordinate values fixed identical to z. Notice
that on this smaller cube, the value that f takes at the vertex z is different
from its value at all the S(f) neighboring vertices (i.e, points that differ on
exactly one coordinate from z).
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Therefore, to complete the proof, it is sufficient to show that when a function
f over the vertices of {1, —1}™ takes the value +1 at one vertex and the value
—1 at all the neighboring vertices, then any g approximating f with ||g— f]|c <
1/3 must have degree at least /m/6.

To this end, we take the well-known “univariatization” of f by defining:

ffler+ ...+ zp) =1/m! Zf((w(xl C e Zm)))-

It is not hard to see that f* has degree bounded by the degree of f and further-
more, for any p such that ||f — p||w < 1/3, the corresponding univariatization
p* also satisfies ||f* — p*||c < 1/3, and the degree of p* is bounded by the
degree of p. It therefore suffices to show that any p* that approximates f* with
|| f* = p*||oc < 1/3 must have degree at least 2(y/m).

To achieve this, first shrink the domain of f* and p* from [—m, m| to [—1, 1].
Then, since by assumption f*(—1) = —1, f*(=1+2/m) = +1, p*(—1) < —2/3,
and p*(—1+ 2/m) > +2/3, it follows by the mean value theorem that there
must exist a z : —1 < z < —1 4+ 2/m such that the derivative [p*(z)| >
4n/6. Furthermore, notice that maz [p*(z)| < 4/3 over all the points z in
the set J =45 {—1,—1+2/m,...,0,1 — 2/m,1}. Now we apply the most
straightforward version of the univariate Bernstein-Markov bound relating the
[p*||oo, and ||p*||cc OVer the interval [—1,1]:

1P* [[oo < deg®(®")[[p*]]oo-
Now, by the mean value theorem, ||p*||o over [—1, 1] can be bounded above by
mag [p*(z)| + |[p*[[oo/7-
z€eJ

Thus

Il

A8 #) 2 Mg o (@] + 7 o)

Now, since ||p*'||s/n > 4/6, and maz Ip*(z)| < 4/3, we obtain that deg(p*) >
\/n/6, which completes the proof. O

Certain multivariate extensions of Bernstein-Markov, and Jackson theo-
rems exist in the literature, but their usefulness for Boolean approximation
is yet to be investigated, see, for example, [55]. In general, while there is a
well-grounded and classical univariate approximation theory, multivariate ap-
proximation techniques are still very much under development, see for example
[16], and [17].
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4. Interpolation

We prove two general results, both of which are modified versions of the dual-
ity principle. The first equates a question of approximability in the oo-norm
to a question of interpolability, and the second equates non-interpolability to
interpolability. Applications are given for both results.

THEOREM 4.1. Let X be any subspace of functions (from {—1,1}" to R), and
let f € X*. The following statements are equivalent.

e No g € X has the the same sign as f on a set S of more than m points.

e For every set S of at most 2" — m points, there is a function h € X+ \ f
(which is also (X U f)1) that interpolates f on S, and is bounded above by f
elsewhere.

REMARK 4.2. Notice that the last sentence states that h < f; it may not hold
that [|hl[co < [|f][oo-
Proor. The first statement is equivalent, by duality, to the following. For
any set S of greater than m points, there is a function h in Xg such that
|f(x) — h(z)] < 1 for z € S, and h(z) is not identically zero on S. Denoting
the complement of (points outside) S to be S, notice that Xg = {g € X+ :
g = 0 on S}. Therefore, the first statement can be restated as follows: for any
set S of < 2" — m points, there is a function h € X+ such that h =0on S, h
is not identically 0 on S and sign(f) = sign(h) whenever h # 0.

Now let h = hy + hy, where hy € X1\ f and h, is some scalar multiple of
f. Note that h; and hs are orthogonal. Also, hs cannot be a negative multiple
of f, because then h; would have the same sign as f everywhere that it is non-
zero (at least at one point), which would imply that < hy, f ># 0. But hy
was chosen to be orthogonal to f, which creates a contradiction. Thus A, is a
positive multiple of f, say c¢xf. Now the statement in the previous paragraph is

_ 1/2
equivalent to the following: for any set S of < ) (:) points, there is a function
k=0

—hi/c € X+ \ f that is f on S, and is at most f elsewhere, which is exactly
the statement of the theorem. O

(O As a straightforward application of the above result, we give a statement
of non-interpolability that is equivalent to a nonapproximability result of [3],
which was proven using a standard univariate approximation technique (see
discussion in Subsection 3.3 on univariate techniques).
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THEOREM 4.3. The following statements are equivalent.

e For any polynomial g over {1,—1}" of degree at most d, (i.e, g € Il),
(n+d+1)/2

sign(g) = sign(Parity) on a set S of at most Y (Z) points.
k=0

_ 12
e Given any set S of at most Y (Z) points, there is a function h € II; \ { One}
k=0

that is equal to 1 (interpolates the constant function One) on all points in S
and is at most One elsewhere.

Proor.  After a direct application of the above theorem 4.1, with f taken
as Parity, and X = Il;, use the symmetry of the Boolean functions in Fy» to
replace Parity by One and TT] by 11, 4 1. O

O

Next, we prove a general result that transforms a statement of non-interpolability
to a statement of interpolability.

THEOREM 4.4. Let X be a subspace of the usual space of functions and let f
be any function in X*. The following statements are equivalent.

e No function in X of degree < d interpolates f on a set S of more than m
points

e For every set S of < 2" — m points, there is a function in X+ \ f, that
interpolates f on S.

PROOF. Take an orthonormal basis B = By U By U f, where B; is an
orthonormal basis for X, and B, is an orthonormal basis for X+ \ f. Let H
be the matrix whose rows b correspond to functions in B and whose columns
x correspond to points z € {—1,1}". Thus, pairs of rows are orthogonal pairs
in R?", which makes H an orthogonal matrix with H'H = I, a fact that will
be constantly used. The entry H,, is simply b(xz). We will denote by B; the
set of rows b € By, and by B, the set of rows b € B;. We will refer to the
remaining row as f. For any set S of columns and a set M of rows, let Hys s be
the submatrix of H formed by those rows and columns. Furthermore, denote
by fs the frow vector restricted to the set S of columns. It is not hard to see
that the statement we want to prove is the following.

VS 1 |S| > m, fs & span(rows of Hp, 5) <=

VS |S' < 2" —m, fsr € span(rows of Hp, s') A
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We will show that assuming either the LHS of A is true and the RHS is
false, or that the LHS is false and the RHS is true lead to contradictions.

First, assume the LHS is true and the RHS is false. I.e, there is some
set S of columns such that fs & span(rows of Hp, s), and denoting by S’ the
remaining rows, fo & span(rows of Hp, ¢). These imply that

bﬁJﬂ%]Zbé]

has a non-zero solution for g5 and and that

bﬁJﬂw]=b@]

has a non-zero solution for gs.. Here, 0™ denotes a n x 1 column vector of 0’s.
This, in turn, implies that

Jst Js 0ls'l 0ls'l
e N e PN R bl
has a non-zero solution for gs and that
1
Hs[gg] = [ o™ ]
HBl,S’gS’

has a non-zero solution for gs:. Multiplying both sides of the the two equations
above, we get
' gs
[gs O]+ H'H [O‘SJ = 0.
But since H is an orthogonal matrix, H'H = I, and thus we obtain a
contradiction.

Next, we assume that the LHS of A is false and that the RHS is true.
Le, there is some set S of columns such that fs € span(rows of Hp, g), and
denoting by S’ the remaining rows, fs: € span(rows of Hp, ¢'). Let H; be the
i'" row of H; we can say that there are weights a; such that

S|
f+2mm=wﬂ
1€EB1

and
/5]

f+> aH = [O|S|]'

1€B>
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Here the *’s represent indeterminates. Now, multiplying both sides of the above
two equations, all terms on the left except for f7f = 1 vanish, because of the
orthogonality of H, and the right side is 0, causing a contradiction. O

(O To apply this result, we turn to a well-known theorem of [67]. For the
moment, we view the domain ({1, —1}") as subsets of IF} (or a vector space
over any finite field IF), with with -1 mapping to 1y, and 1 mapping to Op,, and
similarly the range {1, —1} of Boolean functions is also viewed as {Op,, 1y, }.
Thus the function Parity(x) evaluates to 1, if |z| is odd, and to O, otherwise.

We denote by II3 the space of polynomials of degree d, over {Og,, 1y, }"
The well-known result of [67] is the following.

THEOREM 4.5. The Parity function is interpolable from IT - on at most 2"~' +
0(2") points.

In the terminology used by [67], this is equivalent to saying that Parity is
“Ug,-complete”. The complementary result in [67] concerns the “nearly-IFs-
easiness” of the functions circuits computed by constant depth, subexponential
size circuits of V, A and — gates; this notion captures the interpolability of
such functions on large domains by low degree polynomials. The two results
together provide a lower bound of 27/* on the size of AC°[d] circuits com-
puting Parity. To obtain finer approximation bounds such as those obtained
by using the switching lemma [31], [67] suggests the open problem of using
R instead of finite fields such as IF3, formulating analogous notions such as
“Uk-completeness,” and “nearly-R-easiness.” and obtaining analogous results
based on these notions.

REMARK 4.6. We now switch back to our prevailing custom of viewing {1, —1}
as a subset of R and of IFy, the Parily function as taking values in {1,—1},
and polynomials as being over R".

Intuitively, “nearly-R-easiness” would imply a form of approximability over
large domains by low degree polynomials over R" with respect to a chosen
norm. Similarly, “Ug-completeness” would mean a form of nonapproximability
over large domains by low degree polynomials.

In this sense, a version of the Ug-completeness of Parity has been proven by
the result of [3] in 4.3. However, no complementary result has been established
for the “nearly-R-easiness” of constant depth subexponential size circuits of V,
A and — gates. Therefore a stronger version of Uf-completeness for Parity is
desirable, such as the the following conjecture by [46], since this would make
it sufficient to prove a weaker “nearly-R-easiness” result.
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CONJECTURE 4.7. Any polynomial that interpolates Parity on more than 2" '
points must have degree Q(y/n).

Now Theorem 4.4 shows that proving the above conjecture is equivalent to
proving one of two statements of interpolability.

THEOREM 4.8. The above conjecture is equivalent to the following statements.

e For every subdomain of < 2"~! points in {1,—1}", there is a polynomial
in HOL( Vi) \ Parity that interpolates Parity on the subdomain.

e For every subdomain of < 2! points, there is a polynomial in Hi_o( \/ﬁ\ One
that is constant on the subdomain.

PrRoOOF.  The former sentence is a corollary of Theorem 4.4 and the latter
sentence is equivalent to the former because of the symmetries of the the cube
of Boolean functions in Fo». O

O

5. One-sided approximation

As the main general result of this section, Theorem 5.6 we prove a version of
the duality principle involving the notion of one-sided approximation [18]. As
one application, we obtain a systematic method of characterizing distributions
that look uniform to (and hence “fool”) any function that is approximable from
a given space of functions.

The first general result follows directly from Theorem 3.1, and leads us to
consider a slightly strengthened version of a conjecture of [48]. The main result,
Theorem 5.6, is motivated by showing that this modified conjecture is false.

THEOREM 5.1. If a Boolean function f has an approximation ¢ in a subspace
X, such that ||f — g||« < €, then for any positive | € (X \ One)* with ||l||; = 1,

| X l(2) f (@) = 1/2" % f(2)] < 2,

PRrROOF. Notice that I* = [ — ||l||;/2" € X+, with |[I*||; < 2. Then, by 3.1,
[ > 1*(z) f(z)| < 2¢, which completes the proof. O

O In general, the above theorem shows that if every function in a complexity
class C is approximable in the co-norm to within, say 1/n, from a subspace X,
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then any positive h € (X \ One)t forms a distribution that looks uniform to
(and hence fools) every function in C. Furthermore, any function A € X+ can
be expressed as h* + c¢.One, where h* is positive and in (X \ One)t. Clearly
h is hard for C by 3.1, and h* gives a distribution that fools every function
in C. Such distributions that are, in addition, easy to generate, provide a
large class of natural pseudorandom generators for all computations in C', and
highlights the close relationship between hardness and pseudorandomness (see,
for example, [51]). We will see in Section 7 that these distributions also serve
as sample sets for derandomizing learning algorithms for the class C. O

(O Next, we consider the special case where the class C' above is AC°. The
conjecture of [48] states that all polylog-wise independent distributions fool
AC? functions. This conjecture has not been settled, although partial positive
results appear in [65]. It is not hard to see (the reader is referred to [65]) that
an e-wise independent distribution [ is nothing but a positive function [ with
Ill||y =1 and [ € (I, \ One)*. Thus, the conjecture can be restated as follows.

CONJECTURE 5.2. [48] For all functions f computed by an AC°[d] circuit of
size s(n), there is an e that depends only on s and d and is polylogarithmic

in n (if s is polynomial in n and d is a constant), such that for every positive
function | € TIX U {One} with |||, = 1,

[ U@) fx) —1/2" 3 f(@)] < 1/n. 1

To settle this conjecture, using Theorem 5.1, it would be sufficient to show
that all functions f in AC® have an approximation ¢ € I, where e is an
appropriate polylogarithm in n, such that ||f — g||oc < 1/n. Unfortunately, the
latter statement is false, as is shown below.

Vvn vn
Fact 5.3. Let RO[2|(z) := V A z;;. Then an function g such that ||f —
i=1j=1

9lleo < 1/3 must have degree at least Q(n'/*).

ProoFr. The proof of Fact 5.3 follows from 3.7 and the fact that the function
RO[2] has sensitivity > y/n, for example, at the minterms and maxterms. O

Since the converse of Theorem 5.1 does not hold, the above nonapproxima-
bility result for AC® functions does not falsify the conjecture 5.2. However,
using a more direct application of 3.1 we observe below that even a slight
strengthening of the conjecture 5.2 is false.
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REMARK 5.4. To fully understand the relationship between 5.2 and the ob-
servation below, notice that the function [* defined as I*(x) := l(z) — 1/2" -
where [ is the function in 5.2 - is in II.-, since [T+ and span(One) are orthogonal
spaces. Thus the quantity in 5.2 (I) becomes | Y I*(x)f(z)|, with ||I*||, < 2,

and [* € I}, but I* need not be positive. Note also that some scalar multiple
of each function in I} is obtainable in this way, however, its norm might be
arbitrarily small.

OBSERVATION 5.5. The following stronger version of 5.2 is false. “For all func-
tions f computed by an AC°[d] circuit of size s(n), there is an e as in 5.2 such
that for every function I* € TIL with [|I*||; < 2, | S 1*(z) f(x)| < 1/n.”

PROOF.  Let f be a Boolean function. If for every function [* € I with
[llll1 <1, | 1*(x)f(z)] < 1/2n,if and only if by 3.1, there is a function g € Tl
such that ||f — g||co < 1/2n. But since e is at most polylog(n), Fact 5.3 provides
the required contradiction.

This suggests that in order to settle the [48] conjecture, one should take
advantage of the special properties of the positive bounded functions [ € 1} U
One. In other words, we would like to prove a stronger version of 5.1, with a
weaker approximability hypothesis, but with the same consequence. ()

The above discussion motivates our next general result on one-sided approxi-
mation. This result is also a modification of the duality principle. See [18].

THEOREM 5.6.

sup [ Y1) f(x) —1/2" > f(y)| Q1)

lEHéLUOne x

11 =1,1+ve
= it [sup(f(x) ~1/2" Xy: fy) - g(x))] (Q2)
= _inf [1/2"3 g(x))]. (@3)
9> f—f(om) T

REMARK 5.7. The positive distribution [ above, which can be viewed as a pos-
itive linear functional that annihilates all but the constant function in Il,. Find-
ing such functionals is called the “moment problem,” and is studied extensively
in [37], yielding methods for efficiently generating distributions | satisfying the
above conditions, which is useful in obtaining pseudorandom generators for
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randomized computations based on f. The paper [18] takes the dual approach
and gives methods based on quadrature formulas for finding the one-sided ap-
proximation g.

PrOOF. The first equivalence follows directly from the same argument as in
the proof of the duality result 3.1, and does not use the orthogonality of II-
and One. We will show that @3 > Q1 and Q2 > Q3.

To show the former, denote by f; the function f —1/2"%, f(y), and notice
that for all gy > fi, if [ is positive, then

> U@)gi(z) = 3 U(z)fi(2)

Furthermore, if ||I||; = 1, [ positive, [ € TI1 U One, and g, € Tl,, then it is not
hard to see

Z\l \—WTZOHG |—\1/2”Zgl

It therefore follows that for all g; € TI, with g; > f, and all [ € TI U One with
[|ll||1 = 1, [ positive,

Zl ) < |1/2"Zg1

thus showing that Q3 > Q1. A
To show that the Q2 > @3, again denote f — f(0™) by f; and assume to the
contrary that there is a g* € I, \ One such that for all g; € I1, with g; > fi,

|1/2"291 )| > [sup(fi(z) = g*(2))l.

We derive a contradiction to this assumption as follows: the function g, € Il,
defined as

g2 =g+ Sgp(fl(év) —g*(z))

satisfies go > f; and
1/2"% " ga(x) = 1/2”29 ) +sup(fi(z) = g"(2));

however, 1/2" Y g*(z) = 1/2" Y. One(z)g*(z) equals 0 since g* is orthogonal to

One, thereby resulting in a contradiction. O
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O It follows from 5.6 that the conjecture in [48] is equivalent to the follow-
ing statement: for every function f computed by AC°[d] circuits of a fixed
polynomial size, and for e being chosen as an appropriate polylogarithm, ei-
ther there is a function g of degree at most e, with ¢ > f — f(0") and
|g(0™)| < 1/n, or that there is a function g of degree at most e with g(0") = 0,

and [sup(f(z) — f(0") — g(2))| < 1/n.

On the other hand, to show that the conjecture in [48] is false, it is sufficient
to extend 5.5 in the following manner. For the case of the function RO|[2]
in 5.3, Fact 3.1 establishes the existence of a function I, with ||/||; < 1 and
| € II5,, such that | Y I(z)r(z)| > 1/2n. The only hitch is that this proof is

not constructive. If [ can be constructed, then to disprove the [48] conjecture, it
is sufficient to find a positive function in Hil 14U One with a small 1-norm, which
approximates [ well. In particular, such functions can easily be constructed if [
satisfies the condition that 2" inf I(z)| is bounded above by o(n): simply take

I* to be l+i1$1fl(3:) and normalize to get the required positive function I*/||1*||,
in 1T, U One, for which | ¥ 1*(2) f(2)/|[I*]|1 — 1/2" ¥ f(x)| is larger than 1/n.
O

6. Uniform approximation

This section contains general results, methods and complexity-theoretic appli-
cations that involve the uniform approximability of Boolean functions (in the
||-||oc norm) from various spaces.

As mentioned in the introduction, we concentrate on the strongest form of
uniform nonapproximability which yields a lower bound on the number of basis
functions from a given family that are needed so that a weighted threshold of
them computes a given function. We do not deal with uniform approximability
notions that give methods for establishing unweighted threshold lower bounds,
although we mention them for completeness and comparison. These latter
methods are usually based on global properties like scalar product estimates
between the function to be computed (approximated) and the basis family.
More generally, we do not deal with methods that are based on any fairly
global properties of the basis family although some of these methods can be
used even to establish weighted threshold lower bounds. A study of such global
properties of the basis family, especially that of “stability” and corresponding
methods for nonapproximability and lower bounds can be found in [21].

Also as mentioned earlier, the treatment is restricted to inherently mul-
tivariate methods rather than univariate approximation theoretic techniques
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such as those employed in [52], [53], and to some extent, [3], and [48], some of
which were discussed in Subsection 3.3.

This section is divided into 2 subsections. The first shows that nonapprox-
imability can be reduced to approximability using duality relationships. The
second discusses divide-and-conquer paradigms which reduce uniform nonap-
proximability problems, using analytic techiques, into their combinatorial con-
stituents. This results in new weighted threshold lower bounds.

Each subsection is, similar to the earlier sections, organized as follows.
Following each theorem containing a result of a general nature, complexity-
theoretic applications of the result are given as short remarks enclosed by ()’s.
These include earlier results from the literature that were proved using different
methods, as well as new observations.

6.1. Nonapproximability to approximability. The first theorem enumer-
ates a number of systematic and general results showing that a Boolean func-
tion f is not approximable in the ||.|| norm from any space spanned by a
small number of Boolean functions from a class B, when it is known that f
differs from all the functions in B with respect to some natural characteristic.
In addition, some of the results assume various other realistic properties of f
and the functions in B. The theorem applies duality relationships to convert
a statement of nonapproximability of a Boolean function in the ||.||« from the
span of a small number of basis functions from a given class into a statement
of approximability. The latter two statements below treat nonapproximability
by functions with additional properties.

NOTE. As noted in Section 2, all approximating functions g from the span of
a set {g;} are assumed to be of the form g = ¥, a;g;, where the a; € @ and
i lai| < 1.

THEOREM 6.1. Let f be a Boolean function and B a set of Boolean functions,
and let M C B consist of independent Boolean functions.

(1) The following are equivalent.
e There does not exist an approximation g € span(M) with sign(f) =
sign(g).
e There exists an approximation | € span(M)* with ||l||; > 0 and
sign(f(x)) = sign(l(z)), whenever I(z) # 0.
e There exists a distribution R such that Y f(z)h(z)R(z) = 0 for all

h € span(M).
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(2) The following are equivalent.

e There does not exist an approximation g € span(M) with sign(f) =
sign(g), and € < |g(z)| < 1 everywhere. This happens when the coeffi-
cients in the approximation satisfy not only Y, |a;| < 1, but also the a;
are rationals with denominators bounded by 1/¢; therefore the statement
implies that f is realizable as an unweighted threshold of functions in M,
if € is chosen to be, say, 1/|M|. We will call such a function g as a close
approximation to f, or an approximation within 1 — € to f.

e There exists an approximation [ close to span(M)* with ||l||; > 0 and
||f=1||sc < 1. By “close to span(M)+” we mean that | 3", I(z)h(z)|/||l||, <
€, for all h € M.

e There exists a distribution R such that | < h, f > |g < eforallh € M.

(3) There does not exist an approximation g € span(M) with |3 f(x)g(x)| >

e (if, in addition, sign(f) = sign(g), then ||g||s > € would be sufficient,
since then | Y- f(x)g(z)| > |lg|l1 > ||g||2; we will call such a function g as

a high energy approximation to f; notice that a close approximation is
a high energy approximation)

if

for every subset S C {—1,1}" with |S| > 2"¢, there exists a distribution
R over S such that | < f,h > |g <€ forallh € M,

or if

foralhe M, | < f,h>]|<e.

PrROOF.  The result (1) follows directly from 3.3. The equivalence of the
latter two statements is simply due to the Booleanness of f.

For (2), the equivalence of the latter 2 statements is straightforward. For
the first of the two statements, The ‘<’ direction is shown as follows: if
g is a close approximation to f, then for all distributions R, it holds that

| > R(x)g(x)f(x)| > e. Since the coefficients of the linear combination > aph =
T heM

g satisfy Y |ap| < 1, there must exist a Boolean function h € M such that
T

| < f,h > |r > €. The ‘=’ direction is shown as follows: the hypothesis is equiv-

alent to the non-existence of a function g in span(M) with ||f — g|loc <1 —€.

This is equivalent, by 3.1, to the existence of I; € span(M)=* such that ||l;]|; < 1

and | > li(x)f(z)] > 1 —e. Let S be the subdomain where sign(l) # sign(f),

and [; # 0. Since f is Boolean, ||l;|[1,s < €/2. Construct the function [ by
setting [; to 0 on S, and normalizing to get ||/|/[; = 1. Now, [ is no longer in
span(M)*, i.e, - h(zx)l(x) is no longer 0 for all h € M, but since the functions
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h € M are Boolean, clearly, | > h(z)l(z)| <¢€/(2(1—¢€/2)) < ¢, since € < 1, and
since | Y h(z)li(x)| = 0.

For (3), the last of the 2 hypotheses clearly implies the non-existence of a
high-energy approximation, since the linear combination > aph = g satisfies

heM
> |an| =1, and if g is a high-energy approximation, then | Y g(z)f(z)| > e.
heM T

The first of the 2 hypotheses implies nonapproximability because every high-
energy approximation g to f | X g(z)f(x)| > € is a close approximation to f

over at least an e fraction of the domain, hence (2) can be applied over this
domain.

REMARK 6.2. Notice that (1) does not use the Boolean-ness of the basis set
M, although (2) and (3) do. In fact, (1) depends only on the space span(M),
whereas the concepts of close and high energy approximation are specific to a
particular basis M. This generates an open question as to whether a stronger
result can be proven instead of (1), using the Boolean-ness of the basis set M.

The statement (1) is equivalent to a notion of orthogonality with respect to
the ||.|| norm, according to which a function f is “orthogonal” to a space
span(M), if for every function g € span(M), ||f + glloo < ||f||co- This reduces
to the usual orthogonality in the case of the ||.||; norm (see [63] for an succinct
treatment of ||.|| norm, or uniform approximation). In addition, we will see
in Section 7 that the |M| + 1 points forming the support of the function h
in span(M)*, together with the sign of f at these points form an “extremal
signature” that characterizes f, i.e, they constitute points where |(f — g)(x)|
attains its maximum (i.e, ||f — ¢||c), Wwhen g is a best approximation to f.

(O Almost all the threshold circuit lower bounds known so far concerning non-
approximability in the co-norm (non expressibility of the sign) of a function f
from the span of small number of LT} or other functions involve a restriction
on the approximation: the linear combinations that form the approximant have
polynomially bounded coefficients. These include results in [34], [42], [45], [27].
In other words, these lower bounds apply only to circuits with an unweighted
threshold gate at the top.

These lower bounds mostly use the “correlation/discriminator/discrepancy
lemma,” proved in [34] and [27], which is nothing but 6.1(2), for which we give
give a short and straightforward proof using the duality principle. This and
very similar methods can also be applied to give the communication complexity
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lower bounds in [34], [27], [33], [39], [57], [26], [30], [4], and [25], although the
original proofs of these bounds use more ad hoc methods. To complete such a
lower bound proof, one then needs to show that the scalar product | < h,l > |
is small for each h € M.

In fact, scalar product estimates, and a variant of the approximability no-
tion in 6.1(2) ( close 2-norm approximation), are the crux of the “geometric
or variation rank” method of [45] as well, although, for some reason, this is
commonly considered to be a distinct method of proving unweighted threshold
lower bounds (as opposed to the correlation method).

Moreover, based on another highly related notion of approximation (high
energy approximation, also considered in 6.1), global scalar product estimates
can also be used for proving weighted threshold lower bounds. i.e, the strongest
nonapproximability result as in 6.1(1). To do this, however, the basis family
must have another global property of “stability.” This is observation is made in
[21]. Orthonormality is a special case of stability, and the “spectral method” of
[15] for showing weighted threshold lower bounds is a special case of the above
observation.

Furthermore, the “communication complexity method” for proving thresh-
old circuit lower bounds follows directly from the characterization of nonap-
proximability in 6.1(2), simple properties of Boolean bases, and the transitive
nature of approximability relationships. This permits the word “communica-
tion complexity” to be removed from these proofs.

Finally, the methods for obtaining the scalar product estimates in turn re-
duce to arguments based on duality and simple norm relationships for Boolean
functions.

All of these general methods and complexity applications related to 6.1(2) dis-
cussed above, such as scalar product estimates, and other global properties of
the basis family - such as stability - are studied in [21] and will not be studied
here. A quote from the latter paper [43] states: “Previous lower bound results
on threshold representations are based on the discriminator method, a geomet-
ric method, a method based on probabilistic communication complexity, and
a spectral theoretic method for orthogonal bases.” In fact, it is pointed out in
detail in [21] that the main analytic content of all three methods is straightfor-
ward duality, in particular, 6.1(2) and (3), and simple norm relationships for
Boolean functions. O

(O The only two nonapproximability results without the above restriction are
the following: the result of [24] on the nonapproximability of Parity by few
functions computable by {A,V,—}- circuits of a fixed polynomial size and con-
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stant depth; and related results of [44], for example, on the nonapproximability
of an AC°[3] function by few And functions and the result of [43] on the non-
approximability of an AC°[3] function by few mod r functions (which can be
viewed as monomials over the reals, or ZZ3 characters; in fact, the result applies
to ZZ; characters, for any 7). Both papers use straightforward duality from 6.1
(1) as the main technique - although it is not stated as such. The former pa-
per uses 6.1 (1) in conjunction with the switching lemma of [31]. The latter
paper “divides” the problem into “pieces”, as will be discussed in Observation
6.3, and uses 6.1 (1) to “conquer” the pieces. It should be noted that the

latter result has an alternative proof using an observation mentioned earlier in
this discussion. This proof takes direct advantage of the stability of the Modr
functions over a certain distribution on the domain, uses scalar product esti-
mates, and notions of approximation similar to 6.1(2). As mentioned earlier,
this general method as well as this particular alternative proof appear in [21].

O

6.2. Non-approximability via divide and conquer. Next we consider
nonapproximability results for functions f that involve decomposing the do-
main. These results are useful in constructing hard f based on previously
proven or easier nonapproximability results, and, in addition, give methods for
reducing a nonapproximability question to its combinatorial core.

Before giving a broad description of the general method, we reiterate that
non approximability of f over the whole domain is equivalent to saying that
from each candidate approximating space there is no approximation of f over
some distribution or subdomain (even though no restriction of f may be hard
to approximate over all). This is already implicit in both Theorem 6.1 (1) and
(2) and is false for the case of high energy approximations, which is why 6.1
(3) has no natural converse, but even so, Theorem 6.1 (3) can and will be used
in what follows.

The results below have the following form. The domain of f is decomposed
into the (not neccessarily disjoint) union U P; of subdomains P; that typically

look identical; for example, their Charactel:istic functions could be shifts of the
same function, as in the case of the subdomains covered by any one row or
one column of a communication matrix. The P; are so chosen so that some
structure is visible concerning the behavior of f as well as the behavior of the
approximating space span(M), over the pieces. Now, to show that f is not
approximable from span(M), one uses the above structure to show the exis-
tence of at least one piece P; over which f is not approximable from span(M).
Not surprisingly, this allows more freedom in the proof process, although the
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argument used over the individual pieces is still based on 6.1 and the other tech-
niques discussed in the earlier theorems of this section. This general method is
useful when it is known that f and the functions in the approximating space
span(M) differ in some local characteristic, so that global measures such as the
scalar product do not capture the difference, but on the other hand, the exact
subdomain where they differ cannot be determined using any local characteris-
tic of f. This seems to be the situation while trying to find a suitable function
that is not in LT,. We explain some examples of decomposition in more detail
in what follows.

OBSERVATION 6.3. Let UP; C {—1,1}", and for all i, let P; = Py ® s;, where

‘@’ stands for addition WI;en {—1,1}" is viewed as IF}, and s; is the shift vector
for P;. In other words, the P;’s are shifts of each other. Given a function f on
{—1,1}", we denote by fp, its restriction to P;; furthermore, we shall view all
of the functions fp, as being over Py, by defining fp.(z) := f(z @ s;). Let f be
Boolean, B be a set of Boolean functions, and M be a (typically small) subset
of B.

(iii) If for every P;, fp, = fp,(m;), with the map m; being, for example, a
permutation of the variables, and fp, is not approximable from a space
X that is typically closed under the maps m;. Note that P; is simply a shift
of Py, and is not Py(m;). Furthermore, for some i, M; = {gp, : g € M} is
a subset of X. Then f is not approximable from the span of functions in
M.

For the following, assume that the pieces P; of the domain are not shifts
of each other, but rather, P; = m;(FP,), for some uniform set of maps ;, for
example certain permutations of the variables. In this case, for any function,
we define fp, over the domain Py to be fp,(m;), i.e, fp,(x) = f(mi(x)).

(iv) Let the set M of functions be such that if g € M, then either g(v;) € M
for all the maps v;, or the expectation E;gp, (z) < 0 for all z. Furthermore,
let f be invariant under the maps v;, so the fp,’s are all identical to fp,.
Finally, assume that fp, is not approximable over P, from the span of any
set of at most | M | functions from B, if the set is closed under the maps v;.
Then f is not closely approximable by g € span(M) with |g(x)| > 6| M|
for all z.

REMARK 6.4. All of these results can be seen to employ just 6.1 together with
the earlier theorems of this section on the pieces. In addition, analogous results
can be shown when the subdomains P; are replaced by arbitrary distributions.
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PROOF.

The proof of (iii) is straightforward.

For (iv), notice that since f is invariant under the maps v;, if f is closely
approximable from the span of functions in M, then it is closely approximable
from M(v;) for all i. More specifically, f is closely approximable by ¢* =

EM aqg, with |g*(z)| > 6|M]| for all z, if and only if f is similarly closely
IS

approximable by
Eig*(vi) = > agEig(v).
geEM
Now construct a new set M; of only those functions g in M for which g(v;)
is also in M. Furthermore, since for every function g € M that is not in M,
E;gp, () < §/m for all z, it follows that the sign of f coincides with the sign

of Y a,E;g(v;), and thus with the sign of > a,g. But this contradicts the
geM; geM

fact that f is not approximable by any set of fewer than |M| functions that is,
in addition, closed under the permutations v;.

(O This general method has been used in several papers, although not stated
as such, for example [45], [43], [27]: in particular, (i) above is the crux of the
proof in [45] that DIP, is not closely approximable by the span of few symmetric
functions. The proof of [43] to show that AC,[3] € QT, is a combination of
of (iii) and the main idea in the proof of (iv) for a special case of maps 7;, and

v;. O

(O Next, we turn to a few specific nonapproximability results, that apply some
of the general results discussed so far. First we show that a universal function
ROI3] in AC°[3] is not approximable from the span of a set M of polynomially
many LT functions which is, in addition, closed under a class of permutations
I1, of variables. The permutations are chosen so that the universal function is
invariant under them. It seems to be intuitively the case that if f is approx-
imable from the span of any set of polynomially many LT; functions then it
would also be approximable from the span of a set that is closed under these
permutations. A proof of this, together with the theorem below would imply
that AC°[3] € LT,.

First, we define the universal function RO[3] and the class of permutations
under which it is invariant.

my ms3

FacT 6.5. The read-once function RO[3](x) = 7\1 V' A ijk is invariant under
i=1j=1k=1
the class 11 consisting of



Approximation of Boolean functions 45

(i) one permutation for each fixed i, j and each ki, ko that maps x;jk, to T;jk,
(and fixes the other variables),

(ii) one permutation for each i and each ji, jo that maps x;j,x to ;j, for all
k,

(iii) one permutation for each iy, 1, that maps x; ;i to x;,; for all j, k.

Next, we notice a property of small sets of LT functions that are closed
under the above permutations.

FACT 6.6. Any set M of LT, functions g that satisfy |{g(7) : 7 € II}| < n'
must satisfy the following. Let g(z) = sign ) (aijxTijk + ao). Then
ijk

(i) there is a set s3 of values for the subscript k with |s3| > m — 3t such that
Aijky = Qijky for k‘l, ko € S3, and for all gc M.

(ii) there is a set sy of values for the subscript j with |sy| > mg — 3t and with
Qijrky = Qijoky for all J1, J2 € So, for all kl,kg € So, and for all gec M.

(iii) there is a set s; of values for the subscript ¢ with a;, j,k, = Qiyjoky, With
|s1| > my — 3t, for iy,is € sy, for all ji, jo, k1, ko, and for all g € M.

The theorem below uses Theorem 6.1 (1) and Theorem 6.3 (iii) and (iv).

THEOREM 6.7. The function RO[3] does not have an approximation with the
same sign, from the span of a set M C LT, where M is closed under the per-
mutations in 11, i.e, M = {g(7) : ¢ € M and 7 € 11}, and |M| is polynomially
bounded.

PrROOF. We will show that there exists a function I € span(M)*, such that
sign(l) = sign(RO[3]). The function [ will be chosen such that [ is 0 except
on 2 sets of points, one being {w(a) : 7 € I}, where RO[3](a) = 1, and the
other of the form {7 (b) : 7 € I}, where RO[3](b) = —1. For z in the first set,
denoted LT, I(x) will equal 1/2|L"|, and for z in the second set L™, I(x) will
equal —1/2|L~|.

It is sufficient to show that for any M satisfying the conditions of the the-
orem, there is a solution [/, as described above, to the system of equations E' :
Y l(x)h(x) =0, h € M. Since [ is invariant under II, M is closed under II, and
the functions in M satisfy the conditions of Fact 6.6, this system E becomes
analyzable.
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First, we rewrite the system FE as follows. Let M* C M be the set of
representative functions in M, i.e, if g1,90 € M*, then g; # go(n), for any
7 € II. In other words, M* is the set of equivalence classes, each of which
contains functions in M that are equivalent up to the permutations (in IT) of
variables.

For each g € M*, let N,, denote the number [{7r € II : g(n(a)) = 1}|.
The system E then reduces to a system E’ of |M*| equations of the form
Ngo—Ngp =0,g9 € M. Notice that these equations depend on the parameters
my, me and m3. To massage the system E’ further, we place the following
additional restrictions on the vectors a and b that generate the support of I

the vectors a and b satisfy the following.
Vi, mo =gey [{(J, k) aige =1} = {(4, k) = bije = 1}/, 1

and
Vi,j, t?j =def |{]€ L Qi = 1}| and t?j = |{]€ : bijk = 1}|

Moreover, the matrix with the ¢f; as entries is denoted T, the matrix with
the t?; as entries is denoted T, each entry in these matrices is equal to ms,
ms3/2, or 0. 11

We also define the variables

togr =dey {02 {7+ 15 = ma}| = p, [{7 : 1§ = ms/2}| = g,

and
{j 15, =0} =7},

b . . .
and ¢, . is similarly defined.

Clearly, due to the conditions I and I/, tgqr and 7, are 0 if p+q+7r # may,
and if p + 2q # mo. Furthermore, >, tgqr = > tper = m1. The only difference
between the equations constraining the variables ¢, . and those for ;. are the
following, which is a consequence of the fact that RO[3](a) = 1, and RO[3](b) =
—1:

ton =0, and t3, #0,

for the only relevant values of ¢ and r, namely ¢ = /2,7 = my — t/2. 117

For any matrix 7 with entries t{; being ms3, m3/2 or 0, denote by N,
the number of distinct permuted matrices 7% formed by permuting the rows
and columns of 7%, such that T is a top left minor of T%. Similarly define
Ncp. In addition, the quantities N., and N,; can be expressed in terms of the
entries ¢;; of the matrix T, and the variables 2, 2 . respectively. Clearly, the

pqr “pgr
expressions for N., and N,; are identical for all matrices 7 that are identical
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up to row and column permutations. In fact, for determining the expressions
for N, and N4 all the required information in the matrix 7 can be captured
by a set of values t¢,,., analogous to t%, or tb .

To see that the system E’ is satisfiable, notice that for some choice of the pa-
rameters meo, mi, mo € IN as functions of ms, the following system Ey, m, mo,ms
of diophantine equations in the variables ¢, or t® is satisfiable over IN, and

qr par
therefore E' is satisfiable.

(i) For each class of matrices 7 that are identical up to row and column
permutations, and the corresponding set of constants ¢ ., there is one
equation of the form N, — Ny = 0, in the variable sets %, and .
Clearly, these equations depend on the values of myg,..., m3, since the
quantities N., and N, and even the number of variables ¢; . and tb

qr pgr
depend on them.

(ii) There are equations that enforce the conditions I71. These clearly depend
on the values of my, ..., ms, as well.

(O Below, we give an alternative result (obviously weaker in one sense, but
stronger in another) than [24], but using a different proof technique.

THEOREM 6.8. For any given k and m with k < m < n, and for any set M of
And functions Ay, where Myg =gef {Aup € M : |u| + |v| > n —m}, with
2k
I11+m/(n—1i)
i=0

there does not exist a function g € span(M) with the same sign as Parity.

PrROOF. By 6.1 (1), for any set M as in the statement of the theorem, it is
sufficient to construct a function I € span(M)* such that [ is not identically 0,
and having the same sign as Parity wherever non-zero. Our [ will be constructed
as follows.

e the support of [ is of size 2"7*, and | will equal Parity on its support;

e the support of [ is a subcube of {—1,1}" where an And function A, .~ equals
-1, with |u*| + [v*| = k;

e all the functions in M;;, will be constant on the support of /, so that [ is in
span(My;y)* already by construction.



48 Sitharam

The functions in M \ My, are of the form A,, with |u| 4+ |v| < n — m. Since
k < m, and |u* + v*| = k, denoting by n* the set of n — k “free” coordinates
of Ays »+, 1.€, the coordinates outside u* U v*, we notice that the set n* \ v U v
(the set of free coordinates of A, ,, among the n*) must be non-empty, and
therefore, the set

{z : Aup(z) = =1} N support(l) = {z : Ay +(z) = —1}

splits into two equal halves, one where Parity = 1, and the other where Parity
= -1. Now since [ is defined to be Parity on its support, it follows that [ €
span(M \ My,)* as well, and therefore, | € span(M)= .

It remains to describe the support of [, i,e, to describe u* and v*; and to
ensure that the functions in My, are constant on the support of . Clearly, by
the pigeon hole principle, there is some coordinate position i where |My,,|(n
m)/2n of the and functions in M,;, “coincide”, i.e, for all of these functions g,
g(x) = —1 only if z; = —1, or for all of these functions g, g(z) = —1 only if
xz; = 1. In the former case, put ¢ into v*, and in the latter case into u*. We
can continue this process on the remaining | My, |(n +m)/2n functions in Mg,
increasing the size of v*, and «* until all the functions in Mp,, are exhausted.
When the process terminates, the size |v* U u*| < k provided

n—z +m

|szg‘ H ) <1
i.e, when
210
| Miig| < 7 :
']:[0 1+m/((n—1))
O
O

O As a corollary to the above theorem, we obtain that AC°[4] ¢ LT, — Ands,
since AC°[4] functions embed the Parity function of log® n bits. O

(O The main idea of the proof of the above theorem extends to the case of
spaces spanned by other functions that behave similar to And functions, for
example the Flat functions ¢, , defined for sets u and v of pairs of variables in
{1,...,n} x {1,...,n} as follows:

¢uv —def /\ .Z‘Z@.Tj /\ .TZEB.%]

(ij)€u (i,j)€v
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In other words, ¢y ,(x) = —1 if and only if the bit-pairs of = are equal when the
corresponding coordinate pairs are in u, and are unequal when the correspond-
ing coordinate pairs are in v. Notice that v and v might contain redundant
pairs of bits that can be removed without affecting the definition of the func-
tion. Hence we assume that |u| and |v| are minimal. The set of points where
Gup = —1 defines a “flat” of dimension n — |u|+ |v|, i.e, these points form both
a subspace of that dimension in IF7, as well as the intersection of a subspace of
that dimension in R™ with {—1,1}". Flats are a generalization of the subcubes
where the functions A, , = —1.

Repeating an analogous construction as in the proof of 6.8, we obtain the
following.

THEOREM 6.9. The function @ (x; ® ;) does not have an approximation with

irj
the same sign from the span of subexponentially many Flat functions.

O

7. Algorithms for approximation

In this section, we are interested in efficient constructive solutions to the general
approximation problem A in Section 3, when the Boolean functions ¢ in the
class C are known to be appropriately approximable. The universal space U is
the space of real functions over {—1,1}", so we are do not deal with approxima-
tion/interpolation algorithms over different domains (such as, for example, [5])
or ranges (such as, for example, [12]). Notice that since we are interested only
in Boolean g, and are dealing with real-valued functions, the construction of
an interpolant, i.e, with € = 0 is algorithmically equivalent to the construction
of an oo-norm approximant with ¢ < 1. In addition, to co-norm approxima-
tions with error € < 1, we also consider 2-norm approximations, since they are
often easier to find, and moreover provide co-norm approximations over large
domains S in A. Finally, we also consider close oco-norm approximations (i.e,
small €), and high-energy approximations, as in 6.1 (2) and (3), since both are
highly related to 2-norm approximations (see Section 6).

We assume that the approximation algorithms are able to evaluate the func-
tion g pointwise at any set of sample points, which we shall refer to as o (each
evaluation costs one unit of time). We also consider randomized algorithms,
that may choose to (but are not required to) sample randomly on the pertinent
distribution D in the framework A. These randomized algorithms produce the
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required approximation with suitably high probability depending on the run-
ning time. There are two independent issues to be considered in designing such
algorithms.

e First, how many sample points (pieces of information about g) are required
to determine the set of valid approximations h € X =4 span(M).

e Secondly, how to find such a set 3 of sample points, and using the values of
g over X, how to construct an approximation h efficiently.

The main general result of this section, Theorem 7.1, shows that a function
1 € X+ of support dim(X) + 1 provides a set ¥ = supp(l) of sample points, so
that the values of g over ¥ are sufficient to determine an co-norm approximation
to g from X. This result depends mainly on the duality principle. In an ensuing
observation, Remark 7.2, connections are drawn between sample sets > and sets
of pseudorandom elements given by Theorem 5.1.

This is followed by a list of relevant approximation algorithms in the ap-
proximation theory and computational learning theory literature. We classify
these algorithms based on their choices of parameters in the general approxi-
mation framework A; describe their connection to Theorem 7.1, and Remark
7.2; derandomize some of these algorithms, and point out promising natural
extensions that that have not been investigated. The main application of such
approximation algorithms is for learning classes of Boolean functions. As usual,
we sandwich all discussions concerning this application by ()’s.

O If the approximation algorithm for the problem A produces an approxima-
tion h that uniquely defines a Boolean function g in C, when restricted to the
relevant o-fraction of the domain, i.e, a class of functions in C' that coincide on
the subdomain S of approximation, then the algorithm is a learning algorithm
for C' with accuracy o. This is the case if the norm of approximation is the
oo-norm, the error of approximation ¢ < 1 and the functions in C are Boolean.
On the other hand, if the approximation h only uniquely defines a class of
functions in C' that coincide on a large o' fraction of S, then the algorithm is
a learning algorithm for C' with accuracy oo’. This is the case if the norm of
approximation is the 2-norm, the error of approximation € is 1 — ¢’, and the
functions in C' are Boolean.

These learning algorithms are said to use membership oracles, if the sam-
ple set X is arbitrary, and are said to use example oracles, if the sample set
Y is drawn at random from the relevant distribution D in the framework A.
Thus our approximation algorithms use both kinds of oracles.

Moreover, when the quantifier on the distribution D is universal, and on
the subdomain S is existential, in the framework A, such an approximation
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algorithm is a PAC learning algorithm provided it works for all o < 1, with an
appropriate increase in running time, and furthermore, if it works for o = 1,
then it is called an exact learning algorithm. O

We now give the main general result concerning sample sets . This can be
found in [63] and provides a restriction on the size of the support of the function
I € X*+. A special case of this theorem also follows from a standard theorem
about convex polytopes that is used in linear programming applications.

THEOREM 7.1. Let X be a space of functions and let g be any function. Let
¥ be the support of a function [* € X+ that maximizes | ¥ I(z)g(x)| over all

I € X* with ||l||; < 1. Then a best uniform approximation to g from X, i.e, a
function g* such that ||g — g*||« is minimum, is determined by the values of g
on Y. In fact, a best approximation to g remains a best approximation to gs.
Furthermore, there is is a set X satisfying the above conditions, of size at most
dim(X) + 1.

PROOF. It is clear that a best approximation to g remains a best ap-
proximation to g on the support X of the I*, since [* € X5, and maximizes
| > U(z)g(z)|. Let g* be a best approximation to g, and let ||g — ¢*|| = .
TEX

Let ¥ be the support of a function [* as in the statement of the theorem. By
3.3, | ¥ (x)g(z)| = e. However, X, I"(z)g(z) = X, I*(x)(g — ¢°)(). Thus,
TEX TEX TEX

(g — g%)(z)| =€, for each z € ¥, and in fact, the sign of (g — ¢*)(z) is equal to
the sign of [*. It only remains to show that there is such a function *, whose
support X satisfies |X| < dim(X)+ 1. We construct this function [* as h(g — g*)
(normalized), where h is a positive function that has at most dim(X)+1 points
of support.

First, notice that g — ¢* is “orthogonal” to X in the sense of the co-norm.
Recall that by this notion of orthogonality, f L X, if || f||cc < ||f +p||o for all

p € X. We use a property of functions that are orthogonal in this sense.

Claim. A function f is orthogonal to a space X in the sense of the oo-norm if
and only if there is a positive function A with at most dim(X) + 1 points of
support contained in the extremal set of f, i.e, E(f) =ges {z : f(2) = |[f]|c}
such that fhisin X' (the orthogonal space in the usual inner product sense).

Now, let the function A be as in the claim. The function I* =4 h(g—g¢*)/||h(9—
g*)||1 clearly has only dim(X)+ 1 points of support; and is in X by the claim.
It only remains to show that [* is extremal, i.e, | I*(z)g(z)| is maximum
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over all [ € X+ with ||l||; < 1. For this, by 3.1, it is sufficient to show that

|2 (2)g(2)] = [1g = "[loo- Since I € X+,

|2 h(z)(g = g7)(2)(g — g7)(2)|
[1h(g — g7)I1

By the claim, A is positive and its support is restricted to lie within E(g — g*),
therefore, it holds that ||hA(g — ¢*)||1 = | Xz h(2)] ||g — g*||cc and

[ Zh(@)(9 =) (@) (g - g) @) [lg = 9|l Z hl)]

2 @)g@)] =2 (2)(g — ") ()| =

|

Proof of claim. For one direction, suppose fh € X, and h is positive, with
||h|]; = 1, and its support is contained in the extremal set of f as stated in the
claim (the size of the support is not neccessary here). Then for every e € X,

115 = 2 k() f (@) f(z) = 3 h(2)f(2)(f(z) — e(z))

< Ifllee Do(z) maz [ f(z) = e(@)| < ||f]loo|[f = €lloos

z€supp(h)

thereby showing that f is orthogonal to X in the sense of the co-norm.

For the reverse direction, suppose f is orthogonal to X in the sense of the
oo-norm. Let dim(X) = m, and let b, ..., b,, be a basis for X and consider the
set of points S in R™ given by

S ={(f(x)bi(x),..., f(®)byn(z):x € E(f)}.

Notice that the origin must be contained in the convex hull of S. Otherwise,
there is a hyperplane separating the points in S from the origin, i.e, there are
constants ag, ..., a,, € R such that

> aif ()bi(z) >0,

for all z € E(f). This would mean that f(z) 3 a;b;(x) > 0, for all x € E(f),

implying that there is a function e = }; a;b; GZX with the same sign as f on
E(f). This would imply that for some e € X, ||f + €||looc > ||f||co, thereby

contradicting the assumption that f is orthogonal to X in the sense of the
0O-norm.
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Thus the origin must be contained in the convex hull of S. It follows that
there is a set m + 1 points in S such that the origin is a convex combination
of these points, which means that there is a positive function A with support
consisting of m = dim(X) + 1 points in E(f) such that

Y h(x) f(x)bi(x) =0, Vb,
and hence, hf € X*. This proves the claim. m

REMARK 7.2. The fact that a function in X+ provides a good sample set ¥
for approximation of a function g, from X, is not surprising. Intuitively, a
good sample set X is one over which the behavior of the function g is similar to
its behavior over the relevant distribution D in the approximation framework
A. Theorem 5.1 and the following remark show how such sample sets - which
behave as though uniformly distributed in the sense of expected values - are
obtained naturally from functions in X*. This can be extended to give sample
sets that behave like other distributions as well. These sets were used in Section
5 to serve as distributions of pseudorandom elements that fool the functions
that are approximable from X. In fact, we will show that similar distributions
serve as sample sets for approximating functions in the ||.||s norm. Moreover,
the above theorem shows that the supports of certain functions in X+ also serve
as small sample sets o for approximating g from X in the oo norm. When easy
to generate, such sampling distributions, as noted in Section 5, therefore help
not only to derandomize computations based on approximable functions like g,
but are used in some of the algorithms listed below, especially in the context of
finding deterministic sample sets Y. and therefore derandomizing randomized
approximation or learning algorithms.

Based on the following parameters in the framework A, we list and classify
known approximation algorithms and derandomize some of them. The param-
eters are the following.

e The norm, which could be ||.||o, or ||.||2; We also consider high-energy ap-
proximations as in 6.1(3).

e The space X = span(M) which could be fixed or allowed to vary, with the
only constratint being on dim(X) = |M|.

e The basis functions in the set B which could chosen orthonormal or not.

e The distribution D, which is arbitrary, i.e, universally quantified, or fixed to
be relatively close to the uniform distribution.

e The size of the domain of approximation S, quantified by o, which could be
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the entire domain, i.e, ¢ = 1, or a subdomain of suitably large measure, with
respect to the distribution D.

We are also concerned with:
e The sample set ¥, which could be deterministically chosen, or randomly
chosen, and its connection to supports of functions in X+ i.e, possible uses of
Theorem 7.1, Remark 7.2 and Theorem 5.1.

7.1. Uniform approximations from fixed spaces. We first consider the
case of oo norm approximations over the whole domain, i.e, ¢ = 1, and the
space X = span(M) is fixed. Here we can assume that the distribution D is
universally quantified, by the nature of co-norm approximation.

In this case, adaptations of the univariate primal-dual method of Remez
(see [56]) can be used, which work also for general, non-Boolean functions.
These algorithms use an iterative procedure to find a function [* € X+ of
bounded norm that maximizes |}~ I(x)g(z)|. Once the function [* is found, by

T

the proof of Theorem 7.1, the best approximation h can be found, by solving
an interpolation problem on supp(l*), i.e, by inverting a VanderMonde of size
|supp(I*)| = dim(X) + 1.

At the ™ iteration of the procedure, the function I**! € X is constructed
from l; € X+, again by solving an interpolation problem on supp(l;) to con-
struct a pseudo-approximation h;. The new function /;;; is constructed by
removing a point from /; and including a point outside supp(l;) where g — h; is
maximal, (if all such points lie inside supp(l;), the algorithm takes I* to be [;
and halts, justifiably by the proof of Theorem 7.1).

The rate of convergence of this iterative procedure to the optimum function
[* depends on the function g and the space X, and could take exponentially
long. However, the algorithm is deterministic and its sample set X = U supp(l;)

3

for the successive l; € X+.

Improvements of the algorithm, and complexity analyses for the special case
of Boolean approximation are open. In the Boolean case, it is not neccessary to
find the best approximation: it is sufficient to find an approximation for which
v < 1 in the framework A.

In this context, it should be noted that for bases B and spaces X satisfying
certain properties, there is a multidimensional analog of a linear approximation
operator called the Korovkin summation operator for arbitrary ||.||, norms. See
[36]. This operator provides a general constructive method of approximation
which sometimes reduces to well-known methods for specific cases.
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(O The algorithm described above is an exact, deterministic learning algorithm
for the class of Boolean functions ¢g for which there is an approximation with
the same sign from the space X. O

7.2. Uniform approximations from any space spanned by a fixed size
of basis subset. Next, we consider the case of ||.||cc norm approximations
over the whole domain, i.e, for ¢ = 1, but with the space X = span(M) varying
over all sets M of independent basis fuctions in B, with dim(X) = |M]| is at
most some fixed value m.

Such problems have been considered by approximation theorists for gen-
eral, non-Boolean functions, originating from the question of approximation
by splines with “free knots,” or by functions with “few harmonics” (i.e, few
Fourier coefficients). For the origins of this subject, see [19] and [54]. In the
recent, literature, such algorithms are studied in the context of approximation
by wavelets.

The significance of these results to Boolean function approximation is yet
to be investigated.

7.3. Two norm approximations w.r.t arbitrary distributions from
fixed spaces. Next, we consider 2-norm approximation of Boolean functions,
over the whole domain, i.e, o0 = 1, for arbitrary distributions D, when the space
X = span(M) is fixed. We could assume, if we choose, that the norm is de-
fined based on the inner product <>p. In this case, for all distributions D,
the 2-norm approximant for a Boolean function, with error v < 1/2 is also a
meaningful co-norm approximant with error v/ < 1, over a subdomain S with
measure o' > 1 — v with respect to D.

The best 2-norm approximation of g from X is easily described as the
projection g|xp = Y. < g,hq >p ha, where h, form an orthonormal basis

for X under <>p. ﬁinding this projection is usually achieved by finding an
orthonormal basis for X with respect to <>p.

We assume that the distribution D is fixed to be the uniform distribution,
and that the given basis M for X is itself orthonormal with respect to the
usual <>. Also without loss, we assume the entire basis B is the Fourier basis,
and hence the quantities < ¢, h, > are nothing but the Fourier coefficients
g(a) =< g,Xe >. The uniform distribution and the Fourier basis can be
replaced by any “close-to-uniform” distribution D for which a well-behaved
orthonormal basis exists with respect to <>p, where, by “well-behaved,” we
mean that the basis functions are easily computable, and have well-bounded
norms.
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In the case of any Boolean g, for estimating the coefficients §(«) for x, € M
with suitable accuracy, small random sample sets X, consisting of poly(|M| =
dim(X)) points can be shown to be sufficient, using Chernoff bounds, see [47].

However, the supports of certain functions ! € X+ can be used to give small
deterministic sample sets as follows: express the function / in X, and ||I||; < 2
as [* — 1/2" for a positive function I* € (X \ One)*. By Theorem 5.1, if g has
a close uniform approximation from X, it follows that supp(l*) looks uniformly
distributed to g in the sense of expected values, i.e, the quantity

|Zl x)| = |Z —1/2™)(x)g(x)xon ()] is small.

Therefore, §(0™) can be estimated with reasonable accuracy by sampling g on
supp(l*) and computing Y I*(z)g(z)xon(x). A similar sample set can be found

based on the assumbtion that g has a good one sided approximation from
X. These ideas were discussed in Section 5 to systematically obtain sets of
pseudorandom elements for functions g that are approximable from X.

If [* additionally satisfies the conditions that

\Z (I* —1/2")(x)g(z)xa(z)| is small Vx, € M,

then supp(l*) can be used as a deterministic sample set for approximating g.
For distributions D that are close-to-uniform, the constant function 1/2"(z)
(representing the uniform distribution) can be replaced by D(z), and the func-
tions x, by the orthonormal basis functions under <>p. In fact, different [’s
can be found that satisfy the above conditions for each x, € M, whereby the

set ¥ = | [} is a deterministic sample set for approximating g.
XaEM

The aim, then, is to find such functions [* with small support, and which, in
addition, are easy to generate. This question is, in general, open for the current
case of ||.||2 norm approximations, since the existence of a good ||.||2 norm
approximation to g from a space X says little, in general, about the existence
of good uniform or one-sided approximations to g from X. (In contrast, in the
case of uniform approximation, such sampling functions clearly always exist
and have small support by Theorem 7.1. The support and values of these
sampling functions/distributions can be generated using the Remez iterative
process discussed in Case 1).

O The paper [47] showed that AC® functions g are approximable in the 2-norm
from the space X of low (polylog) degree polynomials, i.e, the space spanned
by the set M of Fourier basis functions x, for small Hamming weight |c|.
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For the special case of AC?, The random sampling method discussed above
was used to estimate the the coefficients g(«) for small ||, by sampling at
poly(|M|) = O(nP°'9(n)) points, thereby giving a learning algorithm for AC°
with respect to the uniform distribution, which was extended to “close-to-
uniform” distributions in the paper [23].

The former algorithm was de-randomized in [65] by finding special determin-
istic sample sets of the same size using the ideas explained above, and Hastad’s
switching lemma (which is specific to AC® functions). The paper thus illus-
trated the connection between pseudorandom sets, sample sets for learning, and
polylog-wise independent distributions for the special case of AC? functions.

The latter algorithm derandomizes using the same ideas. The question is
open as to whether the particular and strong properties of AC° functions used
in both these derandomizations are truly relevant, or if one can simply show
either that AC® functions have a good one sided approximation from the space
spanned by small Hamming weight Fourier basis functions. In fact, it may be
that any Boolean function that has a good 2-norm approximation from such a
space has in fact a good one sided approximation from the space, at least on a
large enough subdomain S, such that the orthogonal space is not very different
from the orthogonal space over S. O

7.4. Two norm approximations w.r.t arbitary distributions from a
fixed size basis subset. Next, we consider an algorithm by [41] which works
under the same conditions as in Case 3, except that the space X is not fixed, but
spanned by a set M of independent basis functions in B with dim(X) = |M|
bounded by m. Again, we assume the distribution D to be uniform and the
basis B orthonormal, and as before, we can assume any distribution D for
which an orthonormal basis exists with respect to <>p, which is well-behaved,
i.e, the basis functions are easily computable and have a bounded norm.

This kind of approximation is useful for Boolean functions g for which ||g||;
is small, for example, g € PL;. Whenever X is the span of x,’s for which |§(a/)|
is at least v/||9||1, the number of such «’s is at most ||g||? /7, and ||g—g|x|]2 < 7,
Therefore such functions g can be well approximated in the 2-norm from the
span of only a few Fourier basis functions. (The analogous result for co-norm
approximation, i.e, that PL; C PTj, is harder to prove and was shown by [15].
A more general result that works for all Boolean bases irrespective of “stability”
or orthonormality is given in [21]).

The algorithm in [41] uses a clever search technique to isolate m functions y,
that form the basis M for a space X such that the 2-norm approximation or
the projection g|x is suitably close to g, or in other words, has a large 2-norm
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> ()
Xa EM
Once the set M of x,’s is found, then either the random samples or the

deterministic sample sets ¥ of Case 3 can be used to estimate the §(«)’s, and
thus g|x.
The set M of basis functions Yy, is found by a divide and conquer process,

estimating the quantity 3 g¢?(x) for successively smaller sets @ of Fourier
Xa€Q
basis functions, starting with () being the entire set B. The estimation of this

quantity is carried out by a quasirandom, uniform sampling of g over specific
subdomains, (See [41]) for details).

It is an open question whether there are natural deterministic sample sets as
in Case 3, that can replace the random samples for this part of the algorithm.

(O As mentioned earlier, the algorithm [41] is fast for finding 2-norm approxi-
mations of functions in PL; for example, linear decision trees, since in this case,
the dimension of the approximating space X is small. In addition, as mentioned
in Case 3, a 2-norm approximation with error v < 1/2 over the entire domain
gives a meaningful co-norm approximation with error v < 1, over a fraction,
o' =1 —, of the domain. (This holds as well for other distributions D, with
“fraction” replaced by “measure”). This gives a fast, randomized, learning al-
gorithm for PL, functions with respect to the uniform distribution, where the
running time grows linearly with o’

The extension of this algorithm to close-to-uniform distributions D (for
which a well-behaved orthonormal basis exists w.r.t. <>p) is given in [35]. O

7.5. Close uniform approximation over a subdomain of large measure.
Next, we turn to the case when a close co-norm approximation h exists for a
Boolean function g, with ||g — k|| < 7, i.e, h has the same sign as g and
||hl]1 > 1 —~, where with h = Y}y apb, and Zb: lap| < 1. Furthermore, for the

first part of this discussion, no restrictions such as orthonormality are placed on
the basis functions b € M, and the distribution D is considered to be arbitrary,
as is customary for co-norm approximation over the entire domain. Note that
here, v might be specified to be greater than 1/2, even as large as 1 — poly(n),
and therefore finding a 2-norm approximation may not provide a meaningful
oo-norm approximation. Such close approximations exist, for example, when
g € PTI, which includes PL; and a LTl of PL, functions as well, by a result
in [21].

We are interested in algorithms that find an oo-norm approximation to a
Boolean function g with respect to a large class of distributions, over a subdo-



Approximation of Boolean functions 59

main of large measure.

By 6.1(2), we know that for every distribution D, there is a basis function
b € M such that | < ¢g,b >p | > 1 — «. Such a function is called a weak
hypothesis in learning theory terms. Assuming an oracle provides such a
basis function b € M for any distribution D, then [35] describes a randomized
“boosting” algorithm, due originally to [22], that, with a high probability, finds
a (close) oo-norm approximation ', called a strong hypothesis, from X =
span(M): for any distribution D, the approximation A’ approximates over a
subdomain that has large measure o with respect to D, and the running time
of the algorithm increases linearly with o.

To simulate the oracle above, however, restrictions on the distribution D are
required. Using the algorithms described and partially derandomized in Case
4, the oracle above can be simulated efficiently in the case where the basis
functions in M are almost orthonormal, and the distributions D are close to
the uniform distribution. Thus, for these special sets M, and distributions D,
a basis function b € M such that | < g,b >p | > 1 — 7 can be found efficiently
by a quasi-random sampling of g. This, however, represents only a partial
simulation of the oracle required by the boosting algorithm of [22], described
in the previous paragraph.

To surmount this difficulty, [35] gives an adaptation of the boosting algo-
rithm of [22]. The modified boosting algorithm makes do with information
about ¢ on close-to-uniform distributions, and provides a uniform approxima-
tion over a set of large measure o, only with respect to such distributions.
The algorithm uses the basis functions b in the almost orthonormal basis M,
for which | < g,b >p | > 1 — 7, which are given by the simulated oracle for
close-to-uniform distributions D. The running time of the algorithm increases
linearly with o.

In fact, notice that the algorithm described above works as long as there is
a function b in an almost orthonormal basis M such that | < g,b >p | > 1—1,
for close-to-uniform distributions D. This does not require g to be closely
approximable from X = span(M). It is sufficient that g have a high energy
approximation h from X, i.e, with < g,h >>1 — 1.

(O The partially derandomized procedure described above provides a learning
algorithm with respect to almost uniform distributions for any function in PT,
or, in fact, for any function that has a high-energy approximation from the
space spanned by a few Fourier basis functions. It is a natural open question
whether the observation above concerning high-energy approximations has an
application in learning theory. O
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