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Abstract—Machine learning and artificial neural networks
(ANNs) have been at the forefront of medical research in the
last few years. It is well known that ANNs benefit from big data
and the collection of the data is often decentralized, meaning
that it is stored in different computer systems. There is a
practical need to bring the distributed data together with the
purpose of training a more accurate ANN. However, the privacy
concern prevents medical institutes from sharing patient data
freely. Federated learning and multi-party computation have
been proposed to address this concern. However, they require
the medical data collectors to participate in the deep-learning
computations of the data users, which is inconvenient or even
infeasible in practice. In this paper, we propose to use matrix
masking for privacy protection of patient data. It allows the
data collectors to outsource privacy-sensitive medical data to the
cloud in a masked form, and allows the data users to outsource
deep learning to the cloud as well, where the ANN models can be
trained directly from the masked data. Our experimental results
on deep-learning models for diagnosis of Alzheimer’s disease
and Parkinson’s disease show that the diagnosis accuracy of the
models trained from the masked data is similar to that of the
models from the original patient data.

Index Terms—Neural network privacy, Orthogonal transfor-
mation, Matrix masking, Medical data privacy

I. INTRODUCTION

Artificial intelligence is transforming biomedical research
and medical practice [1]], [2]. Machine learning has been used
for prediction, classification, and statistical inference, often
outperforming human experts in diagnosis [3]. Deep-learning
artificial neural networks (ANN) have become increasingly
popular in medical research [4|]-[10]]. Studies have shown that
ANNSs provide better performance than conventional machine
learning algorithms and linear regression methods [[11[]-[14].

While big medical data present unprecedented opportunities
for building fine-grained ANN models for medical research
and practice, the tasks of training and continuously refining
ANN models with data from tens of thousands of patients, each
with hundreds or thousands of attributes including possibly
images and genetic data, are notoriously computation-intensive
and time-consuming [15]], [[16]]. Outsourcing such computation
and the data to the cloud is an obvious solution. The problem
is that exposing sensitive patient data to the cloud admins and
others with access to the cloud storage (possibly through illegal
means such as cyber-attacks) may lead to incompliance with
the expansive laws and regulations that govern medical data
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privacy. Encryption could be the answer. Most prior efforts
focused on using homomorphic encryption to perform inference
(such as classification) based on ANN models that have already
been trained [17]-[22]. The key problem of outsourcing the
expensive training operations to the cloud, without leaking any
patient data from their distributed sources, remains open, not
only because the computation over homomorphically encrypted
data is expensive and the ANN models are non-linear, but also
because it is difficult to compute over medical data that are
encrypted from multiple sources with different keys.

One solution of privacy-preserving deep learning over
distributed data is federated learning [23[]-[27] or more broadly
multi-party secure computation [28[]-[31]]. However, they
require all data collectors (called data clients in this paper) to
perform synchronized computations together. Take federated
learning as example. It requires all clients to synchronously
train their models locally based on their raw data and send
the gradients of the model parameters after each local training
iteration to a centralized server (or cloud), where the gradients
from all clients are combined to update the model parameters,
which are then distributed to the clients in order to update
their local models for the next training iteration [32[]. This
model requires all data clients (i.e., data-collecting doctors and
medical researchers) to acquire the computing resources and the
technical expertise for local deep-learning computation, which
is opposite from the desire of outsourcing such computation
to the cloud, as discussed earlier. Moreover, it is highly
inconvenient that whenever a biostatistian wants to perform a
deep-learning study, all data clients (i.e., data-collecting doctors
and medical researchers) need to be summoned to participate
and carry out their respective local computation.

This paper sets forth the following requirements for cloud-
based ANN learning of privacy-sensitive medical data:

1) Outsourcing Requirement: The data clients outsource the
job of ANN training to the cloud, and they are relieved
from local model training. After contributing their data,
they are not required to participate in the computation
of future data analyses.

2) Data Privacy Requirement: Data should be stored at
the cloud in a privacy-preserving form. If the cloud is
compromised, the medical information of individuals
should not be leaked.

3) Efficiency Requirement: The efficiency of training ANN



models over the privacy-protected data should be com-
parable to that of training ANN models over the raw
data.

Homomorphically encrypted data cannot meet the efficiency
requirement and the outsourcing requirement because of the
difficulty of computing over data encrypted by different clients
with different keys. This paper proposes a new method of cloud-
based ANN training with masked data. Matrix masking, formu-
lated by [33]-[39] with provable privacy, alters the components
of a data matrix by performing orthogonal transformations.
It has been used in privacy-preserving statistical analyses
including linear regression, contingency table analysis, Cox
proportional hazard regression, and logistic regression. To the
best of our knowledge, this paper is the first to investigate
the use of matrix masking as an effective privacy-preserving
technique for cloud-based ANN training. We show theoretically
that the difference between the cost function of the ANN model
trained over the masked data and the cost function of the
model over the raw data is bounded by a constant. We perform
experiments based on two real data sets, one for Alzheimer’s
disease [40] and one for Parkinson’s disease [41], to train
diagnosis ANN models over masked data on the cloud and
compare them with the benchmark models trained from the
raw data. The diagnosis performance of the models trained
with the masked data was similar to the performance of those
trained with the raw data. Moreover, the runtime of training
ANN models over the masked data is similar to doing so over
the raw data, while data masking incurs small computational
overhead.

II. RELATED WORK

Various methods have been proposed for multiple parties to
pool their data together for deep learning while preserving data
privacy. They can generally be grouped into three categories.

1) Privacy-preserving inference: While the ANN model is
trained with raw data, the inference uses encrypted data,
such that a user can use the model for inference without
leaking its input data.

2) Federated learning: The ANN is trained jointly from
multiple clients by sending their local parameters, such
as gradients, to the cloud, which synthesizes the local
values and sends the results back.

3) ANN training on encrypted data with a trust authority:
The ANN is trained on data encrypted with credentials
from a trust central server.

The privacy-preserving inference is typically performed over
homomorphically encrypted user input, and the result (in the
encrypted form) is sent back to the user, which decrypts for the
actual model output [17]-[22]. These studies do not consider
training the ANN models on encrypted data. Nor do they meet
our efficiency requirement.

In federated learning [23[|-[27]], the data clients perform local
ANN training themselves, which does not meet our outsourcing
requirement. Moreover, all clients have to perform training
together, which may be inconvenient in practical settings when

a large global consortium of medical researchers who share
data may work at different schedules on different research
works with different expertise. The same issues exist for multi-
party computation and garbled circuits [28]-[31]], where the
data clients do not outsource their local computations that often
incur high communication and computation overhead [42].

CryptoNN by [43] relies on a centralized trusted authority
(TA) to distribute its public key to all clients for encrypting
their data. Establishing and maintaining a TA is not always
feasible in practice. If the TA is compromised, all data may
be leaked. In addition, training over encrypted data is far more
expensive than doing so over the raw data.

Outsourcing the training operations to the cloud, without
leaking any raw data, remains an open problem under the three
requirements listed in the introduction.

III. PRELIMINARIES

A. System Model

Consider an example of collecting the Alzheimer’s disease
(AD) patient data from a consortium of medical centers,
hospitals and clinics in order to build deep-learning diagnosis
models that are trained based on the collected patient data
and are used by taking new patient information as input and
classifying new patients as having AD or not. There is extensive
work on building such a model based on a centralized data set
[44]. However, if the data is scattered at different medical
centers/hospitals/clinics and cannot be directly shared due
to patient privacy restrictions, the prior work based on a
centralized data set cannot be applied.

We assume that not all doctors and medical researchers in
the consortium have access to adequate computing resources or
deep-learning expertise to carry out local ANN model training
or other multi-party computation for federated learning. It is
desired to outsource data and computation and to leverage
software and hardware from an MLaaS (Machine Learning
as a Service) cloud provider, such as [45], [46] or [47]. We
assume that the data collection process spans across long time
(e.g., multiple years) and globally, which makes it difficult to
coordinate synchronized computations or establish a centralized
trusted authority.

The data contributors such as the doctors/researchers at the
medical centers/hospitals/clinics in the consortium of the above
example are called the data clients. The computing/storage
platform that the clients outsource their data to is referred
to as the cloud in this paper. The biostatisticians that use all
or part of the outsourced data to learn ANN models on the
cloud are called the data users. Different users may choose to
use different subsets of data (e.g., from different countries) or
choose different attributes of the data (e.g., with or without
MRI images) to train different models. The doctors that use the
models to diagnose new patients are called the model users. The
sets of data clients, data users and model users may overlap.
For example, a team in a hospital may have members that
collect data, members that build models, and other members
that use the models to diagnose.



B. Problem Statement

The problem we address in this paper is to outsource
distributed patient data from multiple data clients to the cloud,
where deep-learning models are trained from the outsourced
data for disease diagnosis (for example, AD diagnosis), with
three requirements: (1) Data is outsourced to the cloud in a
privacy-preserving form such that raw data about individual
patients will not be leaked even if access to the cloud storage is
compromised. (2) All model training operations are performed
by the cloud. The inference operations (actual diagnosis) may
be performed by the model users if they download the models
from the cloud. The inference accuracy of the models should
be close to the accuracy of the benchmark models trained from
the raw data directly. (3) The privacy-preserving model training
should be efficient (or even comparable to training with raw
data).

C. Threat Model

Compromised cloud. We assume that the cloud cannot be
fully trusted as its admins have access to the data, other internal
threats to the data cannot be ignored, and its storage could
be compromised by an outside adversary. The patient data are
outsourced from the data clients to the cloud in a privacy-
preserving form. Even if an adversary obtains the sourced data,
it should not be able to learn the raw data of individual patients.

Curious clients. Other clients may be curious about learning
the raw data from a target client. If clients must cooperate
in transform their data together in a privacy-preserving form
before outsourcing to the cloud, we must make sure that the
intermediate results of this multi-party computation do not give
any clue to the raw data. If each client independently produces
its outsourced data based entirely on local secrets, then the
threat from curious clients is minimized.

Model poisoning. A malicious client could potentially
poison a deep-learning model with incorrect input. That could
result in the model parameters being erroneously altered and
consequently the model being less accurate.

IV. TRAINING ARTIFICIAL NEURAL NETWORK ON MASKED
DATA

We propose to outsource matrix-masked data from the clients
to the cloud. To motivate for our solution, we give a toy
example. Consider a patient record, which is a vector with a
certain number of attribute values:

z=1[70 18 80 ..],

where the first attribute is the patient’s age in years, the second
attribute is the height in meters, and the third attribute is the
weight in kilograms. If we scale this vector by a random factor
(e.g. a = 5), then the input vector becomes

az = [350 9 400 ..].

On the one hand, the masked patient record does not have
a direct meaning to an adversary that might observe it (e.g.
no human reaches the age of 350 years). On the other hand,
an ANN is able to extract the same features from z or az as

scaling the vector does not change the relationships between
its attributes.

However, for simple scaling, it is often possible for the
adversary to guess the scaling factor a and recover approximate
values of the elements in vector x, particularly when some
attributes are restricted in their value ranges.

We need a more secure way of preserving the relationship
between the attributes and a more robust way against guessing.
Matrix masking provides a solution to this problem. It operates
on many patient records (denoted as X) together, where X
is a matrix whose rows are patient records and columns are
attributes. The multiplication of X by an orthogonal matrix
A, ie., AX, preserves the angles and distances of the column
vectors (attributes) in X between vectors. AX keeps the
first and second moment statistics of X, providing adequate
information for ANN model training. A random orthogonal
matrix alters the values in each patient record, while preserving
the relationship between the attributes. A large orthogonal
matrix is practically impossible to guess as has been proven in
[48] and [49], which showed that large random matrix masking
AX is computationally secure in protecting the privacy of data
X.

We now present how each data client 7 performs random
orthogonal matrix masking to its patient data [X;,y;], before
sending the masked data to the cloud, where X is the matrix
of patient records and y; is the response vector — using
Alzheimer’s disease (AD) as example, for each patient in X,
the corresponding element in y; is zero for non-AD and one
for AD. We stress that data masking is done once by the client
before the masked data is outsourced to the cloud. After that,
the data client is not involved when any data user uses the data
to train an ANN model. Let n; be the number of patient records,
i.e., the number of rows in X;. The process for generating a
random orthogonal matrix A; is as follows: First, using the
Gram-Schmidt process, we find an orthogonal basis B; of the
vector space generated by the vectors we want to keep invariant.
Specifically, we want to keep invariant the vector of y; and the
vector of ones. Hence, B; has two column vectors. We then
randomly generate n; — 2 column vectors, concatenate them
to B; for an n;xn; matrix C;, and perform QR factorization
on C;, which gives us two orthogonal matrices, ()1 and Q2
[36]. We let A; = Q1Q7. Therefore, A; is a matrix that can
perform orthogonal transformations to the patient data [X;, y;]
and also has the properties A;y; = y; and A;1,, = 1,,, where
1,, is a vector of n ones. Note that each client can generate its
own data masking matrix A;. The clients do so independently
of each other.

Each client sends their masked data set [A;X;,y;] to the
cloud, which aggregates them together by stacking them
vertically. For m data clients, the cloud gathers

[A1 X1, 1]
[A2 X5, yo]

[AX,y] = ; (D

[Aanu ym}



where

Al ...... Xl
Ag X2

A= . and X = | | 2
...... A, Xm

Any data user can now use all or a portion of [AX y] to
train an ANN model (such as feed-forward neural networks
in our experiments) in the cloud. For example, one may use
subsets of attributes to build and compare models to learn
each attribute relevance to inference accuracy. After a model
is trained, the user downloads the model and apply it to new
patient records (which are not masked). The user may also
perform privacy-preserving inference in the cloud [17]-[22].

Will the model trained from the masked data be similar to
the model trained from the raw patient data? We provide our
intuition below, with theoretical and experimental results later.
Consider the raw data matrix X; at the ith data client with
n; patient records and the random mean-invariant orthogonal
masking matrix A;. Each row in the masked data M; = A; X},
called a masked record, is a weighted linear sum of all patient
records in X;, where A; specifies the weights — its ith column
specifies the weights for the ith masked record in M;. Every
patient record contributes a share (fraction) of itself to every
masked record. The ith row in A; specifies the shares (fractions)
of the ith patient record in X; that are contributed to the
masked records in M;. Because the sum of each row in A;
is one, all the fractions of a patient record contributed to
M; adds up to its whole. In that sense, M; carries the same
amount of patient information as X; does, albeit in a random
mixed form. When we feed a row vector from M to a neural
network, we are actually feeding n; fractional raw patient
records simultaneously. If the neural network were entirely
linear and treated each input sample independently, we would
see the same model parameters trained either from X, or
from M;. A feed-forward neural network treats input samples
independently, but its activation functions are not linear. Due to
this non-linearity, the model parameters trained from M; may
not be identical to those from X, depending on the choice of
activation function. But they could very well be similar, as our
experiments have clearly suggested.

To guard against model poisoning where a malicious attempts
to poison a deep-learning model with incorrect patient data,
we introduce a data verification mechanism to each client’s
masked data. Consider the masked data M; from an arbitrary
client. First, we build a model with the masked data from all
other clients, and test the model’s accuracy with a test data
set (which could be de-identified raw data from a source that
allows the outsourcing). Second, we build another model with
the masked data from all clients (including M;), and test the
model’s accuracy. If the model with M, is significantly worse
than the model without M;, we reject M.

V. MODEL FROM MASKED DATA V.S. MODEL FROM RAW
DATA

It has been proved in [48], [49] that the masked data
can achieve strong privacy without leaking information about
individual patients in the raw data. More specifically, suppose
an adversary has obtained the masked data M and let X
be a random variable for any raw data that can produce the
masked data. Under certain easy-to-satisfy conditions, the
restricted support of X will be practically intractable and that
its posterior probability density will remain the same as its prior
probability density over the restricted support, which means
that the information learned from the masked data does not
improve the knowledge of the adversary about which possible
values of the patient records are more likely.

Below we show that masking does not significantly change
the utility of the data in ANN model training. More specifically,
we want to show that the ANN model N that is trained with
the raw data is similar to the ANN model N trained with
the masked data. This property comes from the fact that the
difference between the cost functions of N and N is bounded
by a constant, while our experiments will demonstrate that the
bound is tight as the two models perform similarly. The proof
of the theorem below can be found in the appendix.

Theorem V.1. Let X be a full-rank matrix and y be a response
vector in the data set [X,y]. Let A € R"*" be an orthogonal
matrix that satisfies Ay =y and 1T A = 11, where 17 is the
transpose of a vector of n ones. Let C' and C be the cost of the
ANN after feeding the matrix [X,y| and A[X,y], respectively.
Then, the difference of C and C is bounded, i.e., |C — C | <K,
where K is a constant depending on the raw data and the
masking matrix, and | - | is the element-wise absolute value

function.

VI. EXPERIMENTAL EVALUATION

We conduct extensive experiments to compare the accuracy
of a model that has been trained on raw data to the accuracy
of a model that has been trained on masked data. We use
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) data
set [40] and the Parkinson’s Outcome Project (POP) data set
[41]. In this section, we first present the data sets and the
experimental setup, including the experimental method and
the ANN hyper-parameters. Afterwards, we demonstrate the
experimental results for binary classification.

A. Data Sets

We use two separate data sets for the experiments. The first
one is the Alzheimer’s Disease (AD) data set [40], which has
4 attributes in matrix form and MRI images of the brain of the
patients in image form. The 4 attributes in the matrix form are
the following: age in years, gender with O for males and 1 for
females, MMSE score (Mini-Mental State Examination) in the
range [18,30] and APOE (Apolipoprotein E gene) with O for
non-existence of the gene and 1 for existence. The distributions
of the attributes are shown in Figures [I]- @] and the distribution
of the response variable is shown in Figure[5] where AD denotes



Alzheimer’s disease and NL denotes normal cognition. The
MRI images are Axial PD/T2 FSE images of the brain of the
patients as shown in Figures [6] and [7]] We use the min-max
normalization method for this data set as well.

Additionally, we perform experiments on the combination of
matrix and image data of the AD data set. The purpose of this
experiment is to show that our method can work with image
data as well as matrix data and that their combination can

produce a more accurate ANN than each data set separately.

We transform the image data into matrix form before combining
them with the non-image data.
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Fig. 1: The age attribute distribution of the ADNI data set.
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Fig. 2: The APOE attribute distribution of the ADNI data set.

The second data set is based on the Parkinson’s Outcome
Project (POP) [41]]. We have 4908 patients with 13 attributes
extracted from their POP Data Collection Form and we generate
a data matrix, where each patient’s record forms a row with
13 columns. We use the Hoehn and Yahr stage (HYstage) as
the response, which is a categorical variable between 1 and
5, showing how much the disease has progressed. Since we
perform binary classification, we dichotomize this variable by
transforming it into a binary attribute where the response is
0 when the HYStage is 1 or 2 (i.e. mild cases of PD) and
the response is 1 when the HYStage is 3, 4 and 5 (i.e. severe
cases of PD).
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Fig. 3: The MMSE attribute distribution of the ADNI data set.
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Fig. 5: The status distribution of the ADNI data set.

After extracting the response vector, there are 12 attributes,
which are either categorical or numerical. Some of the attributes
are age, sex, ethnicity, disease duration, cognitive score and
others. For each categorical attribute, we transform it into one
or more attributes with binary values (0 or 1) with one-hot
encoding. More specifically, for a categorical attribute with only
2 categories, we transform it into a binary attribute where 0
stands for the first category and 1 stands for the second category;
for a categorical attribute which has more than 2 categories, we



Fig. 7: MRI images of two patients clinically diagnosed with
AD.

transform it into p binary attributes where the i*" attribute is 1
when and only when it belongs in the i*" category. With this
transformation, the 12 attributes are extended to 36 attributes.
It is well known that one-hot encoding can provide better
linearity and improve the network’s accuracy. We observed
higher accuracy by using one-hot encoding as well. Finally,
we use the min-max method to normalize each attribute into
the range [0, 1], which also improves linearity.

We split the data set into two sub-sets, where the first contains
approximately 80% of the data for training and the second
contains 20% of the data for testing. The training data set
contains 3908 rows, from which 1954 have a response of 0
and 1954 have a response of 1. The test data set contains 1000
rows from which 500 have a response of 0 and 500 have a
response of 1.

B. Experimental Method

We use a powerful server equipped with an 8-core CPU at
3.7GHz, 16GB of RAM and a 2080TI GPU, to simulate the
cloud, which can train an ANN model in a timely manner,
due to the powerful GPU. We also simulate several common
desktops to act as the clients. Each client has a training data
set and a testing data set, which are part of the data sets in
Section [VI-Al

In our experiments, we compare the accuracy of the trained
ANN using raw and masked data. We first let the client send
the raw training data to the server and, in turn, the server
returns the raw-trained model to the client, which is denoted

as M. Then, we let the client mask the training data using the
proposed method, send it to the sever and the server returns
the masked-trained model to the client, which is denoted as M.
Finally, we test and compare the accuracy of the two trained
models using the same raw testing data at the client end. The
aforementioned results are presented in Figures [§] and [9] for
the ADNI and PD data sets, respectively.

C. Artificial Neural Network Architecture

We use a basic feed-forward neural network (FFNN) in our
experiments with binary crossentropy loss function. Addition-
ally, we use the "adam optimizer" in keras library of python
as the stochastic gradient descent optimizer for both training
and testing, ReLU as the activation functions for all hidden
layers and sigmoid as the activation function for the output
layer. We run the experiments for 400 epochs and use batch
size of 50. The number of the neurons in each layer depends
on the input vector size. More specifically, the ANN for the
AD data set has three hidden layers. The number of neurons
in each hidden layers is 4 for the non-image data, 117 for the
MRI image data and 121 for their combination. The PD data
set has 36 neurons in each of the three hidden layers. We vary
the number of clients for accuracy comparison under these
settings.

D. Results for Binary Classification

The response vector is binary, that is, it only has values 0
or 1 as explained in Section We vary the number client
machines between 1 and 10 for the AD data set, having 35
patients each. We also vary the number of clients between 1
and 78 for the PD data set, having 50 patients each. From
Figures [8|and [0] we can make two significant observations. First,
the accuracy increases monotonically with the increase of the
number of clients. Second, the accuracy of the masked-trained
model M is comparable to the accuracy of the raw-trained
model M.
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Fig. 8: Model accuracy w.r.t. number of clients in the ADNI
data set.
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E. Results for Attribute Combination

In order to test whether our method works with image data
and with combinations of attributes, we transform the brain
MRI images of the patients into matrices and combine them
with the existing four non-image attributes.

Figure [I0] shows the performance of the ANN models with
the ADNI data set on raw and masked data, without combining
image and non-image data. On the contrary, Figure [IT] shows
the performance of the ANN with the same data set when we
combine the image and matrix data in various configurations.
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Fig. 10: Raw and masked data ANN models without attribute
combination.

F. Run Time of Masking

The masking process requires the generation of a masking
matrix A in each client, which is explained in Section @
This process has the following two elements: 1) perform 2
QR decompositions with complexity O(n?) and 2) perform a
matrix multiplication between the generated random orthogonal
matrix A and the data set [ X, y,.], which has complexity O(n?)

as well. Therefore, the overall complexity of matrix masking
is O(n?).
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Fig. 11: Raw and masked data ANN models with attribute
combination.

Although the runtime is exponential, Figure shows that
for data sets with hundreds or a few thousand records at each
client, the masking operation is negligible compared to the
training operation (e.g. a data set with 500 records requires only
48 milliseconds for mask creation and multiplication without
the use of a GPU). In this experiment, we use mini-batches of
size 50 and 400 epochs.

For larger data sets, the runtime complexity can be reduced
with the use of block-diagonal masks. For example, instead
of creating a 5000 x 5000 masking matrix, we can create 10
matrices of size 500 x 500, place them in the diagonal of the
5000 x 5000 matrix and fill the rest of the elements with zeros,
ie.,

A O 0
0 A 0
A= . .
0 0 Am

That would reduce the masking time of a data set with 5000
records from 11.1 seconds to 0.48 seconds, since we only need
to create 10 matrices of size 500 x 500 and each such mask
takes only 48 milliseconds to create. Note that we used a CPU
for matrix masking and a GPU for ANN training (which is
significantly faster than a CPU). When a CPU is used for both
operations, the masking time becomes even more negligible,
since the ANN training would take considerably longer.

VII. CONCLUSION AND FUTURE WORK

In this paper we presented a new technique for outsourcing
privacy preserving ANN training. We set forth four require-
ments that we believe to be important in order to create a
practical system. Our technique is based on matrix masking,
which performs orthogonal transformations to the data before it
is sent from the clients to the cloud. The cloud trains an ANN
model on the aggregate masked data it has received from the
clients and gives it to all the clients to be used with new raw
data. In this work, we argue theoretically and experimentally
that the accuracy the clients will get from the masked-trained
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ANN model is comparable to the accuracy they would get if
the model was trained on raw data.

In the future, we plan to continue this work by exploring the
capabilities of our technique on image classification (such as
the MNIST data set) and Convolutional Neural Networks. We
also plan to expand our work on regression and unsupervised
learning.
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VIII. APPENDIX

A. Utility Proof

Below we prove Theorem [V.I] presented in Section

Proof: We assume that the cost function used is the binary cross-entropy [51]], which is the most commonly used cost
function in a classification problem. Let a”and a” be the output probabilities of the NN after feeding the raw data X and the
masked data AX, respectively. Then, the formula for the cost of the raw data is given by,

0=y n(@") + (1~ )" (1 — ")
= %1 (yTATAln(aL) + (1 —y)TATAIn(1 - aL))

= %1 (yTAln(aL) +(1—y)TAn(1 — aL)>,

given that the masking matrix A has the property Ay =y, 17A =17, and ATA = I.
Similarly, the cost of the masked data A[X,y] is C' = _—( Tn(al) + (1 — )T In(1 — dL)>.

We need to show that C' and C are close in the sense that the differences between C' and C' are bounded, and thus the
gradient descent algorithm can be implemented to the masked data as well. That is,

|0—0\:\71(TA1n< E)+ (1= )" Aln(1 - ) = y" (") = (1 - )" In(1 - a") )|

= E|yT(A ln(aL) — ln(&L>) + (1 — y)T(A In(1 — aL> ~In(1— dL))|

IN

%(yT|Aln(aL) - ln(&L)| +(1- y)T|Aln(1 — aL) —1In(1 — dL)\),

where | - | is the element-wise absolute value function.

Let My be the initialization of the NN, which can be treated as a function that returns the output probablities given the input
data. We can find a composite function Fy(-) = In(My(-)). In other words, Fy(X) = In(a’) and F}(AX) = In(a”). Similarly,
we can find a function Fy such that F5(X) = In(1 — a) and F3(AX) = In(1 — a%).

Therefore, the inequality can be re-written as |C' — C| < %(yT\AFl(X) - F(AX)|+ (1 —y)T|AR(X) — FQ(AX)I).

For simplicity, we assume that X has only one variable, and F; and F, are a-Hoider continuous, i.e., for « > 0 and
i =1,2,...,n, there exist postive constants K; and K5 such that |F}(X) — F1(4; X)| < K3|X — 4, X|* and |F»(X) —
F5(A4;,.X)| < K3|X — A;. X|“. Note that it is straightforward to extend the results to multivariate cases where X is a matrix.

The bounds are then given below,

|Ai Fi(X) — Fi (A X)) 2:”5 ); — F1(4:.X))|
=
<Y AGIIF(X); — Fi(Ai X))
=

= A |[F1(X) — F1 (A X))|
< Ku|Au||X — A; X7,

where Fy(X); is the j' element in the vector F(X). Note that |4;.| and |X — A; X|* are all available while masking.
Similarly, we have |A; F»(X) — Fo(A;. X)| < Ko A || X — A;. X |~



Thus,

A 1
C—C) < E(yT\Aln(aL) — (@) + (1 — )T |AIn(1 — a%) — In(1 — aL)|)
1
= ~(yTIAFI(X) = Fi(AX)| + (1 = )T|AF(X) = Fy(AX)) )
[ALl[X = ALX " AL|[X — ALX]
1 |A2.||X—A2.X|a |A2||X—A2X‘O‘
= 7(yTK1 : +(1-y) Ko ) )
n : :
1A || X — A X 1A || X — A X

IAL|IX — Ay X
1 | 40.||X — As X|°

= ﬁ(yTKl + (1 - y)TK2) :
An ]| X — A, X7

Therefore, the differences between C' and C are bounded. Also, it has been shown in [|52]] and [53] that the bounds can
be further tightened depending on the properties of F} and Fb, such as convexity, continuity, and so on. In our work, we
demonstrate the tightness through experiments in Section

|

B. Mean Squared Error

In this paper, we used binary crossentropy as our loss function for binary classification. In Figure [I3] below, we show that
our method works with other loss functions, such as the Mean Squared Error (MSE).
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Fig. 13: Model accuracy w.r.t. number of clients in the PD and ADNI data sets, with MSE loss function.
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