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Abstract-Per-ftow counting for big network data streams is 
a fundamental problem in various network applications such as 
traffic monitoring, load balancing, capacity planning, etc. Tradi
tional research focused on designing compact data structures to 
estimate ftow sizes from the beginning of the data stream (i.e., 
land mark window model). However, for many applications, the 
most recent elements of a stream are more significant than those 
arrived long time ago, which gives rise to the sliding window 
model. In this paper, we consider per-ftow counting over the 
sliding window model, and propose two novel solutions, ACE 
and S-ACE. Instead of allocating aseparate data structure for 
each ftow, both solutions utilize the counter sharing idea to 
reduce memory footprint, so they can be implemented in on
chip SRAMs in modern routers to keep up with the line speed. 
ACE has to reset the sliding window periodically to give precise 
estimates, while S-ACE based on a novel segment design can 
achieve persistently accurate estimates. Our extensive simulations 
as weIl as experimental evaluations based on real network traffic 
trace demonstrate that S-ACE can achieve fast processing speed 
and high measurement accuracy even with a very tight memory. 

I. INTRODUCTlON 

Network data streams arise in many applications such as 
high-speed network traffk measurement, Internet data analysis, 
finance, etc [1] , [2] , [3], [4] , [5] , [6]. Per-flow counting 
over big network data stream consisting of numerous flows 
is a fundamental problem. In a general definition, per-flow 
counting is to count the number of elements for each flow, 
or flow size in short. It has many important applications in 
various domains such as load balancing, capacity planning, 
resource fairness , and intrusion detection. To keep up with 
the line speed of modern network devices (e.g., routers), the 
per-flow counting module needs to be implemented in SRAM. 
The Iimited SRAM cannot accommodate numerous flows in 
big network data stream, wh ich poses the major challenge for 
per-flow counting over big network data streams. 

Many approaches [7] , [8], [9], [10], [11] , [12] , [13], [14] , 
[15] have been proposed to estimate flow sizes. Giving one 
counter for each flow requires more memory than the available 
size on SRAM. One important thread of research in this 
area is based on sketch. The representative work incIudes 
count-min sketch [7] , which are typically optirnized and have 
been implemented in hardware. These approaches can mainly 
answer point queries. That is, given a flow label, they can 
provide an estimation for the flow size. Although the memory 
needed to encode each flow has been greatly reduced, when the 
number of flows are extremely large, the memory requirement 
is still very high. To further reduce memory overhead, better 
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alternatives are counter sharing methods [9] , [10], [11] , [13]. In 
particular, [11] leverages a counter sharing mechanism, where 
all flows share a common memory space. Therefore, it can do 
per-flow counting for big network data streams. 

Traditional research focused on estimating flow sizes from 
the beginning of the data stream (i.e. , landmark window mod
el). In the landmark model, given a "landmark" time point, the 
data analysis are only on the data stream which falls between 
the landmark and the current time point. When more and more 
elements pass through the router, the landmark window runs 
out of capacity, and has to reset to zero periodically [16]. 
This is the major dis advantage of this model. For many real
time applications, the most recent elements of a stream are 
more significant than those arrived long time aga [17], [18] , 
wh ich gives rise to the sliding window model. For example, 
an ISP may monitor the data streams to identify the user 
who sends most packets in the last hour. In the counter based 
sliding window model, it removes an expired element as a new 
element arrives, thereby it always maintains the most recent 
W elements in the data stream. This paper mainly focuses on 
per-flow counting under this sliding window model. 

Datar et al. [19] first introduce the sliding window model in 
data streams, and propose an exponential histogram to provide 
approximation for basic counting. Zhu et al. [20] subdivide the 
sliding windows equally into basic windows to facilitate the 
efficient elimination of old data. However, it only provides 
accurate statistics (e.g., Discrete Fourier Transform) when a 
basic window is expired, and cannot give accurate estimate 
when some elements in the oldest basic window are active. 
Arasu et al. [21] study the problem of maintaining counts and 
quantiles over a stream sliding window, and there are some 
work [22], [23] to improve its performance. However, they 
don ' t support constant time point query and need to allocate 
memory dynamically. Typically, they need more memory s
pace than the landmark model, which makes them hard to 
implement in hardware. 

In this paper, we tackle the per-flow counting problem for 
big network data stream over sliding windows. To achieve 
optimal memory efficiency, we adopt the counter sharing idea 
to the sliding window model, and propose two novel per-flow 
counting schemes, ACE and S-ACE. The memory overhead of 
ACE and S-ACE is the same as randomized counter sharing in 
[11], wh ich is very compact for hardware implementation in 
routers. For ACE, we propose an aging algorithm to elirninate 
one element as a new element comes. It is simple and efficient, 
but requires resetting the sliding window periodically to give 
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Fig. 1: An example of sliding windows with W = 3. 

accurate ftow size estimates. To achieve persistently accurate 
per-ftow counting without periodical sliding window resetting, 
we propose a novel segment window design in the advanced 
S-ACE scheme. S-ACE achieves the optimal processing speed, 
two memory accesses to encode one element. Our extensive 
simulations as weil as experimental evaluations based on real 
network traffic trace demonstrate that S-ACE can work in very 
tight memory space with high accuracy. 

11. PRELIMINARIES 

A. Network Data Stream and Sliding Windows 

We consider a network data stream S as a time ordered 
series of elements (eo , el, e2, ... ei, ' .. ), where the subscript 
is the arriving sequence order index, called time point. For 
example, the element e i is passing by the router at time point 
i. Each element is associated with a ftow label f. A ftow f 
consists of the elements with the same ftow label f. The ftow 
label can be ftexibly defined depending on application context. 
For example, the ftow label can be source address, destination 
address or other user-defined ftow identifiers. 

A sIiding window [20] over a network da ta stream S is a 
multi-set of last W elements of the stream passed by so far, 
where the nonnegative integer W is called its window size. 
Therefore, given the length of the sliding window Wand 
the current time point t (i.e., when the element et arrived), 
the sliding window maintains the most recent W elements 
in S, (emax{O,t-W+I} , "" et ), which can be denoted by 
Win(t , W). An example ofsliding windows with window size 
W = 3 for a network data stream is illustrated in Fig. 1. 

B. Problem Statement 

The problem we tackle in this paper is the per-ftow trafik 
measurement over sliding windows. At any time point t, we 
need to maintain a data structure for the last W elements 
Win(t , W) over a network data stream S. Given ftow f , the 
data structure can be used to return the estimated ftow size of 
f (i.e., the number of elements with ftow label f) in the sliding 
window Win(t , W). The goal is to minimize the memory 
requirement in such continuous computation, as weil as to keep 
up with the high-speed network data stream processing in real 
time. 

Clearly, we are only interested in the recent past. It is 
desirable if we can remove the elements outside a sliding 
window. On the one hand, as the network data in a sliding 
window continuously change as new elements arrive, it is 
infeasible to remove the exact outdated elements without using 
aspace of O(W) . Therefore, one major challenge is to develop 
a space-efficient technique to continuously summarize a data 
stream in the sliding window model. On the other hand, when 

the data stream over the sIiding window is summarized, we 
lose the temporal information related to the expired elements, 
wh ich causes the accuracy problem. Hence, the other challenge 
is to measure per-ftow size over sliding windows with high 
approximate accuracy. 

C. Randomized Counter Sharing 

For network data streams, Li et al. [11] proposed an effi
cient per-ftow traffic measurement scheme called randomized 
counter sharing. This sc he me leverages a counter sharing 
mechanism, wh ich is illustrated in Fig. 2. Each ftow randomly 
picks a number of counters from the physical counter array 
to form its virtual counter. When recoding an element of a 
particular ftow, it randomly maps to a counter of the ftow 's 
virtual counter, and increases the counter by one. To estimate 
the size of a ftow, it first adds up the values of the counters that 
the ftow is mapped to, and then removes the noise introduced 
by other ftows. Since the virtual counters of all ftows share 
the same counter pool (physical counter array), large ftows 
can 'borrow' memory from small ftows to utilize the available 
counter bits. This scheme [11] can achieve reasonably accurate 
results for per-ftow size estimation even under very tight 
memory space. 

Virtual Counter 1 Virtual Counter 2 Virtual Counter 3 

tSKtlZ/Z I_~ I~I_I 
Physical Counter Array 

Fig. 2: An illustration of counter sharing. 

This randomized counter sharing scheme works perfectly 
over the landmark window model, wh ich maintains all ele
ments in the network data stream seen so far. However, in 
the sIiding window model that we consider in this paper, only 
the last W elements are of interest. The actual contents of 
most recent W elements change because the oldest element is 
removed when a new element arrives. This makes the existing 
per-ftow traffic measurement based on a whole data stream not 
trivially appIicable. 

111. AGING COUNTER ESTIMATION OVER SLIDING 

WINDOWS 

In this section, we adopt randomized counter sharing to 
the sliding window model, and propose an Aging Counter 
Estimation (ACE) scheme to measure per-ftow traffic over 
sIiding windows. In our ACE scheme, when a new element 
arrives, to maintain the most recent W elements in the sliding 
window, we first process an aging algorithm in the previous 
window, wh ich tries to remove the oldest element, and then 
encode the new element as described in randornized counter 
sharing. Below we describe the ACE scheme in detail. 

ACE includes an online operation module and a real time 
estimation module. The online operation module records the 
data stream over sliding window to the physical counter array, 
while the real time estimation module answers queries of ftow 
sizes based on data recorded from the onIine operation module. 
We first give our data structure design. 



A. Virtual Aging Counter 

The ftow size information over sliding window is stored in 
an aging counter array C of m counters. The ith counter in C 
is denoted by C [i], 0 ::; i < m. Suppose the total memory size 
of C is M bits, and the size of each counter is b bits. Then 
the number of counters in C is m = l ~ J. 

Each ftow is allocated a virtual aging counter consisting of s 
counters to record the elements of the flow. Those virtual aging 
counters share a common aging counter array C. Specifically, 
consider an arbitrary flow f , we pseudo-randomly select s 
counters [rom C to form a virtual aging counter, denoted as 
Cf, where the ith counter in Cf is denoted by Cf [i], 0 ::; 
i < s. According to the randomized counter sharing [11] , one 
possible approach to form Cf from C using one master hash 
function is as folIows, 

Cf [i] = C [H(f EB R [i]) mod m ], 0 ::; i < s, (1) 

where EB is the XOR operator and R is an array of s random 
constants. Through this, we can construct a virtual aging 
counter for each ftow from the same counter pool C. Note 
that the aging counter array C and virtual aging counter Cf 
are denoted by C t and C} at time point t, respectively. 

B. Online Operation 

When an element et arrives at time point t , the router takes 
two steps to process the new element, an aging step and 
an encoding step. The aging step tries to remove the oldest 
element in the previous window at time point t - 1, and the 
encoding step records the new element et in C to form the 
current win~ The window after online ~ation of et is 
denoted as Win(t, W). We point out that Win(t, W) can be 
slightly different from the real window Win(t , W) due to the 
approximate deletion in the aging step. 

1) Aging Step: The elements in the network data stream 
arrive continuously and expire after exactly W steps. There
fore, when the total number of elements in the window is less 
than W (i.e., t < W), no element is expired in the window 
such that the aging step is not needed. When t ~ W, a new 
coming element causes one expired element, wh ich should be 
removed from the current window. However, as we cannot 
store the information about the arrival order of elements due 
to memory limitation, exactly removing the outdated element 
is not applicable. Hence, probabilistic deletion is the only 
viable choice. A straightforward aging algorithm is to let the 
router randomly delete one element in Wi;i(t - 1, W) such 
that every element in this window has the same probability 
to be removed. However, since all elements are recorded in 
the compact aging counter array C, equal probability deletion 
will cause more memory accesses, wh ich is not applicable. 
For example, one way is to generate a random index i in 
[0, W), and delete the i-th element in the counter array C. 
However, in order to find this element in the counter array 
C, we need to traverse C, which causes O(m) memory 
accesses. Although some other algorithms may improve this 
performance, the memory access overhead will still be high. 
To achieve more efficient probabilistic deletion, we propose 
a very simple aging algorithm with 0(1) memory access as 

illustrated in Algorithm 1. It randomly picks a counter in C 
and decreases it by one if applicable. 

Aigorithm 1 Aging Algorithm 

Input: aging counter array C t - 1 wh ich records Wi;i( t - 1, W) 
Result: delete one element in Ct - 1 

1: isDeleted = false; 
2: while isDeleted = false do 
3: select a counter Ct - 1 [r] uniformly at random; 
4: if Ct - 1 [r] > 0 then 
5: C t - 1 [r] = C t - 1 [r]- 1; 
6: isDeleted = true; 
7: end if 
8: end while 

2) Encoding Step: After removing one element from the 
previous window ~(t - 1, W), the router then encodes the 
new corning element et as folIows. It first extracts its flow 
label f, generates a random integer q to select a counter Cf [q 
mod s] from flow I's virtual aging counter Cf, and increases 
it by one. Hence, 

(2) 

where p = H(f EB R [q mod s]) mod m. Therefore, with one 
deletion and one insertion, the counter array Ct maintains the 
new sliding window Wi;i(t, W) with fixed size W. 

C. Real Time Flow Size Estimation 

To answer the size of ftow f in the sliding window under 
query at time point t, similar to the randomized counter sharing 
scheme in [11], we first add up the values of its virtual aging 
counter Cf, and then remove the noise introduced by other 
ftows from the sum 2::~~ C} [i]. Let nt be the actual size of 
ftow f at time point t, and nt be the estimated ftow size. Due to 
counter sharing, each element of other ftows has a probability 
of 2.. to be encoded in one of the s counters in ftow I's virtual 

m t 

aging counter, thereby the expected noise in Cf is 8(W ~n ) ~ 
8W (nt « W). Hence we have n t ~ ,,",8-1 c t [i] - 8W and 
m ' L... ,=o f m ' 

the estimated size nt of ftow f at time point t is 

8- 1 

At _ "'"' C t [ ' ] sW n - ~ fZ - -. 

i=O m 

D. ACE Performance Analysis 

(3) 

When t < W, the sliding window is equivalent to the 
landmark window, thereby ACE is the same as the randomized 
counter sharing scheme, which can provide accurate esti
mations even with tight memory space. Therefore, we only 
analyze the ACE performance for t ~ W when the aging step 
is involved. 

Consider an arbitrary ftow f. Let I~ be the indicator of 
whether the arrival element et is recorded in the virtual aging 
counter Cf, and I} be the indicator of whether the deleted 
element in the aging step belongs to Cf. Recall that, in the 
online operation module of ACE, upon the arrival of et, we 



delete one element in W"i;i(t - 1, W) in the aging step, and 
record et in C t in the encoding step. Therefore, we have 

8- 1 8- 1 

L Ci [i ] = L C}- I [i ] + I'x - I~. (4) 
i=O i=O 

At the time point t - 1, by (3), the estimated ftow size of f is 

(5) 

Combining (3) (4) (5), we have 

fI/ - fit - 1 = I'x - I~. (6) 

Let I~ be the indicator of whether the new coming element 
et belongs to ftow f, and I~ be the indicator of whether the 
expired element at time point t comes from ftow f. Hence, we 
have 

(7) 

According to Algorithm 1, every counter has almost the 
same probability ~ to be selected in the aging step (the 
probability for a counter with zero value is very small). Hence, 
the probability for I~ = 1 is 

IP' (I~ = 1) = ~. (8) 
m 

With regard to the indicator I 'x , if et E f (i .e. , I~ = 1), the 
element will be encoded in Cf· Otherwise, if et rf:- f (i.e., 
I~ = 0), due to counter sharing, the element can be mapped 
to Cf with a probability -!n. So the probability of I'x = 1 is 

t t S t lP'(Ix = 1) = lP' (Ia = 1) + - 1P'(Ia = 0) 
m 

( S ) t S 
= 1 - m lP'(Ia = 1) + m' 

(9) 

Combining (6) (8) (9), the expectation value of fit - fit- l is 

E(fit - fit- I) = E(I'x ) - E(I~) 

=1P'(I'x = 1) -IP'(I~ = 1) (10) 

=E(I~) - ~E(I~). 
m 

And the expectation value of nt - nt - 1 is 

E(nt - nt- I) = E(I~) - E(I~ ). (11) 

Therefore, we have 

E(nt - nt- I) - E(fit - fit - I) = ~E(I~) - E(I~ ). (12) 
m 

We find the estimated ftow sizes form a Markov chain. 
From the equation above, when deriving fit from fit - I, the 
ACE scheme will introduce a small error. For example, when 
E(I~) = E(I~ ) such that E(fit - fit- I) > E(nt - nt- I), 
the estimates will have positive bias. Therefore, the estimation 
accuracy of ACE decreases when t increases. It may work fine 
when t is slightly larger than W. However, as t becomes large 
(e.g., t > 2W), the sliding window accumulates many expired 
elements, wh ich introduces more noise in the size estimation, 
and makes ACE no longer accurate. This trend can also be 
observed in the simulation results in Section V. 

One way to solve this problem is to reset the measurement 
window after aperiod of time T (T > W). However, when 
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Fig. 3: An illustration of segment window design. 

T is set too small (slightly larger than W), the window is 
reset too often such that the sliding window model is broken. 
If we choose a large T, then ACE cannot provide accurate 
estimations in the end. Hence, the challenge is how to maintain 
the sliding window model and provide persistently accurate 
ftow size estimates for real time queries. 

IV. S EGMENT AGING COUNTER ESTlMATlON OV ER 

SLIDING WINDOWS 

A. Segment Design 

The previous design using one data synopsis (one aging 
counter array C) drops the order information of all elements, 
thereby it cannot provide persistently accurate ftow size esti
mates in the sliding window model. In this section, we propose 
a novel segment design as illustrated in Fig. 3, where we 
use multiple da ta synopses to store the elements arriving in 
different window segments. This design maintains the relative 
order between the window segments with their data synopses. 
For example, the elements in left window segments arrived 
earlier than those in the right window segments in Fig. 3. 

Even though we still cannot distinguish the order within 
each window segment, this design significantly improves the 
probability to delete the correct outdated elements. The idea is 
to always insert new element in the newest window segment 
called "head segment", and delete old element in the oldest 
window segment called "taU segment". For example, suppose 
the number of segments is 100. Since the expired element must 
be in the tail segment, we can filter out at least 99% elements 
in the current sliding window. Moreover, when all elements 
in the tail segment are expired, a new segment window is 
fully constructed as the new head segment and no aging error 
exists. We reach a time point that all elements in the current 
sliding window are correct and the reset happens automatically 
without breaking the sliding window model. Therefore, this 
design can provide persistently accurate ftow size estimates 
for real time queries. 

However, there are still some technical challenges in making 
our segment design usable. For example, when a new element 
arrives, how do we perform the aging step in the tail segment 
and the encoding step in the head segment? How to answer 
per-ftow counting queries in real time? In fact, since these 
segment windows and data synopses are separate in data 
structure, it is still unclear whether or not we can combine 
them to do the per-ftow counting. Another challenge is how 
to design an efficient data structure to recyc1e the memory 
without allocating new memory for each new segment. When 
all elements in a segment are expired, we don't want to simply 



8[0] n 8[1] n 8[2] ~ ''' Q 8[l] ) 
TaU 

e··~;~~::::X'~'· 
Head 

8[0] n 8[1] n 8[2] ~ ''' Q 8[/] ) 
Head TaU et =W+2W/l'1 

~.w_w __ w.ww •• _w •• w.w_ ••• 

t= W+2W/l 

8[0] n 8[1] n 8[2] ~ .. . Q 8[/] ) 
Head TaU 

Fig. 4: An example of memory reuse. 

delete it as we might be able to reuse it to store new coming 
elements. To answer these questions, we propose our advanced 
Segment Aging Counter Estimation (S-ACE) scheme. Below 
we first give our data structure with segment design. 

B. Segment Aging Counter 

The physical aging counter B is divided into (Z + 1) 
segments, each of wh ich is called a segment aging counter. 
The ith segment is denoted as B [i ], 0 :s; i :s; Z. Suppose the 
size of B is M and each counter is allocated with b bits, then 
each segment has m' = l b(J~l) J counters. The jth counter 
in B [i ] is denoted as B [i ][j j,O :s; j < m'. Note that every 
segment is one data synopsis of the data stream in a window 
segment, which contains exact '1' elements except for the head 
segment and the tail segment when t ?: W. This is because the 
tail segment is eliminating the oldest elements and the head 
segment is under construction with newest elements. But the 
sum of the elements in these two segments is also '1', thereby 
the total number of elements in the sIiding window is W. 

Each segment aging counter encodes the data of a window 
segment, and its data structure is presented in Section III-A. 
Consider an arbitrary flow f constructing its virtual aging 
counter Bf [i ] in the ith segment B [i ], 0 :s; i :s; Z, wh ich 
contains s counters. We pseudo-randomly select s counters 
from B [i ] to form it. The j-th counter of Bf [i ], denoted as 
Bf [i ][j ], is chosen from segment B [i ] as folIows, 

Bf [i ][j ] = B [i ][H(f EB R[i ][j]) mod m'], O:S; j < s , (13) 

where R is a two dimensional array of (Z + 1) x s random 
constants. Note that the segment aging counter B [i ] and virtual 
segment aging counter Bf [i ] for flow f are denoted by Bt [i ] 
and B} [i] at time point t, respectively. 

Now, we discuss how to reuse these (Z + 1) segments to 
continuously record elements without allocating extra memory 
for new segment. Generally, when the current head segment is 
full (recorded '1' elements), for the new coming elements, we 
need a new segment, wh ich becomes the new head segment. 
If we allocate new memory space for the new segment, 
the memory overhead will increase over time, wh ich is not 
acceptable. Recall that the elements in the tail segment are all 
expired when the head segment is full. Hence, we can reset 
the tail segment, and reuse it as the new head segment. In this 
case, the previous second oldest segment becomes the new tail 
segment. Mathematically, we can calculate that, at time point 

t, the segment aging counter index H of the head segment is 

t 
H = W/Z mod (Z + 1), 

and the index T of the tail segment is 

T _ {O 
- (vJ/1 + 1) mod (Z + l) 

t< W, 

t?: W. 

(14) 

(15) 

An example of memory reuse is illustrated in Fig. 4. When 
t < W + '1' - 1, the tail segment is always B [O], and the head 
segment keeps moving forward to fill up window segments 
as new elements come. When t = W + '1' - 1, the element 
eW+ .!±:. - l is recorded in the head segment B [Z], wh ich means 

J. 

that B [Z] is full, and the tail segment B [O] is expired. We 
can reset B [O], and reuse it as the new head segment. Then 
B [l ] becomes the new tail segment. When the element ew+ .!±:. 

comes, it will be recorded in the new head segment B [O]. 
Following this memory recycle design, we can continuously 
record elements using only (Z + 1) segment aging counters. 

C. Online Operation 

When an element et arrives, the router takes a "virtual" 
aging step and an encoding step to process the new element. 
The "virtual" aging step is actually an no-op for our S
ACE scheme, wh ich virtually deletes an element from the tail 
segment (we will explain shortly), while the onIine step inserts 
the new element into the head segment. 

1) "Virtual" Aging Step: Clearly, when t < W, no aging 
step is needed. Below we only consider t ?: W. After 
recording W elements, the first Z segments are full, and each 
of them stores '1' elements. Note that S-ACE always operates 
the aging step in the tail segment and the encoding step in the 
head segment. Since the two segments are stored in separate 
data structures, the aging step and the encoding step won't 
interfere with each other. This motivates us to design a new 
aging algorithm called "proportional aging". 

The basic idea is that, when an element is to be deleted 
from the tail segment B [T ], instead of decreasing a cer
tain counter in B [T ] by one, we proportionally decrease all 
counters in B [T ] by a fraction of one. More specifically, 
Bt [T][j ] = Bt- l [T][j ] - Bt -~~~][jl, 0 :s; j < m'. Intuitively, 
the tail segment contains the distribution information of the 
elements inserted to this window segment, so when we delete 
elements from it, it is natural to preserve this distribution by 
proportionally decreasing the values of all the counters in it. 

We stress that we don't actually perform this aging operation 
on the tail segment. Instead, we keep the tail segment the 
way it is, like a "snapshot". This snapshot carries the element 
insert distribution, and can be used to perform a logical batch 
aging in the flow size estimation module in Section IV-D. The 
reason is that, the segment design allows us to calculate the 
number of elements in the head segment at time point t , nH = 
(t + 1) mod ('1'), wh ich is exactly the number of elements 
to be deleted in the tail segment. In the estimation module, 
we just need to deduct each counter value in the tail segment 
snapshot (i.e., B t [T ][j]) by its proportion value BtX}Fl times 
the total delete number nH to get the actual counter value. 



2) Encoding Step: With aging step being no-op, encoding 
becomes the only online operation. When a new element et 
arrives, the router inserts it to the head segment. The router first 
extracts its ftow label f , generates a random integer Q E [0, s) 
to select a counter of ftow 1's virtual aging counter Bf[H ] in 
the head segment B [H ], and increases it by one. Hence, 

B} [H ][Q] = Bj- l [H ][Q] + 1, (16) 

where H is given by (14). 
When t ~ Wand (t + 1) mod ('j) = 0, the router resets 

the tail segment B [T ], where T is given by (15), since all 
elements in this segment window are expired. 

D. Real Time Flow Size Estimation 

To answer the size of a ftow f in the sliding window under 
query at time point t, similar to ACE, we first add up the 
values of its virtual segment aging counters in all segments, 
and then subtract the noise introduced by other ftows and 
the proportional expired elements n e in B} from the sum 

L~=o L;:~ B} [i ][j ]. Clearly, the expected noise in B} is 

8(W,;,n t
) , since in each window segment, each element of other 

ftows has a probability of ~, to be encoded in one of the 
s counters in B}. In addition, according to our proportional 

. 1 . h . ,\,8 - 1 ((H l) mod (lf))xB}[T ][j ] Th 
agmg a gont m, n e 1S L-j= O W / l . ere-
fore, we have 

1 8 - 1 (W t) 
nt ~ LLB} [i ][j ]- s ;:;n 

i=O j = O 

8 - 1 ((t + 1) mod ('j)) xB} [T ][j ] - L --'---------W---"/ l----'----'-----
j = O 

Hence, the estimated size nt of ftow f at time point t is 

, 1 8 - 1 W 
At m LL t [.][.] s n = --- B f 2 J - --

m' - s m' - s 
i=O j = O 

_ lm'((t + 1) mod (lf)) ~ t [ ][ '] 
(m' _ s) W ~ B f T J . 

) = 0 

E. S-ACE Peiformance Analysis 

(17) 

(18) 

When t < W or (t + 1) mod ('j) = 0, our S-ACE scheme 
is similar with randomized counter sharing scheme. Without 
loss of generality, we only analyze the S-ACE performance 
when W < t + 1< (W + 'j). Consider the ftow f. Let riff 
be the indicator of whether the arrival element et is recorded 
in the virtual aging counter vector Bf [H ] of ftow f. At the 
time point t - 1, the estimated ftow size of f is 

, 1 8 - 1 W 
nt- 1 = ~ "'''' B t - 1 [i ][j ] _ _ s_ 

m' - s ~ ~ f m' - s 
i=O j = O 

_ lm'(t mod ('j)) L8 -
1 t- l [ ][ '] 

() B f TJ. m' - s W 
j = O 

(19) 

Note that the new element et will be encoded in the head 
segment B [H ], the counters in other segment remain the same 

value. That is Bj- l [i] = BJ [i], i E [0, l ], i i- H . Combining 

(18) with W < t < (W + T)' we have 

, l' 8- 1 

nt _ nt- 1 = ~It _ m '" B t [T ][j ]. (20) 
m' - s X ff (m' - s)W ~ f 

) = 0 

Let n~ be the total number of elements in ftow f encoded 
in the tail segment at time point t. Due to counter sharing, we 
have 

8- 1 

E(LB} [T ][j]) = n~ + ~,(~ - n~), (21) 
j = O 

where ~, ('j - n~) is expected noise in B} [T]. Recall that I~ 
is the indicator of whether the new coming element et belongs 
to ftow f. By (9), the prob ability of IL, = 1 is 

t t s t 
lP' (IXH = 1) = lP'(I", = 1) + m, lP'(I", = 0) 

( s) t s = 1 - - lP'(I = 1) + -. 
m' '" m' 

Therefore, the expected value of nt - nt - 1 is 

E(nt _ nt- I) 

(22) 

, lm' 8 - 1 

= mr:"- sE(IiH ) - (m' _ s)WE(LB} [T ][j]) (23) 
j = O 

( t ) l t ( t ) l t = lP' I", = 1 - W nT = E I", - W nT' 

Recall that I~ is the indicator of whether the expired element 
at time point t comes from ftow f. The expectation value of 
nt - nt - 1 is 

E(nt - nt- I) = E(I~) - E(I~). (24) 

when deriving nt from nt- I , S-ACE will introduce some 
error. But when the arriving order of elements from each ftow 
is evenly distributed, the probability for an element of ftow f 
to be expired is l~. So the error will be very smalI, wh ich 
will be demonstrated in the simulation results in Section V. 
Moreover, When t ~ Wand (t + 1) mod ('j) = 0, we reset 
the tail segment since all elements in this segment window 
are expired. The current window Wi;i( t , W) is the same as 
real window Win(t, W) such that S-ACE can provide accurate 
estimates as [11] in the landmark window model. In summary, 
this design can provide persistent accurate ftow size estimates 
for real time queries. 

V. SIMULATION STUDlES 

In this section, we present simulation studies that justify the 
performance analysis of ACE and S-ACE. We compare both 
schemes in terms of processing time, memory efficiency and 
estimation accuracy over the simulated data. 

A. Peiformance Metries 

We employ the following three metrics same as [13] to 
evaluate the performance of a per-ftow counting scheme for 
network data streams. 

Processing time: The average time required for encoding 
an element. It is measured by the average number of memory 
accesses and the number of hash value computations as in [13]. 



Memory requirement: The memory overhead to achieve 
reasonable estimation results for per-flow traffle measurement. 

Estimation accuracy: We evaluate the estimation accuracy 
by the relative bias Bias( f!) and relative standard error , n 
StdErr(~) as [13]: 

fi fi 
Bias(-) = E(-) - 1, 

n n 

StdErr( "2) = J V ar( "2) = JV ar( fi) . 
n n n 

(25) 

B. Simulation Setup 

The dataset we use to evaluate our schemes is 20 simulated 
traces of 107 elements, generated with a Zipf distribution [24] 
of skew 1, over a domain of 106 possible flows. We refer to this 
dataset as Zipf-i. Hence, the simulation has 20 repeated runs, 
and we provide the mean results over these runs. The window 
size W in all simulations is 106 . We measure the network data 
stream among 2 windows. We skip the first window where all 
algorithms based on landmark window model can work fine, 
and focus on the performance when t ?: W, where the sliding 
window model is working. 

We run two simulation sets to evaluate our schemes. The 
first set of our simulations is used to compare ACE and S
ACE. We allocate the same size of memory for both schemes, 
and evaluate the impact of memory size on their performance. 
We vary the available memory space M from 0.5MB, 1MB to 
2MB. For ACE, according to randomized counter sharing [11], 
we set the size s of the virtual aging counter of each flow to 
100. For S-ACE, we set the number of segment windows to 
l + 1 = 101, and the size s of virtual aging counter in each 
segment to 16. The second set of our simulations evaluates 
the impact of the aging step in S-ACE with regard to the 
measurement accuracy. 

C. S-ACE v.s. ACE 

1) Processing Time: We first compare ACE and S-ACE in 
terms of processing time. In each simulation run, we record the 
average number of memory accesses and hash computations 
for maintaining the sliding window when a new element 
comes. The average results of 20 runs are presented in Table I. 
Both schemes only need 1 hash computation for each packet 
to locate its corresponding counter. In addition, due to the 
aging step, ACE needs more than 3 memory accesses in 
online operation. By contrast, S-ACE only requires 2 memory 
accesses. Moreover, the average number of memory accesses 
of ACE decreases when the memory space is reduced. This 
is because ACE has less probability to hit counter with value 
zero in the aging step when less memory are available. Clearly, 
S-ACE is more efficient than ACE in terms of processing time. 

2) Memory Overhead and Estimation Accuracy: We com
pare the estimation accuracy of ACE and S-ACE under dif
ferent available memory space with regard to the relative bias 
and relative standard error. Because there are too few flows 
for some flow sizes, we compute the relative bias and relative 
standard error by dividing the flow size axis into measurement 
bins. 

TABLE I: Comparison of processing time by ACE and S-ACE. 

memory overhead 
(MB) 

0.25 
0.5 
1 
2 

number of 
memory accesses 

ACE S-ACE 

3.55 2 
4.18 2 
5.45 2 
7.98 2 

number of 
hash computaions 

ACE S-ACE 

We first study the estimation accuracy of ACE. The relative 
bias and relative standard error of ACE are presented in 
Figure 5 and Figure 6, respectively. Each figure contains 3 
plots, whose available memory ranges from 0.5MB, 1MB to 
2MB, from left to right. In each plot, the x-coordinate is the 
true flow size n, y-coordinate is the time point t, and the z
coordinate is the relative bias in Figure 5 or relative standard 
error in Figure 6. When M = 0.5MB, the simulation results 
are shown in Figure 5a and Figure 6a. We can see that the 
relative bias and relative standard error increase as the time 
point t grows. Hence, the ACE scheme can only work for a 
limited time, as it yields non-reasonable estimates when t is 
large (e.g., t = 2W). The same trends are observed in other 
plots. Although the ACE scheme becomes more accurate when 
the available memory space increases, it still cannot work weIl 
as t increases. 

The simulation results of S-ACE are presented in Figure 7 
and Figure 8. When t = W (no element is expired), S-ACE 
can provide accurate estimates for all flows even under a tight 
memory space, e.g. , M = 0.5MB. Moreover, as illustrated in 
Figure 7a and Figure 8a, as time passes by, the relative bias 
and relative standard error are stabilized, and S-ACE yields 
accurate measurement. Hence, S-ACE can work persistently 
well in sliding window model. Also, when M increases, S
ACE gives more accurate estimates. 

In smmnary, the ACE scheme can only work for short 
term traffle measurement over sliding window model. As 
mentioned before, it needs to reset the time point to 0 when 
it can no longer provide accurate results, such that the sliding 
window model is broken. By contrast, the S-ACE scheme 
performs persistently weIl, thereby it suites for long term traffle 
measurement over the sliding window model. 

D. Aging Step in S-ACE 

Our segment design maintains the relative order between 
the window segments. When a new window segment is fully 
constructed by ~ elements, we simply remove the expired 
window segment without error since all elements in the seg
ment are expired. However, when the new window segment 
is under construct (less than ~ is encoded), the aging step is 
proportionally approximated. 

We use simulations to justify this approximation within 
the window segment. We set the memory space to 1MB, the 
number of segment windows to 101, and the size s of virtual 
counter vector in each segment to 16. Each segment window 
contains up to 104 elements. We sampie the S-ACE estimations 
each time when 2000 elements are recorded, and compute their 
estimation bias and error. Therefore, the sampies are divided 
to 5 categories with 0%, 20%, 40%, 60% and 80% expired 
elements in the segment, wh ich are denoted by 0% aging, 
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20% aging, 40% aging, 60% aging and 80% aging. Note that 
100% aging percentage is equivalent to the case of 0% aging 
percentage. 

The relative bias and relative standard error of these cat
egories with different aging percentages are presented in 
Figure 9 and Figure 10. From the figures, one can see that 
the estimation accuracy stays roughly the same no matter how 
much the aging percentage is, and the aging process in S-ACE 
does not introduce much error when the number of segment 
windows is large (e.g., 101). 

VI. EXPERIME NTAL EVALUATION 

We now evaluate the S-ACE scheme based on real network 
data stream. The data we use is the CAIDA anonymized 

Internet Trace 2015 [25], wh ich contains 30.106 packets. The 
parameters are set as folIows: W = 106 , M = 1MB, I = 100, 
and s = 16. 

The estimation resuIts in short time interval and long time 
interval are given in Figure 11 and Figure 12, respectively. 
Each figure incIudes 5 plots, each representing the per-flow 
counting results in a different time point t. Each point in each 
plot represents a flow. Its x-coordinate is the actual flow size 
n, and y-coordinate is the estimated flow size n. The equality 
line (y = x ) is given for reference. The closer a point is to 
the equality line, the more accurate the estimation iso Clearly, 
S-ACE provides very accurate estimates in both situations. 

We then study the real time query on the real data stream. 
We query 3 flows in the time point interval from 107 to 
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1.1 X 107 . The corresponding results are illustrated in Fig
ure l3. Take a ftow with source address 192.205.38.168 and 
destination address 133.32.39.30 as an example. The results of 
this ftow are shown in the first plot. The true size increases as t 
grows. The estimates of S-ACE has the same trend with small 
estimation errors. Similarly, the estimated ftow sizes closely 
follow their actual sizes for the other two ftows, as shown in the 
second plot (source address 100.120.47.9, destination address 
215.158.65.254) and third plot (source address 30.196.59.77, 
destination address 92.168.216.18). We find that the relative 
standard errors for small ftows are relatively higher, but S
ACE is still useful since the absolute errors for small ftows 
are much smaller than those of large ones. 

VII. CONCLUSION 

In this paper, we propose two schemes, ACE and S-ACE, 
for per-ftow counting in big network data stream over the 
sliding window model. Both schemes leverage the counter 
sharing idea, and greatly reduce the memory overhead. ACE 
has to reset the window periodically to give precise estimates, 
while S-ACE can achieve persistently accurate estimates via a 
novel segment window design. Extensive simulations as weIl 
as experimental evaluations based on real network trace data 
demonstrate the superior performance of S-ACE. 
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