
Per-flow Counting for Big Network Data Stream
over Sliding Windows

You Zhout Yian ZhouH Shigang Chent Youlin Zhangt

tDepartment of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, USA
+Google Inc., 1600 Amphitheatre Parkway, Mountain View, CA, USA

Email: youzhou@cise.ufl.edu yianzhou@google.com sgchen@cise.ufl.edu youlin@cise.ufl.edu

Abstract-Per-ftow counting for big network data streams is
a fundamental problem in various network applications such as
traffic monitoring, load balancing, capacity planning, etc. Tradi
tional research focused on designing compact data structures to
estimate ftow sizes from the beginning of the data stream (i.e.,
land mark window model). However, for many applications, the
most recent elements of a stream are more significant than those
arrived long time ago, which gives rise to the sliding window
model. In this paper, we consider per-ftow counting over the
sliding window model, and propose two novel solutions, ACE
and S-ACE. Instead of allocating aseparate data structure for
each ftow, both solutions utilize the counter sharing idea to
reduce memory footprint, so they can be implemented in on
chip SRAMs in modern routers to keep up with the line speed.
ACE has to reset the sliding window periodically to give precise
estimates, while S-ACE based on a novel segment design can
achieve persistently accurate estimates. Our extensive simulations
as weIl as experimental evaluations based on real network traffic
trace demonstrate that S-ACE can achieve fast processing speed
and high measurement accuracy even with a very tight memory.

I. INTRODUCTlON

Network data streams arise in many applications such as
high-speed network traffk measurement, Internet data analysis,
finance, etc [1] , [2] , [3], [4] , [5] , [6]. Per-flow counting
over big network data stream consisting of numerous flows
is a fundamental problem. In a general definition, per-flow
counting is to count the number of elements for each flow,
or flow size in short. It has many important applications in
various domains such as load balancing, capacity planning,
resource fairness , and intrusion detection. To keep up with
the line speed of modern network devices (e.g., routers), the
per-flow counting module needs to be implemented in SRAM.
The Iimited SRAM cannot accommodate numerous flows in
big network data stream, wh ich poses the major challenge for
per-flow counting over big network data streams.

Many approaches [7] , [8], [9], [10], [11] , [12] , [13], [14] ,
[15] have been proposed to estimate flow sizes. Giving one
counter for each flow requires more memory than the available
size on SRAM. One important thread of research in this
area is based on sketch. The representative work incIudes
count-min sketch [7] , which are typically optirnized and have
been implemented in hardware. These approaches can mainly
answer point queries. That is, given a flow label, they can
provide an estimation for the flow size. Although the memory
needed to encode each flow has been greatly reduced, when the
number of flows are extremely large, the memory requirement
is still very high. To further reduce memory overhead, better

978-1-5386-2704-4/17/$31.00 ©2017 IEEE

alternatives are counter sharing methods [9] , [10], [11] , [13]. In
particular, [11] leverages a counter sharing mechanism, where
all flows share a common memory space. Therefore, it can do
per-flow counting for big network data streams.

Traditional research focused on estimating flow sizes from
the beginning of the data stream (i.e. , landmark window mod
el). In the landmark model, given a "landmark" time point, the
data analysis are only on the data stream which falls between
the landmark and the current time point. When more and more
elements pass through the router, the landmark window runs
out of capacity, and has to reset to zero periodically [16].
This is the major dis advantage of this model. For many real
time applications, the most recent elements of a stream are
more significant than those arrived long time aga [17], [18] ,
wh ich gives rise to the sliding window model. For example,
an ISP may monitor the data streams to identify the user
who sends most packets in the last hour. In the counter based
sliding window model, it removes an expired element as a new
element arrives, thereby it always maintains the most recent
W elements in the data stream. This paper mainly focuses on
per-flow counting under this sliding window model.

Datar et al. [19] first introduce the sliding window model in
data streams, and propose an exponential histogram to provide
approximation for basic counting. Zhu et al. [20] subdivide the
sliding windows equally into basic windows to facilitate the
efficient elimination of old data. However, it only provides
accurate statistics (e.g., Discrete Fourier Transform) when a
basic window is expired, and cannot give accurate estimate
when some elements in the oldest basic window are active.
Arasu et al. [21] study the problem of maintaining counts and
quantiles over a stream sliding window, and there are some
work [22], [23] to improve its performance. However, they
don ' t support constant time point query and need to allocate
memory dynamically. Typically, they need more memory s
pace than the landmark model, which makes them hard to
implement in hardware.

In this paper, we tackle the per-flow counting problem for
big network data stream over sliding windows. To achieve
optimal memory efficiency, we adopt the counter sharing idea
to the sliding window model, and propose two novel per-flow
counting schemes, ACE and S-ACE. The memory overhead of
ACE and S-ACE is the same as randomized counter sharing in
[11], wh ich is very compact for hardware implementation in
routers. For ACE, we propose an aging algorithm to elirninate
one element as a new element comes. It is simple and efficient,
but requires resetting the sliding window periodically to give

Data eO el e2 e3 e4 •••
Stream •

Win(O,3) eo
Win(l, 3) eo el
Win(2,3) eo el e2
Win(3, 3) el e2 e3
Win(4,3) ez e3 e4

Fig. 1: An example of sliding windows with W = 3.

accurate ftow size estimates. To achieve persistently accurate
per-ftow counting without periodical sliding window resetting,
we propose a novel segment window design in the advanced
S-ACE scheme. S-ACE achieves the optimal processing speed,
two memory accesses to encode one element. Our extensive
simulations as weil as experimental evaluations based on real
network traffic trace demonstrate that S-ACE can work in very
tight memory space with high accuracy.

11. PRELIMINARIES

A. Network Data Stream and Sliding Windows

We consider a network data stream S as a time ordered
series of elements (eo , el, e2, ... ei, ' ..), where the subscript
is the arriving sequence order index, called time point. For
example, the element e i is passing by the router at time point
i. Each element is associated with a ftow label f. A ftow f
consists of the elements with the same ftow label f. The ftow
label can be ftexibly defined depending on application context.
For example, the ftow label can be source address, destination
address or other user-defined ftow identifiers.

A sIiding window [20] over a network da ta stream S is a
multi-set of last W elements of the stream passed by so far,
where the nonnegative integer W is called its window size.
Therefore, given the length of the sliding window Wand
the current time point t (i.e., when the element et arrived),
the sliding window maintains the most recent W elements
in S, (emax{O,t-W+I} , "" et), which can be denoted by
Win(t , W). An example ofsliding windows with window size
W = 3 for a network data stream is illustrated in Fig. 1.

B. Problem Statement

The problem we tackle in this paper is the per-ftow trafik
measurement over sliding windows. At any time point t, we
need to maintain a data structure for the last W elements
Win(t , W) over a network data stream S. Given ftow f , the
data structure can be used to return the estimated ftow size of
f (i.e., the number of elements with ftow label f) in the sliding
window Win(t , W). The goal is to minimize the memory
requirement in such continuous computation, as weil as to keep
up with the high-speed network data stream processing in real
time.

Clearly, we are only interested in the recent past. It is
desirable if we can remove the elements outside a sliding
window. On the one hand, as the network data in a sliding
window continuously change as new elements arrive, it is
infeasible to remove the exact outdated elements without using
aspace of O(W) . Therefore, one major challenge is to develop
a space-efficient technique to continuously summarize a data
stream in the sliding window model. On the other hand, when

the data stream over the sIiding window is summarized, we
lose the temporal information related to the expired elements,
wh ich causes the accuracy problem. Hence, the other challenge
is to measure per-ftow size over sliding windows with high
approximate accuracy.

C. Randomized Counter Sharing

For network data streams, Li et al. [11] proposed an effi
cient per-ftow traffic measurement scheme called randomized
counter sharing. This sc he me leverages a counter sharing
mechanism, wh ich is illustrated in Fig. 2. Each ftow randomly
picks a number of counters from the physical counter array
to form its virtual counter. When recoding an element of a
particular ftow, it randomly maps to a counter of the ftow 's
virtual counter, and increases the counter by one. To estimate
the size of a ftow, it first adds up the values of the counters that
the ftow is mapped to, and then removes the noise introduced
by other ftows. Since the virtual counters of all ftows share
the same counter pool (physical counter array), large ftows
can 'borrow' memory from small ftows to utilize the available
counter bits. This scheme [11] can achieve reasonably accurate
results for per-ftow size estimation even under very tight
memory space.

Virtual Counter 1 Virtual Counter 2 Virtual Counter 3

tSKtlZ/Z I_~ I~I_I
Physical Counter Array

Fig. 2: An illustration of counter sharing.

This randomized counter sharing scheme works perfectly
over the landmark window model, wh ich maintains all ele
ments in the network data stream seen so far. However, in
the sIiding window model that we consider in this paper, only
the last W elements are of interest. The actual contents of
most recent W elements change because the oldest element is
removed when a new element arrives. This makes the existing
per-ftow traffic measurement based on a whole data stream not
trivially appIicable.

111. AGING COUNTER ESTIMATION OVER SLIDING

WINDOWS

In this section, we adopt randomized counter sharing to
the sliding window model, and propose an Aging Counter
Estimation (ACE) scheme to measure per-ftow traffic over
sIiding windows. In our ACE scheme, when a new element
arrives, to maintain the most recent W elements in the sliding
window, we first process an aging algorithm in the previous
window, wh ich tries to remove the oldest element, and then
encode the new element as described in randornized counter
sharing. Below we describe the ACE scheme in detail.

ACE includes an online operation module and a real time
estimation module. The online operation module records the
data stream over sliding window to the physical counter array,
while the real time estimation module answers queries of ftow
sizes based on data recorded from the onIine operation module.
We first give our data structure design.

A. Virtual Aging Counter

The ftow size information over sliding window is stored in
an aging counter array C of m counters. The ith counter in C
is denoted by C [i], 0 ::; i < m. Suppose the total memory size
of C is M bits, and the size of each counter is b bits. Then
the number of counters in C is m = l ~ J.

Each ftow is allocated a virtual aging counter consisting of s
counters to record the elements of the flow. Those virtual aging
counters share a common aging counter array C. Specifically,
consider an arbitrary flow f , we pseudo-randomly select s
counters [rom C to form a virtual aging counter, denoted as
Cf, where the ith counter in Cf is denoted by Cf [i], 0 ::;
i < s. According to the randomized counter sharing [11] , one
possible approach to form Cf from C using one master hash
function is as folIows,

Cf [i] = C [H(f EB R [i]) mod m], 0 ::; i < s, (1)

where EB is the XOR operator and R is an array of s random
constants. Through this, we can construct a virtual aging
counter for each ftow from the same counter pool C. Note
that the aging counter array C and virtual aging counter Cf
are denoted by C t and C} at time point t, respectively.

B. Online Operation

When an element et arrives at time point t , the router takes
two steps to process the new element, an aging step and
an encoding step. The aging step tries to remove the oldest
element in the previous window at time point t - 1, and the
encoding step records the new element et in C to form the
current win~ The window after online ~ation of et is
denoted as Win(t, W). We point out that Win(t, W) can be
slightly different from the real window Win(t , W) due to the
approximate deletion in the aging step.

1) Aging Step: The elements in the network data stream
arrive continuously and expire after exactly W steps. There
fore, when the total number of elements in the window is less
than W (i.e., t < W), no element is expired in the window
such that the aging step is not needed. When t ~ W, a new
coming element causes one expired element, wh ich should be
removed from the current window. However, as we cannot
store the information about the arrival order of elements due
to memory limitation, exactly removing the outdated element
is not applicable. Hence, probabilistic deletion is the only
viable choice. A straightforward aging algorithm is to let the
router randomly delete one element in Wi;i(t - 1, W) such
that every element in this window has the same probability
to be removed. However, since all elements are recorded in
the compact aging counter array C, equal probability deletion
will cause more memory accesses, wh ich is not applicable.
For example, one way is to generate a random index i in
[0, W), and delete the i-th element in the counter array C.
However, in order to find this element in the counter array
C, we need to traverse C, which causes O(m) memory
accesses. Although some other algorithms may improve this
performance, the memory access overhead will still be high.
To achieve more efficient probabilistic deletion, we propose
a very simple aging algorithm with 0(1) memory access as

illustrated in Algorithm 1. It randomly picks a counter in C
and decreases it by one if applicable.

Aigorithm 1 Aging Algorithm

Input: aging counter array C t - 1 wh ich records Wi;i(t - 1, W)
Result: delete one element in Ct - 1

1: isDeleted = false;
2: while isDeleted = false do
3: select a counter Ct - 1 [r] uniformly at random;
4: if Ct - 1 [r] > 0 then
5: C t - 1 [r] = C t - 1 [r]- 1;
6: isDeleted = true;
7: end if
8: end while

2) Encoding Step: After removing one element from the
previous window ~(t - 1, W), the router then encodes the
new corning element et as folIows. It first extracts its flow
label f, generates a random integer q to select a counter Cf [q
mod s] from flow I's virtual aging counter Cf, and increases
it by one. Hence,

(2)

where p = H(f EB R [q mod s]) mod m. Therefore, with one
deletion and one insertion, the counter array Ct maintains the
new sliding window Wi;i(t, W) with fixed size W.

C. Real Time Flow Size Estimation

To answer the size of ftow f in the sliding window under
query at time point t, similar to the randomized counter sharing
scheme in [11], we first add up the values of its virtual aging
counter Cf, and then remove the noise introduced by other
ftows from the sum 2::~~ C} [i]. Let nt be the actual size of
ftow f at time point t, and nt be the estimated ftow size. Due to
counter sharing, each element of other ftows has a probability
of 2.. to be encoded in one of the s counters in ftow I's virtual

m t

aging counter, thereby the expected noise in Cf is 8(W ~n) ~
8W (nt « W). Hence we have n t ~ ,,",8-1 c t [i] - 8W and
m ' L... ,=o f m '

the estimated size nt of ftow f at time point t is

8- 1

At _ "'"' C t ['] sW n - ~ fZ - -.

i=O m

D. ACE Performance Analysis

(3)

When t < W, the sliding window is equivalent to the
landmark window, thereby ACE is the same as the randomized
counter sharing scheme, which can provide accurate esti
mations even with tight memory space. Therefore, we only
analyze the ACE performance for t ~ W when the aging step
is involved.

Consider an arbitrary ftow f. Let I~ be the indicator of
whether the arrival element et is recorded in the virtual aging
counter Cf, and I} be the indicator of whether the deleted
element in the aging step belongs to Cf. Recall that, in the
online operation module of ACE, upon the arrival of et, we

delete one element in W"i;i(t - 1, W) in the aging step, and
record et in C t in the encoding step. Therefore, we have

8- 1 8- 1

L Ci [i] = L C}- I [i] + I'x - I~. (4)
i=O i=O

At the time point t - 1, by (3), the estimated ftow size of f is

(5)

Combining (3) (4) (5), we have

fI/ - fit - 1 = I'x - I~. (6)

Let I~ be the indicator of whether the new coming element
et belongs to ftow f, and I~ be the indicator of whether the
expired element at time point t comes from ftow f. Hence, we
have

(7)

According to Algorithm 1, every counter has almost the
same probability ~ to be selected in the aging step (the
probability for a counter with zero value is very small). Hence,
the probability for I~ = 1 is

IP' (I~ = 1) = ~. (8)
m

With regard to the indicator I 'x , if et E f (i .e. , I~ = 1), the
element will be encoded in Cf· Otherwise, if et rf:- f (i.e.,
I~ = 0), due to counter sharing, the element can be mapped
to Cf with a probability -!n. So the probability of I'x = 1 is

t t S t lP'(Ix = 1) = lP' (Ia = 1) + - 1P'(Ia = 0)
m

(S) t S
= 1 - m lP'(Ia = 1) + m'

(9)

Combining (6) (8) (9), the expectation value of fit - fit- l is

E(fit - fit- I) = E(I'x) - E(I~)

=1P'(I'x = 1) -IP'(I~ = 1) (10)

=E(I~) - ~E(I~).
m

And the expectation value of nt - nt - 1 is

E(nt - nt- I) = E(I~) - E(I~). (11)

Therefore, we have

E(nt - nt- I) - E(fit - fit - I) = ~E(I~) - E(I~). (12)
m

We find the estimated ftow sizes form a Markov chain.
From the equation above, when deriving fit from fit - I, the
ACE scheme will introduce a small error. For example, when
E(I~) = E(I~) such that E(fit - fit- I) > E(nt - nt- I),
the estimates will have positive bias. Therefore, the estimation
accuracy of ACE decreases when t increases. It may work fine
when t is slightly larger than W. However, as t becomes large
(e.g., t > 2W), the sliding window accumulates many expired
elements, wh ich introduces more noise in the size estimation,
and makes ACE no longer accurate. This trend can also be
observed in the simulation results in Section V.

One way to solve this problem is to reset the measurement
window after aperiod of time T (T > W). However, when

Synopsis
Data

Data
Stream

rrmrrm rrm
Window Window Window
Segment Segment Segment

~ --------~.
e' -WH e, l ___ ""T"". ___ J

Win(t, W)

Fig. 3: An illustration of segment window design.

T is set too small (slightly larger than W), the window is
reset too often such that the sliding window model is broken.
If we choose a large T, then ACE cannot provide accurate
estimations in the end. Hence, the challenge is how to maintain
the sliding window model and provide persistently accurate
ftow size estimates for real time queries.

IV. S EGMENT AGING COUNTER ESTlMATlON OV ER

SLIDING WINDOWS

A. Segment Design

The previous design using one data synopsis (one aging
counter array C) drops the order information of all elements,
thereby it cannot provide persistently accurate ftow size esti
mates in the sliding window model. In this section, we propose
a novel segment design as illustrated in Fig. 3, where we
use multiple da ta synopses to store the elements arriving in
different window segments. This design maintains the relative
order between the window segments with their data synopses.
For example, the elements in left window segments arrived
earlier than those in the right window segments in Fig. 3.

Even though we still cannot distinguish the order within
each window segment, this design significantly improves the
probability to delete the correct outdated elements. The idea is
to always insert new element in the newest window segment
called "head segment", and delete old element in the oldest
window segment called "taU segment". For example, suppose
the number of segments is 100. Since the expired element must
be in the tail segment, we can filter out at least 99% elements
in the current sliding window. Moreover, when all elements
in the tail segment are expired, a new segment window is
fully constructed as the new head segment and no aging error
exists. We reach a time point that all elements in the current
sliding window are correct and the reset happens automatically
without breaking the sliding window model. Therefore, this
design can provide persistently accurate ftow size estimates
for real time queries.

However, there are still some technical challenges in making
our segment design usable. For example, when a new element
arrives, how do we perform the aging step in the tail segment
and the encoding step in the head segment? How to answer
per-ftow counting queries in real time? In fact, since these
segment windows and data synopses are separate in data
structure, it is still unclear whether or not we can combine
them to do the per-ftow counting. Another challenge is how
to design an efficient data structure to recyc1e the memory
without allocating new memory for each new segment. When
all elements in a segment are expired, we don't want to simply

8[0] n 8[1] n 8[2] ~ ''' Q 8[l])
TaU

e··~;~~::::X'~'·
Head

8[0] n 8[1] n 8[2] ~ ''' Q 8[/])
Head TaU et =W+2W/l'1

~.w_w __ w.ww •• _w •• w.w_ •••

t= W+2W/l

8[0] n 8[1] n 8[2] ~ .. . Q 8[/])
Head TaU

Fig. 4: An example of memory reuse.

delete it as we might be able to reuse it to store new coming
elements. To answer these questions, we propose our advanced
Segment Aging Counter Estimation (S-ACE) scheme. Below
we first give our data structure with segment design.

B. Segment Aging Counter

The physical aging counter B is divided into (Z + 1)
segments, each of wh ich is called a segment aging counter.
The ith segment is denoted as B [i], 0 :s; i :s; Z. Suppose the
size of B is M and each counter is allocated with b bits, then
each segment has m' = l b(J~l) J counters. The jth counter
in B [i] is denoted as B [i][j j,O :s; j < m'. Note that every
segment is one data synopsis of the data stream in a window
segment, which contains exact '1' elements except for the head
segment and the tail segment when t ?: W. This is because the
tail segment is eliminating the oldest elements and the head
segment is under construction with newest elements. But the
sum of the elements in these two segments is also '1', thereby
the total number of elements in the sIiding window is W.

Each segment aging counter encodes the data of a window
segment, and its data structure is presented in Section III-A.
Consider an arbitrary flow f constructing its virtual aging
counter Bf [i] in the ith segment B [i], 0 :s; i :s; Z, wh ich
contains s counters. We pseudo-randomly select s counters
from B [i] to form it. The j-th counter of Bf [i], denoted as
Bf [i][j], is chosen from segment B [i] as folIows,

Bf [i][j] = B [i][H(f EB R[i][j]) mod m'], O:S; j < s , (13)

where R is a two dimensional array of (Z + 1) x s random
constants. Note that the segment aging counter B [i] and virtual
segment aging counter Bf [i] for flow f are denoted by Bt [i]
and B} [i] at time point t, respectively.

Now, we discuss how to reuse these (Z + 1) segments to
continuously record elements without allocating extra memory
for new segment. Generally, when the current head segment is
full (recorded '1' elements), for the new coming elements, we
need a new segment, wh ich becomes the new head segment.
If we allocate new memory space for the new segment,
the memory overhead will increase over time, wh ich is not
acceptable. Recall that the elements in the tail segment are all
expired when the head segment is full. Hence, we can reset
the tail segment, and reuse it as the new head segment. In this
case, the previous second oldest segment becomes the new tail
segment. Mathematically, we can calculate that, at time point

t, the segment aging counter index H of the head segment is

t
H = W/Z mod (Z + 1),

and the index T of the tail segment is

T _ {O
- (vJ/1 + 1) mod (Z + l)

t< W,

t?: W.

(14)

(15)

An example of memory reuse is illustrated in Fig. 4. When
t < W + '1' - 1, the tail segment is always B [O], and the head
segment keeps moving forward to fill up window segments
as new elements come. When t = W + '1' - 1, the element
eW+ .!±:. - l is recorded in the head segment B [Z], wh ich means

J.

that B [Z] is full, and the tail segment B [O] is expired. We
can reset B [O], and reuse it as the new head segment. Then
B [l] becomes the new tail segment. When the element ew+ .!±:.

comes, it will be recorded in the new head segment B [O].
Following this memory recycle design, we can continuously
record elements using only (Z + 1) segment aging counters.

C. Online Operation

When an element et arrives, the router takes a "virtual"
aging step and an encoding step to process the new element.
The "virtual" aging step is actually an no-op for our S
ACE scheme, wh ich virtually deletes an element from the tail
segment (we will explain shortly), while the onIine step inserts
the new element into the head segment.

1) "Virtual" Aging Step: Clearly, when t < W, no aging
step is needed. Below we only consider t ?: W. After
recording W elements, the first Z segments are full, and each
of them stores '1' elements. Note that S-ACE always operates
the aging step in the tail segment and the encoding step in the
head segment. Since the two segments are stored in separate
data structures, the aging step and the encoding step won't
interfere with each other. This motivates us to design a new
aging algorithm called "proportional aging".

The basic idea is that, when an element is to be deleted
from the tail segment B [T], instead of decreasing a cer
tain counter in B [T] by one, we proportionally decrease all
counters in B [T] by a fraction of one. More specifically,
Bt [T][j] = Bt- l [T][j] - Bt -~~~][jl, 0 :s; j < m'. Intuitively,
the tail segment contains the distribution information of the
elements inserted to this window segment, so when we delete
elements from it, it is natural to preserve this distribution by
proportionally decreasing the values of all the counters in it.

We stress that we don't actually perform this aging operation
on the tail segment. Instead, we keep the tail segment the
way it is, like a "snapshot". This snapshot carries the element
insert distribution, and can be used to perform a logical batch
aging in the flow size estimation module in Section IV-D. The
reason is that, the segment design allows us to calculate the
number of elements in the head segment at time point t , nH =
(t + 1) mod ('1'), wh ich is exactly the number of elements
to be deleted in the tail segment. In the estimation module,
we just need to deduct each counter value in the tail segment
snapshot (i.e., B t [T][j]) by its proportion value BtX}Fl times
the total delete number nH to get the actual counter value.

2) Encoding Step: With aging step being no-op, encoding
becomes the only online operation. When a new element et
arrives, the router inserts it to the head segment. The router first
extracts its ftow label f , generates a random integer Q E [0, s)
to select a counter of ftow 1's virtual aging counter Bf[H] in
the head segment B [H], and increases it by one. Hence,

B} [H][Q] = Bj- l [H][Q] + 1, (16)

where H is given by (14).
When t ~ Wand (t + 1) mod ('j) = 0, the router resets

the tail segment B [T], where T is given by (15), since all
elements in this segment window are expired.

D. Real Time Flow Size Estimation

To answer the size of a ftow f in the sliding window under
query at time point t, similar to ACE, we first add up the
values of its virtual segment aging counters in all segments,
and then subtract the noise introduced by other ftows and
the proportional expired elements n e in B} from the sum

L~=o L;:~ B} [i][j]. Clearly, the expected noise in B} is

8(W,;,n t
) , since in each window segment, each element of other

ftows has a probability of ~, to be encoded in one of the
s counters in B}. In addition, according to our proportional

. 1 . h . ,\,8 - 1 ((H l) mod (lf))xB}[T][j] Th
agmg a gont m, n e 1S L-j= O W / l . ere-
fore, we have

1 8 - 1 (W t)
nt ~ LLB} [i][j]- s ;:;n

i=O j = O

8 - 1 ((t + 1) mod ('j)) xB} [T][j] - L --'---------W---"/ l----'----'-----
j = O

Hence, the estimated size nt of ftow f at time point t is

, 1 8 - 1 W
At m LL t [.][.] s n = --- B f 2 J - --

m' - s m' - s
i=O j = O

_ lm'((t + 1) mod (lf)) ~ t [][']
(m' _ s) W ~ B f T J .

) = 0

E. S-ACE Peiformance Analysis

(17)

(18)

When t < W or (t + 1) mod ('j) = 0, our S-ACE scheme
is similar with randomized counter sharing scheme. Without
loss of generality, we only analyze the S-ACE performance
when W < t + 1< (W + 'j). Consider the ftow f. Let riff
be the indicator of whether the arrival element et is recorded
in the virtual aging counter vector Bf [H] of ftow f. At the
time point t - 1, the estimated ftow size of f is

, 1 8 - 1 W
nt- 1 = ~ "'''' B t - 1 [i][j] _ _ s_

m' - s ~ ~ f m' - s
i=O j = O

_ lm'(t mod ('j)) L8 -
1 t- l [][']

() B f TJ. m' - s W
j = O

(19)

Note that the new element et will be encoded in the head
segment B [H], the counters in other segment remain the same

value. That is Bj- l [i] = BJ [i], i E [0, l], i i- H . Combining

(18) with W < t < (W + T)' we have

, l' 8- 1

nt _ nt- 1 = ~It _ m '" B t [T][j]. (20)
m' - s X ff (m' - s)W ~ f

) = 0

Let n~ be the total number of elements in ftow f encoded
in the tail segment at time point t. Due to counter sharing, we
have

8- 1

E(LB} [T][j]) = n~ + ~,(~ - n~), (21)
j = O

where ~, ('j - n~) is expected noise in B} [T]. Recall that I~
is the indicator of whether the new coming element et belongs
to ftow f. By (9), the prob ability of IL, = 1 is

t t s t
lP' (IXH = 1) = lP'(I", = 1) + m, lP'(I", = 0)

(s) t s = 1 - - lP'(I = 1) + -.
m' '" m'

Therefore, the expected value of nt - nt - 1 is

E(nt _ nt- I)

(22)

, lm' 8 - 1

= mr:"- sE(IiH) - (m' _ s)WE(LB} [T][j]) (23)
j = O

(t) l t (t) l t = lP' I", = 1 - W nT = E I", - W nT'

Recall that I~ is the indicator of whether the expired element
at time point t comes from ftow f. The expectation value of
nt - nt - 1 is

E(nt - nt- I) = E(I~) - E(I~). (24)

when deriving nt from nt- I , S-ACE will introduce some
error. But when the arriving order of elements from each ftow
is evenly distributed, the probability for an element of ftow f
to be expired is l~. So the error will be very smalI, wh ich
will be demonstrated in the simulation results in Section V.
Moreover, When t ~ Wand (t + 1) mod ('j) = 0, we reset
the tail segment since all elements in this segment window
are expired. The current window Wi;i(t , W) is the same as
real window Win(t, W) such that S-ACE can provide accurate
estimates as [11] in the landmark window model. In summary,
this design can provide persistent accurate ftow size estimates
for real time queries.

V. SIMULATION STUDlES

In this section, we present simulation studies that justify the
performance analysis of ACE and S-ACE. We compare both
schemes in terms of processing time, memory efficiency and
estimation accuracy over the simulated data.

A. Peiformance Metries

We employ the following three metrics same as [13] to
evaluate the performance of a per-ftow counting scheme for
network data streams.

Processing time: The average time required for encoding
an element. It is measured by the average number of memory
accesses and the number of hash value computations as in [13].

Memory requirement: The memory overhead to achieve
reasonable estimation results for per-flow traffle measurement.

Estimation accuracy: We evaluate the estimation accuracy
by the relative bias Bias(f!) and relative standard error , n
StdErr(~) as [13]:

fi fi
Bias(-) = E(-) - 1,

n n

StdErr("2) = J V ar("2) = JV ar(fi) .
n n n

(25)

B. Simulation Setup

The dataset we use to evaluate our schemes is 20 simulated
traces of 107 elements, generated with a Zipf distribution [24]
of skew 1, over a domain of 106 possible flows. We refer to this
dataset as Zipf-i. Hence, the simulation has 20 repeated runs,
and we provide the mean results over these runs. The window
size W in all simulations is 106 . We measure the network data
stream among 2 windows. We skip the first window where all
algorithms based on landmark window model can work fine,
and focus on the performance when t ?: W, where the sliding
window model is working.

We run two simulation sets to evaluate our schemes. The
first set of our simulations is used to compare ACE and S
ACE. We allocate the same size of memory for both schemes,
and evaluate the impact of memory size on their performance.
We vary the available memory space M from 0.5MB, 1MB to
2MB. For ACE, according to randomized counter sharing [11],
we set the size s of the virtual aging counter of each flow to
100. For S-ACE, we set the number of segment windows to
l + 1 = 101, and the size s of virtual aging counter in each
segment to 16. The second set of our simulations evaluates
the impact of the aging step in S-ACE with regard to the
measurement accuracy.

C. S-ACE v.s. ACE

1) Processing Time: We first compare ACE and S-ACE in
terms of processing time. In each simulation run, we record the
average number of memory accesses and hash computations
for maintaining the sliding window when a new element
comes. The average results of 20 runs are presented in Table I.
Both schemes only need 1 hash computation for each packet
to locate its corresponding counter. In addition, due to the
aging step, ACE needs more than 3 memory accesses in
online operation. By contrast, S-ACE only requires 2 memory
accesses. Moreover, the average number of memory accesses
of ACE decreases when the memory space is reduced. This
is because ACE has less probability to hit counter with value
zero in the aging step when less memory are available. Clearly,
S-ACE is more efficient than ACE in terms of processing time.

2) Memory Overhead and Estimation Accuracy: We com
pare the estimation accuracy of ACE and S-ACE under dif
ferent available memory space with regard to the relative bias
and relative standard error. Because there are too few flows
for some flow sizes, we compute the relative bias and relative
standard error by dividing the flow size axis into measurement
bins.

TABLE I: Comparison of processing time by ACE and S-ACE.

memory overhead
(MB)

0.25
0.5
1
2

number of
memory accesses

ACE S-ACE

3.55 2
4.18 2
5.45 2
7.98 2

number of
hash computaions

ACE S-ACE

We first study the estimation accuracy of ACE. The relative
bias and relative standard error of ACE are presented in
Figure 5 and Figure 6, respectively. Each figure contains 3
plots, whose available memory ranges from 0.5MB, 1MB to
2MB, from left to right. In each plot, the x-coordinate is the
true flow size n, y-coordinate is the time point t, and the z
coordinate is the relative bias in Figure 5 or relative standard
error in Figure 6. When M = 0.5MB, the simulation results
are shown in Figure 5a and Figure 6a. We can see that the
relative bias and relative standard error increase as the time
point t grows. Hence, the ACE scheme can only work for a
limited time, as it yields non-reasonable estimates when t is
large (e.g., t = 2W). The same trends are observed in other
plots. Although the ACE scheme becomes more accurate when
the available memory space increases, it still cannot work weIl
as t increases.

The simulation results of S-ACE are presented in Figure 7
and Figure 8. When t = W (no element is expired), S-ACE
can provide accurate estimates for all flows even under a tight
memory space, e.g. , M = 0.5MB. Moreover, as illustrated in
Figure 7a and Figure 8a, as time passes by, the relative bias
and relative standard error are stabilized, and S-ACE yields
accurate measurement. Hence, S-ACE can work persistently
well in sliding window model. Also, when M increases, S
ACE gives more accurate estimates.

In smmnary, the ACE scheme can only work for short
term traffle measurement over sliding window model. As
mentioned before, it needs to reset the time point to 0 when
it can no longer provide accurate results, such that the sliding
window model is broken. By contrast, the S-ACE scheme
performs persistently weIl, thereby it suites for long term traffle
measurement over the sliding window model.

D. Aging Step in S-ACE

Our segment design maintains the relative order between
the window segments. When a new window segment is fully
constructed by ~ elements, we simply remove the expired
window segment without error since all elements in the seg
ment are expired. However, when the new window segment
is under construct (less than ~ is encoded), the aging step is
proportionally approximated.

We use simulations to justify this approximation within
the window segment. We set the memory space to 1MB, the
number of segment windows to 101, and the size s of virtual
counter vector in each segment to 16. Each segment window
contains up to 104 elements. We sampie the S-ACE estimations
each time when 2000 elements are recorded, and compute their
estimation bias and error. Therefore, the sampies are divided
to 5 categories with 0%, 20%, 40%, 60% and 80% expired
elements in the segment, wh ich are denoted by 0% aging,

-1
2

1.5

1 100000

10

-1
2

1.5
10

1 100000

-1
2

1.5

1 100000
T ime Point t (xl06)

Flow Size n Time Point t (x l 06)
Flow Size n T ime Point t (xl06)

Flow Size n

(a) Memory space M = O.5MB (b) Memory space M = 1MB (c) Memory space M = 2MB

Fig. 5: Relative bias of ACE when M = O.5M B, 1MB, and 2MB

10 10

1 100000 1 100000 1 100000
Time Point t (x l 06)

F low Size n Time Point t (x l 06)
Flow Size 11 Time Point t (x106)

F low Size n

'" o
t: 6

" "0

'" '" 4 "0
C

'" ..
'" 2

~
'" 0
~ 2

(a) Memory space M = O.5M B (b) Memory space M = 1MB (c) Memory space M = 2MB

Fig. 6: Relative standard eITor of ACE when M = O.5MB, 1MB, and 2MB

10 10

(a) Memory space M = O.5MB (b) Memory space M = 1MB (c) Memory space M = 2MB

Fig. 7: Relative bias of S-ACE when M = O.5MB, 1MB, and 2MB

10 10

10

10

10

10

F low Size n Flow Size n Flow Size n

(a) Memory space M = O.5MB (b) Memory space M = 1MB (c) Memory space M = 2MB

Fig. 8: Relative standard eITor of S-ACE when M = O.5M B, 1MB, and 2MB

1.5 1.5 1.5 1.5 1.5

00
- S-ACE (0% aging)

00
- S-ACE (20% aging)

00
- S-ACE (40% aging)

00
- S-ACE (60% aging)

00
- S-ACE (80% aging)

Cl) 1

~
Cl) 1 Cl) 1

~
Cl) 1 Cl) 1

Ä:i Ä:i

\
Ä:i Ä:i

\
Ä:i

\ ~ 0.5 ~ 0.5 ~ 0.5 ~ 0.5 ~ 0.5 :;:; :;:; :;:; :;:; :;:;
Cl) Cl) Cl) Cl) Cl)

~ 0 ~ 0 ~ 0 ~ 0 ~ 0

-0.5 -0.5 -0.5 -0.5 -0.5
101 102 103 104 105 101 102 103 104 105 101 102 103 104 105 101 102 103 104 105 101 102 103 104 105

Flow Size n Flow Size n Flow Size n Flow Size n Flow Size n

Fig. 9: Relative bias Bias(~) with different aging percentage.

" o " o " o " o t: 4 r---------, t: 4,---------, t: 4 r---------, t: 4 r---------,

--S-ACE (0% aging) r.< --S·ACE (20% aging) r.< --S-ACE (40% aging) r.< --S-ACE (60% aging) r.< --S·ACE (80% aging)

"2 3 "2 3 "2 3 "2 3
Cl) Cl) Cl) Cl)

-0 -0 -0 -0
@ 2 @ 2 @ 2 @ 2 ..., ..., ..., ...,

00 00 00 00

.~ 1 .~ 1 .~ 1 .~ 1 ..., ..., ..., ...,
Cl) Cl) Cl) Cl)

Qi 0 Qi 0 Qi 0 Qi 0
102 103 104 105 ~ 101 102 103 104 105 ~ 101 102 103 104 105 ~ 101 102 103 104 105 ~ 101 102 103 104 105

Flow Size n Flow Size n Flow Size n Flow Size n Flow Size n

Fig. 10: Relative standard error StdErr(~) with different aging percentage.
~ ~ ~

b b b b b
~ 10r-------~ ~ 10r-------~ ~ 10r-------~ ~ 10r-------~ ~ 10r-------~

+ t = 10500000
<;: 8

Q)

" 00 6

]
~ 4

1l 2

," 8
Q)

" 00 6

]
~ 4

1l 2

+ t =10560000

1l

<;: 8
Q)

" 00 6

]
~ 4
"0

Q) 2

+ t = 1 0580000

~ :;:; o~-------~
~
:;:;

~ :;:; O~-------~
~ o ~

5 10 '" 0
FlowSizen (xlO") '"

5 10 '"
Flow Size n (xl0") '"

o 5 10 '"
Flow Size n (xlQ ') '"

5 10 '" 0 5 10
Flow Size n (xlO") '" Flow Size n (x lO ')

Fig. 11 : Per-flow counting using S-ACE in short time interval.

b
~ 10r-------~

+ t = l x 107

~
x

,"
Q)

"

10

8

00 6

~
~ 4
"0
.2l 2

.§

~
x

,"
Q)

"

10

8

00 6

~
~ 4
"0
.2l 2

.§

~
x

,"
Q)

"

10

8

00 6

~
~ 4
"0
.2l 2

.§

+ t =1.75x l07

~
X

,"
Q)

"

10

8

00 6

~
~ 4
"0
.2l 2

.§
5 10 ~ 00

Flow Size n (xlO') '"
5 10 ~ 00

Flow Size n (x lO') '"
5 10 ~

Flow Size n (x lO ') '"
5 10 ~ 00

Flow Size n (xlO') '"
5 10

Flow Size n (xlQ ')

Fig. 12: Per-flow counting using S-ACE in long time interval.

20% aging, 40% aging, 60% aging and 80% aging. Note that
100% aging percentage is equivalent to the case of 0% aging
percentage.

The relative bias and relative standard error of these cat
egories with different aging percentages are presented in
Figure 9 and Figure 10. From the figures, one can see that
the estimation accuracy stays roughly the same no matter how
much the aging percentage is, and the aging process in S-ACE
does not introduce much error when the number of segment
windows is large (e.g., 101).

VI. EXPERIME NTAL EVALUATION

We now evaluate the S-ACE scheme based on real network
data stream. The data we use is the CAIDA anonymized

Internet Trace 2015 [25], wh ich contains 30.106 packets. The
parameters are set as folIows: W = 106 , M = 1MB, I = 100,
and s = 16.

The estimation resuIts in short time interval and long time
interval are given in Figure 11 and Figure 12, respectively.
Each figure incIudes 5 plots, each representing the per-flow
counting results in a different time point t. Each point in each
plot represents a flow. Its x-coordinate is the actual flow size
n, and y-coordinate is the estimated flow size n. The equality
line (y = x) is given for reference. The closer a point is to
the equality line, the more accurate the estimation iso Clearly,
S-ACE provides very accurate estimates in both situations.

We then study the real time query on the real data stream.
We query 3 flows in the time point interval from 107 to

4
12 x10 1 0000 .-------~-------, 6000 .-------~-------,

- - - True size - - - True size
10 8000 - Estimated size - Estimated size

Cl) Cl)
N

8

00
6

~ 6000 1--___ --____ -;
~ 4000

00
~

..9 ... 4
~ ... 4000 ~

... 2000
- - -True size

2 - Estimated size 2000

0 OL-----~------J O~---~------J

1 1.05 1.1 1 1.05 1.1 1 1.05 1.1
Time Point t x 1 07 Time Point t x107 Time Point t x107

Fig. l3: S-ACE estimates of four ftows for time point t between 107 and 1.1 x 107 .

1.1 X 107 . The corresponding results are illustrated in Fig
ure l3. Take a ftow with source address 192.205.38.168 and
destination address 133.32.39.30 as an example. The results of
this ftow are shown in the first plot. The true size increases as t
grows. The estimates of S-ACE has the same trend with small
estimation errors. Similarly, the estimated ftow sizes closely
follow their actual sizes for the other two ftows, as shown in the
second plot (source address 100.120.47.9, destination address
215.158.65.254) and third plot (source address 30.196.59.77,
destination address 92.168.216.18). We find that the relative
standard errors for small ftows are relatively higher, but S
ACE is still useful since the absolute errors for small ftows
are much smaller than those of large ones.

VII. CONCLUSION

In this paper, we propose two schemes, ACE and S-ACE,
for per-ftow counting in big network data stream over the
sliding window model. Both schemes leverage the counter
sharing idea, and greatly reduce the memory overhead. ACE
has to reset the window periodically to give precise estimates,
while S-ACE can achieve persistently accurate estimates via a
novel segment window design. Extensive simulations as weIl
as experimental evaluations based on real network trace data
demonstrate the superior performance of S-ACE.

VIII. ACKNOWLEDGME NT

This work is supported in part by the National Science
Foundation under grant STC-1562485.

REFERENCES

[1] C. Estan and G. Varghese, "New Direetions in Traffie Measurement and
Aeeounting," Proc. of ACM SIGCOMM, August 2002.

[2] A. Kumar, J. Xu, and J. Wang, "Spaee-Code Bloom Filter for Effieient
Per-tlow Traffk Measurement," IEEE Journal on Selected Areas in
Communications. vol. 24. no. 12, pp. 2327- 2339, 2006.

[3] X. Dimitropoulos, P. Hurley, and A. Kind, "Probabilistie Lossy Count
ing: An Effieient Algorithm for Finding Heavy Hitters," Proc. of ACM
SIGCOMM, 2008.

[4] M. Yu, L. Jose, and R. Miao, "Software Defined Traffie Measurement
with OpenSketch," Proc. of NSDI, pp. 29-42, 2013.

[5] Y. Zhou, Y. Zhou, M. Chen, Q. Xiao, and S. Chen, "Highly Compaet
Virtual Counters for Per-Flow Traffie Measurement through Register
Sharing," Proc. of IEEE Globecom, 2016.

[6] Y. Zhou, Y. Zhou, M. Chen, and S. Chen, "Persistent Spread Measure
me nt for Big Network Data Based on Register Interseetion," Proc. of
ACM SIGMETRICS, 2017.

[7] G. Cormode and S. Muthukrishnan, "An Improved Data Stream Summa
ry: the Count-Min Sketch and Its Applieations;' Proc. of LATlN, 2004.

[8] Q. Zhao, J. Xu, and Z. Liu, "Design of a Novel Stati sties Counter Arehi
teeture with Optimal Spaee and Time Effieieney," ACM SIGMETRICS
Performance Evaluation Review, vol. 34, no. I, pp. 323- 334, 2006.

[9] Y. Lu, A. Montanari , B. Prabhakar, S. Dharmapurikar, and A. Kabbani ,
"Counter Braids: A Novel Counter Arehiteeture for Per-Flow Measure
ment," Proc. of ACM SIGMETRICS, June 2008.

[10] Y. Lu and B. Prabhakar, "Robust Counting Via Counter Braids: An
Error-Resilient Network Measurement Arehiteeture," Proc. of IEEE
INFOCOM, April 2009.

[11] T. Li, S. Chen, and Y. Ling, "Fast and Compaet Per-Flow Traffie
Measurement through Randomized Counter Sharing," Proc. of IEEE
INFOCOM, pp. 1799- 1807, April 2011.

[12] Y. Zhou, S. Chen, Y. Zhou, M. Chen, and Q. Xiao, "Privaey
Preserving Multi-Point Traffie Volume Measurement Through Vehicle
to-Infrastrueture Communieations," IEEE Transactions on Vehicular
Technology, vol. 64, no. 12, pp. 5619- 5630, 2015.

[13] M. Chen and S. Chen, "Counter Tree: A Sealable Counter Arehiteeture
for Per-Flow Traffie Measurement," Proc. of IEEE ICNP, November
2015.

[14] Y. Zhou, S. Chen, Z. Mo, and Q. Xiao, "Point-to-Point Traffie Volume
Measurement through Variable-Length Bit Array Masking in Vehieular
Cyber-Physieal Systems," Proc. of IEEE ICDCS, pp. 51- 60, 2015.

[15] Y. Zhou, Z. Mo, Q. Xiao, S. Chen, and Y. Yin, "Privaey-Preserving
Transportation Trame Measurement in Intelligent Cyber-physieal Road
Systems," IEEE Transactions on Vehicular Technology, vol. 65, no. 5,
pp. 3749- 3759, 2016.

[16] L. Golab, D. DeHaan, E. D. Demaine, A. Lopez-Ortiz, and 1. I. Munro,
"Identifying Frequent Items in Sliding Windows over On-Line Packet
Streams," Proc. of ACM IMC, pp. 173- 178, 2003.

[17] N. Rivetti , Y. Busnel, and A. Mostefaoui , "Effieiently Summarizing Data
Streams over Sliding Windows," Proc. of IEEE International Symposium
on Network Computing and Applications, pp. 151- 158,2015.

[18] R. Ben-Basat, G. Einziger, R. Friedman, and Y. Kassner, "Heavy Hitters
in Streams and Sliding Windows," Proc. IEEE INFOCOM, 2016.

[19] M. Datar, A . Gionis, P. Indyk, and R. Motwani, "Maintaining Stream
Statisties over Sliding Windows," SIAM journal on computing, vol. 31 ,
no. 6, pp. 1794- 1813, 2002.

[20] Y. Zhu and D. Shasha, "StatStream: Statistical Monitoring of Thousands
of Data Streams in Real Time," Proc. of VLDB , pp. 358- 369, 2002.

[21] A. Arasu and G. S. Manku, "Approximate Counts and Quantiles over
Sliding Windows," pp. 286- 296, 2004.

[22] L.-K. Lee and H. Ting, "A Simpler and More Effieient Deterministie
Seheme for Finding Frequent Items over Sliding Windows," pp. 290-
297, 2006.

[23] R. Y. Hung, L.-K. Lee, and H.-F. Ting, "Finding Frequent Items over
Sliding Windows with Constant Update Time," lriformation Processing
Letters , vol. 110, no. 7, pp. 257- 260, 2010.

[24] "Zipf's Law." [Online]. Available: https://en.wikipedia.org/wiki/Zipf%
27s_law

[25] "CAIDA," 2015. [Online]. Available: http://www.eaida.org/home/

