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Abstract—Widespread event detection is a fundamental net-
work function that has many important applications in cy-
bersecurity, traffic engineering, and distributed data mining.
This paper introduces a new probabilistic threshold-based event
detection problem, which is to find all events that appear in
any w-out-of-a monitors with probabilistic guarantee on false
positives, where a is the total number of monitors and the
threshold w(≤ a) is a positive integer parameter that can be
arbitrarily set, according to specific application requirements.
We develop an efficient threshold filter solution and its improved
versions, which combine Bloom filters, counting Bloom filter,
threshold filter and compressed filters in a series of encoding and
filtering steps, providing tradeoff between detection accuracy
and communication overhead. We theoretically optimize the
system parameters in the proposed solutions to minimize the
communication overhead under the constraint of probabilistic
detection guarantee. Extensive simulations demonstrate the prac-
tical viability of the proposed solutions in their ability of finding
widespread events in a large network with few false positives
and low communication overhead.

I. INTRODUCTION

Detection of widespread events across a network is a

fundamental function that has many important applications

in cybersecurity, traffic engineering, and trend monitoring

[1], [2], [3], [4], [5]. During an outbreak of Internet worms

[6], knowing which subnets have detected infection will

enable coordinated defense and monitoring of how infection is

spreading. During a large-scale DDoS attack such as the 2016

Mirai attack [7], knowing which subnets are out of Internet

service and which are not would help diagnosis quickly nar-

row down toward the critical failing points that brought down

service access. With a distributed deployment of honeypots

that catch intrusion attempts [1], knowing multiple attempts

at different honeypots sets distributed attacks from target-

ed ones. Generally speaking, widespread attacking events

should raise alerts at higher levels for immediate attention

and prioritized responses. Significance of widespread event

detection goes beyond security applications. In a network

that experiences frequent congestions, knowing whether this

is a single point of congestion or a widespread problem

at multiple routers provides guideline on how to expand

link capacities and restructure network topology in order to

relieve congestion. A global Internet search company may also

benefit from detecting which phrases were widely searched

at its servers distributed at different geographical locations.

Profiling widespread interest over time helps the company

learn various trends among the Internet users in terms of

news development, commercial product popularity, political

opinions, etc.

There are two system models for widespread event detec-

tion: the coordinator model [4] and the peer-to-peer model

[5]. The coordinator system model consists of a central coor-

dinator and a set of distributed monitors, and the P2P model

does not have a coordinator. The monitors may be intrusion

detection systems (IDS), firewalls, honeypots, routers, or

servers, each producing logs about events that have happened

locally. For example, some of the logs produced from the

intrusion detection systems (i.e., monitors) may be designed

for distributed worm detection as follows: At the end of every

reporting period, each IDS sends the coordinator all 〈source

address, destination port〉 pairs that it sees in the packet

stream. Here, each address/port pair is an event. If many

IDSes observe the same pair, this “widespread” event signals

a possible distributed scanning. If this event persists over time

with more and more other similar events (i.e., scanners) join

in, it signals a possible ongoing worm propagation [6]. In

another example, servers of an Internet search company may

want to compare their search records to find popular search

phrases. Here, servers are monitors and search phrases are

events.

In the coordinator model [4], monitors report their data

to the coordinator, which process the received data and

communicate the results back to the monitors in order to help

them identify widespread events. It takes one round trip delay.

In the P2P model [5], the monitors exchange data amongst

themselves to find widespread events. It takes numerous round

trips, each round having some monitor pairs to exchange their

data. Technically, all prior solutions [4], [5] are designed to

only detect the widespread events that are observed by all

monitors, which seriously limits their practical use. In the

previous example of distributed scanning detection, we do not

have to observe a source/port pair at all monitors. If it appears

in an unusually large number of monitors, an anomaly alert

could be issued. Similarly, we do not have to see a search

phrase appears in all search servers in order to declare that it

is popular.

This paper introduces a generalized problem called

threshold-based event detection, which is to find all events that

appear in any w out of a monitors, where a is the total number

of monitors and the threshold w(≤ a) is a positive integer

parameter that can be arbitrarily set, according to specific

application requirements. The prior art [4] is a special case

of the generalized problem with w = a, and their simplified

solutions cannot be used to solve the general problem, which

requires us to resort different techniques to deal with false

positives and control communication overhead.

We focus on the coordinator system model in this paper
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to avoid long delay from the P2P model where monitors

exchange data in many sequential rounds. The coordinator

model takes only one round of communication between all

monitors and the coordinator. However, as all monitors report

their data to the same coordinator, it creates a communication

bottleneck [4]. Consider the previous example where every

IDS sends the coordinator its source/port pairs, which can

number in millions, and this is just one type of events that

IDS will report. With a large number of IDSes, the combined

traffic volume to the coordinator can be overwhelming. In

the Internet search example, as all servers send their sets of

search records to the coordinator, the combined traffic can

again be overwhelming. Transmitting all raw event data to the

coordinator may cause tremendous network traffic, strain its

access link, and thus degrade the performance of widespread

event detection.

To reduce communication overhead, we relax the problem

from exact widespread event detection to probabilistic detec-

tion, such that we do not have to send raw data but instead

minimize communication through lossy encoding and com-

pression. Our probabilistic detection requires that all events

that appear in any w-out-of-a monitors must be detected with

zero false negative, while there may be a small number of

false positives, meaning that an event appearing in fewer than

w monitors may also be reported, with a probability smaller

than ε, which is a system parameter that can be set arbitrar-

ily small, allowing tradeoff between detection accuracy and

communication cost. We believe widespread event detection

with probabilistic guarantee is acceptable to most applications.

In the previous examples, as long as we can successfully

detect all distributed scanners and find all real popular search

phrases, a small number of false positives are nuisance but

will not nullify the usefulness of the system.

The contributions of this paper are summarized as follows.

• We introduce a generalized threshold-based formulation

for widespread event detection with probabilistic guarantee.

To the best of our knowledge, this is the first work on the

generalized widespread event detection problem, with the

prior art being a special case (with w = a).

• We develop an efficient threshold filter solution and

its improved variants, which perform distributed computation

between monitors and a coordinator, combining Bloom filters,

counting Bloom filter, threshold filters and compressed filters

in a series of encoding and filtering steps, which together

reduce communication overhead between the monitors and

the coordinator significantly, while ensuring probabilistically

guaranteed event detection.

• We mathematically reveal the tradeoff between detection

accuracy and communication overhead, prove that the proba-

bilistic guarantee is achieved, and theoretically optimizes the

system parameters in the proposed threshold filter solutions

to minimize the communication overhead.

• We perform extensive simulations to demonstrate that

our solutions achieve probabilistic guarantee of threshold-

based widespread detection with high efficiency and low

communication cost.

II. SYSTEM MODEL AND PROBLEM STATEMENT

A. System Model

We consider a distributed network monitoring system con-

sisting of a number a of distributed monitors and a central

coordinator. These monitors are deployed at selected vantage

points in the network. They independently monitor and record

events, which can be customized depending on applications

as suggested in the introduction. The monitors report infor-

mation of their event sets to the coordinator at a pre-defined

frequency or upon query. The coordinator is responsible for

collecting, combining and synthesizing data from different

monitors to form a global view. It then informs the monitors

of the combined information for further actions. This general

model has been adopted in many prior work on distributed

monitoring [8], [9], [10], [11].

B. Problem Definition

Let X = {x1, x2, . . . , xa} be the set of monitors, and Ei

the set of events observed by monitor xi, 1 ≤ i ≤ a. Let E∗

be the union of all event sets, i.e., E∗ =
⋃a

i=1 Ei. Consider an

arbitrary event e ∈ E∗. The number of monitors that observe

the event is called the frequency of the event, denoted as f(e).
An event e is called a w-widespread event if it is observed by

w or more monitors, i.e., f(e) ≥ w, where w is a threshold

value set by the user based on specific application needs, and

it is distributed by the coordinator to all monitors.

The threshold-based widespread event detection problem

is for each monitor xi, 1 ≤ i ≤ a, to find all w-widespread

events in its event set Ei so that it may react accordingly based

on pre-set policies, e.g., blocking the source addresses in dis-

tributed scanning, logging the traffic of widespread activities

for further analysis, or placing the results of widespread web

searches in cache for quicker response. Let Wi be the set of

w-widespread events in Ei,

Wi = {e : e ∈ Ei, f(e) ≥ w}. (1)

The sets of w-widespread events at different monitors may not

be identical because any w-widespread event may be observed

by some monitors but not others. We denote the union of Wi,

1 ≤ i ≤ a, as W∗.

Exactly finding Wi for each monitor can be very expensive

when there are many monitors and each monitor has numer-

ous events. If the function of widespread event detection is

performed frequently for real-time reaction and all monitors

need to send their events (or event identifiers) to the coordi-

nator for precise identification, the communication overhead

can be extraordinarily high, particularly for the coordinator.

Now if we relax the requirement by performing detection

approximately, we may be able to reduce the overhead to a

small fraction of the brute-force approach of sending the raw

event sets to the coordinator. As have been argued earlier,

many applications can tolerate inaccurate identification of

w-widespread events. For example, if there are false pos-

itives where some non-widespread events are classified as

widespread, the applications of logging widespread activities

or caching widespread web searches should work fine as

long as the false positive ratio is made sufficiently small.
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Even for applications that require precise identification of w-

widespread events, an approximation solution may still help

as it can be used as a pre-processing step to filter out most

non-widespread events and thus allow the monitors to only

transmit the much-reduced approximate sets of widespread

events to the coordinator.

Let Ŵi be the approximate w-widespread event set iden-

tified at monitor xi. This paper considers the probabilistic

threshold-based widespread detection, which aims to find Ŵi

at each monitor xi with probabilistic guarantee that consists

of the following two requirements:

• Completeness requirement: ∀i ∈ [1, a],Wi ⊆ Ŵi.

We require every member in Wi must belong to the approx-

imate w-widespread event set Ŵi. That is, for an arbitrary

monitor xi, it must find all w-widespread events.

• False positive ratio requirement: ∀i ∈ [1, a], ∀e ∈

Ei − Wi, εi = Prob{e ∈ Ŵi} is the false positive

ratio at monitor xi. Let ε = max
1≤i≤a

{εi} be the worst-

case false positive ratio. We require that ε ≤ ε∗, where

ε∗ ∈ (0, 1) is a false positive upper bound pre-defined

based on application needs.

For an event at monitor xi that is not w-widespread, the

false positive ratio εi is the probability that this event is mis-

classified to Ŵi, which should be upper-bounded by ε∗. For

example, when ε∗ is set to 0.01, we require that the false

positive ratios of all monitors are less than 0.01. Clearly,

a smaller value of ε (≤ ε∗) means more accurate detection

results.

Since all monitors communicate with the coordinator, the

communication amount of traffic received/sent by the coordi-

nator is a primary performance concern. Therefore, we strive

to reduce the communication of the coordinator. Meanwhile,

we should also reduce the communication and computation

overhead at each monitor.

We formulate two optimization goals in our solutions.

For the first one, given an upper bound of communication

overhead that the system can tolerate, we minimize the worst-

case false positive ratio at any monitor, i.e., ε = max
1≤i≤a

{εi}.

For the second one, given a preset accuracy requirement ε∗,

we minimize the total amount of communication overhead.

C. Naive Solution

As we mentioned earlier, a naive solution to calculate

Wi for each monitor xi is using raw data transmission.

Each monitor stores the observed events locally and transmit

those events to the coordinator at the end of each reporting

period. The coordinator combines all received data, identifies

the w-widespread events for each monitor, and then notifies

each monitor its w-widespread event set. Suppose b bits are

required to represent each event. Then the total amount of data

that the coordinator receives from all monitors is
∑a

i=1 b|Ei|,
and the total amount of data that the coordinator sends to all

monitors is
∑a

i=1 b|Wi|. Therefore, the total communication

overhead for the coordinator is
∑a

i=1 b(|Ei|+|Wi|). When the

number of events in each monitor or the number of monitors

is large, this solution incurs significant network traffic at the

coordinator, which is not applicable in practice.

III. RELATED WORK

The emergence of large-scale cooperative monitoring sys-

tems has drawn much research attention over the recent years.

Some researches focus on applying specific aggregate func-

tions for the data collected from distributed monitors, includ-

ing threshold function [8], [9], discovering top-k [12], heavy

hitters and quantiles [13], [14], and set expression cardinality

estimation [15], [16]. Other research focuses on monitoring

distributed data streams [10], [11]. Also related is distributed

database join. Mackert et al. proposed Bloomjoin [17] to re-

duce communication cost for joining two distributed data sets.

Michael et al. [18] studied the intersection of multiple lists

in a distributed system without a central coordinator, where

a series of two-list join is performed sequentially among

distributed lists. This sequential approach takes long time

when there are a lot of lists. Chen et al. [5] performs sequential

joins among event monitors arranged in a hypercube structure.

Most related is the work by Cai et al. [4] on widespread event

detection. However, their techniques are limited to detect

widespread events that are observed at all monitors. To the

best of our knowledge, we are the first to introduce and solve

the probabilistic threshold-based widespread event detection

problem, where widespread events are defined based on a

parameter w that can be set based on application needs.

IV. THRESHOLD FILTER SOLUTION

We present a threshold filter solution (TFS) as the starting

point for solving the probabilistic threshold-based widespread

event detection.

A. Bloom Filter and Counting Bloom Filter

A Bloom filter [19] is a bit array used to encode mem-

berships of a set. In our context, to encode an event in the

set from a monitor, we pseudo-randomly select k bits in the

filter through k hash functions, and set these bits to ones. For

membership lookup of a given event, we map it to k bits in

the filter using the same hash functions. If all k bits are ones,

we classify that this event belongs to the set; otherwise it is

not in the set.

A Bloom filter does not have false negative, meaning that

it never mis-classifies a member event in the set as a non-

member. But it may have false positive, meaning that it may

mis-classify a non-member as a member. The probability for

this to happen is called false positive ratio, which should be

made sufficiently small. Let n be the number of events in

the set, and m be the number of bits in the filter. The false

positive ratio Pf is

Pf =
(
1−

(
1−

1

m

)kn)k

≈
(
1− e

−kn
m

)k
. (2)

It is well known that when k = ln 2 · m
n , Pf is minimized

to ( 12 )
k = (0.6185)

m
n . For example, when m = 8n, the false

positive ratio is minimized to 0.02 when k takes the optimal

value of 5. Under the optimal k value, each bit in the filter

has a 50% probability to be 0.

A counting Bloom filter [20], [21] replaces each bit in

Bloom filter with a counter, which is initialized to zero. When

encoding an event, we hash the event to k counters and

increase those counters by one.
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Fig. 1: An example of the threshold filter solution.

B. Main Idea

Bloom filters provide compact representation of event sets.

Sending them instead of raw data from monitors to the coordi-

nator helps reduce communication overhead. Counting Bloom

filters use counters to keep event multiplicity information,

which is what the widespread event detection needs. One

idea is for each monitor xi to encode its event set Ei in

a counting-Bloom filter and for all monitors to send their

counting-Bloom filters to the coordinator, which combines the

filters into a single counting-Bloom filter for E∗ by adding

the corresponding counters in all received filters. However,

this approach is not very communication-efficient because

the size of a counting-Bloom filter is multiple times that of

a Bloom filter, depending on the counter size which has to

accommodate the largest counter value in the whole filter.

To ensure communication efficiency, our approach will

not use a separate counting Bloom filter at each monitor.

Instead we let each monitor xi use a simple Bloom filter

BFi to encode Ei and send the filter to the coordinator. After

receiving such Bloom filters from all monitors, the coordinator

combines them into a single counter filter A by adding the

corresponding bits in the received filters. A will be different

from the counting-Bloom filter (CB) for Ei, which we will

show through an example. The coordinator then turns A back

into a bit filter called the threshold filter T , which is then

filtered by BFi before being sent to monitor xi for detecting

all w-widespread events in Ei.

C. Design Details

At the end of each reporting period or upon query from

the coordinator, every monitor xi encodes its event set Ei in

a Bloom filter BFi of m bits, and then sends BFi to the

coordinator. Figure 1 gives an example with k = 2, a =
3, w = 2, and W∗ = {e1}. The value of m controls the

communication overhead. We will discuss how to set its value

in the next section where we analyze the system parameters.

When the coordinator receives all a Bloom filters

{BFi, 1 ≤ i ≤ a}, it combines them into a single counter

array A by adding them up: A[j] =
∑a

i=1 BFi[j], 1 ≤ j ≤ m,

where A[j] refers to the jth counter in A and BFi[j] refers to

the jth bit in the filter BFi. A is different from the counting-

Bloom filter (CB) for the union E∗ of {BFi, 1 ≤ i ≤ a},

which is also shown in the middle of Figure 1 under A.

Next the coordinator converts the counter array A into a bit

array called master threshold filter T as follows: If A[j] ≥ w,

T [j] = 1; otherwise, T [j] = 0, where T [j] refers to the jth

bit of T , 1 ≤ j ≤ m. The intuition is that a w-widespread

event will set the same k bits at the Bloom filters from w
or more monitors. When we add the filters to form A, those

corresponding counters will be at least w. When we convert

those counters back to ones (to save space and communication

overhead), the resulting bit array would become a filter that

encodes the set W∗ of all w-widespread events. Unfortunately,

T is not exactly a Bloom filter for W∗ because a bit in T may

be set to one by “noise” in A, instead of by events in W∗,

which will be explained at the end of this section. That is, T
may have more ones than the Bloom filter for W∗, which is

shown as BF (W∗) below T in the example of Figure 1.

Finally, the coordinator produces an individual threshold

filter Ti for each monitor xi by performing bitwise AND on

T and BFi. It then sends Ti to monitor xi. The idea is that

we shall remove ones in T where the corresponding bits in

BFi are zeros, meaning that no event in Ei is mapped to

those bits. Compare T and T1 in Figure 1. The 7th bit in T is

one, but after bitwise AND with BF1, the bit becomes zero

as no event in E1 = {e1, e2} is mapped to this bit. Upon

receiving Ti, monitor xi performs membership lookup for all

its events in Ei. An event is classified as a w-widespread

event if its k bits in Ti (which the event is hashed to) are all

ones; we denote such classified events as a subset Ŵi ∈ Ei.

Note that the false positive ratio of filter Ti is denoted as εi
in Section II-B.

For example, in Figure 1, when x1 looks up for e1 and e2 in

filter T1, it will find that only e1 is a member and thus Ŵ1 =
{e1}, which is correct. Similarly, x2 finds Ŵ2 = {e1, e3},

including a false positive e3, and x3 finds that Ŵ3 = {},

which is also correct.

Following the structure of TFS, it is straightforward to

show by the following proposition that Ti does not cause

false negative, i.e., Wi ⊆ Ŵi, which means the completeness

requirement is met.

Proposition 1: ∀e ∈ Wi, e ∈ Ŵi after execution of TFS,

for 1 ≤ i ≤ a.

Proof: For an arbitrary event e in Wi, it must be observed

in w′ monitors, where w ≤ w′ ≤ a. Denote these w′ monitors

as xi1 , xi2 , . . . , xiw′ . The k bits that e maps to will all be

ones in Bloom filters BFi1 , BFi2 , . . . , BFiw′ . Thereby the

corresponding k counters in the counter array A must all be
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at least w′. Since w′ ≥ w and e ∈ Ei, those k counters will

be converted to ones in the corresponding k bits in the master

threshold filter T , as well as in its threshold filter Ti. When

the monitor xi performs the membership lookup for the event

e, it will find all k bits for e are set to ones in Ti, and thus

include it in Ŵi.

The false positive ratio requirement will be met by setting

the system parameters m and k appropriately in the next sec-

tion, where m controls the communication overhead. Setting

these Bloom-filter parameters is tricky as we show below

that the intuitive thought of using optimal Bloom filters BFi,

1 ≤ i ≤ a, as described in Section IV-A, may result in poor

performance.

We use simulations to test the performance of TFS under

optimal Bloom filters BFi, 1 ≤ i ≤ a. The number a of

monitors is set to 10. The number n of events in each monitor

is set to 10,000. We set the length m of each Bloom filter BFi

to 8n or 15n. We use the optimal k value for each filter, i.e.,

k = ln 2 · m
n . The event frequency f(e), e ∈ E∗, follows a

zipf distribution in [1, a]. The simulation is repeated for 100

times to obtain statistical results.

We never observe any false negative in the simulations,

which confirms Proposition 1 empirically. Figure 2 presents

the performance of TFS, where x-axis shows the threshold

value w from 2 to 10, and the y-axis shows the worst-case

false positive ratio ε, which is the largest among εi, 1 ≤ i ≤ a,

i.e., the false positive ratio of individual threshold filter Ti.

The figure shows that ε becomes larger when w becomes

smaller. For example, with m = 8n, as w decreases from 10

to 2, ε increases from near zero to 0.86. Clearly, optimizing

BFi does not necessarily make Ti perform well, particularly

for a small w, which means we need to set the parameters of

BFi differently.

We provide an intuitive explanation of the above obser-

vation. For optimal BFi with k = ln 2 · m
n , the probability

for any of its bits to be one (or zero) is 0.5. When we add

BFi, 1 ≤ i ≤ a, to produce A, any counter in A has an

average value of a
2 , which represents a pervasive noise level

in A. Now consider the k counters for an event that is not

w-widespread, if the threshold w is small, the noise in those

counters (at a level of a
2 ) can easily go beyond the threshold,

causing a false positive, since the corresponding k bits in Ti

are all ones (with those k counters greater than or equal to

w). Intuitively, we will need to reduce the value of k for BFi

and thus the probability for bits in BFi to be ones, in order

to reduce the noise level in A and thus the number of ones

in T , which in turn helps reduce the false positive ratios of

individual threshold filters Ti.

V. OPTIMAL THRESHOLD FILTER SOLUTION

In this section, we analyze the optimal parameter setting,

and the resulting optimal threshold filter solution is OTFS.

A. Parameter Optimization

There are two types of optimization. The first is to choose

the optimal number k of hash functions that minimize the

worst-case false positive ratio of the threshold filters Ti,

Threshold w

F
a
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e
P
o
s
it
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e
R
a
t
io

ε

m =8n

m =15n

Fig. 2: False positive ratios of TFS under optimal BFi.

subject to a given size m of BFi, 1 ≤ i ≤ a, which is set to

limit the communication overhead between the monitors and

the coordinator. This optimization problem is fundamentally

different from setting the optimal k for a Bloom filter to

minimize the same filter’s false positive ratio. We are setting

the k value for BFi to minimize the worst-case false positive

ratio of Ti, 1 ≤ i ≤ a. The second optimization is to choose

the optimal number k of hash functions that minimizes the

size m of BFi, i.e., the communication overhead between

the monitors and the coordinator, subject to an upper bound

ε∗ for the false positive ratios of Ti, 1 ≤ i ≤ a.

The second optimization is to choose the optimal number

k that minimizes the size m of BFi, i.e, the communication

overhead between the monitors and the coordinator, subject

to an upper bound ε∗ for the false positive ratios of Ti, 1 ≤
i ≤ a.

1) First Optimization OTFS-I: Let n∗ = max
1≤i≤a

{|Ei|}, and

pi denote the probability that a bit in BFi is 0, 1 ≤ i ≤ a.

According to [22], we have

pi =
(
1−

1

m

)k|Ei|
≈ e−

k|Ei|

m . (3)

Let p∗ be the value of pi when |Ei| = n∗. That is,

p∗ =
(
1−

1

m

)kn∗

≈ e−
kn∗

m . (4)

Clearly, p∗ is the minimum value of pi,

pi ≥ p∗, ∀1 ≤ i ≤ a. (5)

Consider an arbitrary event e whose frequency f(e) is smaller

than w. We analyze the worst-case probability ε for it to be

mis-classified as a w-widespread event. Event e is hashed

to the same k bits in Ti and BFi, 1 ≤ i ≤ a. False

positive happens when these k bits in Ti are all ones, i.e.,

the corresponding k counters in A are greater than or equal

to w. Consider an arbitrary one of these k bits, and let j be

the bit index. Let P be the probability of A[j] ≥ w. It is easy

to see that when P is maximized,

ε = P k. (6)

A[j] is the sum of BFi[j], 1 ≤ i ≤ a. Because e appears at

f(e) monitors, the corresponding Bloom filters have ones at

index j, which means A[j] is at least f(e). Let Π be the set of

Bloom filters from monitors where e does not appear. Hence,

P is the probability for at least w− f(e) filters in Π to have
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one at index j, each happening with a probability 1−pi. P is

maximized under the following conditions: i) f(e) = w − 1,

i.e., it suffices for any filter in Π to have one at index j; ii)

pi = p∗, i.e., the probability for any filter in Π to have one

at index j takes the maximum value 1− p∗ from (5). That is,

the worst case happens when all event sets have the same size

n∗. Under these conditions, the probability for all (a−w+1)
filters in Π to have zero at index j is (p∗)a−w+1. Hence, in

the worst case,

P = 1− (p∗)a−w+1. (7)

From (6) and (7), we have

ε =
(
1− (p∗)α

)k
, (8)

where we define joint differential α = a− w + 1.

Upon query from the coordinator, all monitors report their

event sizes |Ei|, 1 ≤ i ≤ a, to the coordinator, which

finds the maximum event set size n∗. If the coordinator has

a communication constraint that limits the amount of the

traffic between itself and the monitors, it sets the value of

m such that the total traffic, m · a bits, does not exceed the

constraint. We can assume that m > n∗, which is reasonable

for any Bloom filter of practical use because otherwise the

false positive ratio would be too high (62% or more). The

coordinator finds the optimal value k that minimizes the false

positive ratio ε of Ti in (8) as follows: Since p∗ = e−
kn∗

m by

definition, we have k = −m ln(p∗)
n∗ . Apply it to (8), we have ε

as a function of p∗,

ε =
(
1− (p∗)α

)−m ln(p∗)
n∗ =

(
e− ln(p∗)·ln(1−(p∗)α)

) m
n∗ . (9)

Let β = − ln(p∗) · ln(1− (p∗)α). Since m > n∗, in order to

minimize ε in (9), we shall minimize β. Taking derivative of

β with respect to p∗, we have

dβ

dp∗
=

(p∗)α ln
(
(p∗)α

)
−
(
1−(p∗)α

)
ln
(
1−(p∗)α

)
p∗·(1−(p∗)α) . (10)

It is easy to check that dβ
dp∗ is 0 when (p∗)α = 1

2 . Furthermore,

from the symmetry of the expression of dβ
dp∗ , it is easy to

check that dβ
dp∗ is negative for 0 < (p∗)α < 1

2 and positive

for 1
2 < (p∗)α < 1. Hence, β (also ε) is minimized when

(p∗)α = 1
2 . Because k = −m ln(p∗)

n∗ , we have the optimal

value for k as

k = ln 2 ·
m

αn∗
. (11)

Applying it to (8), we have the optimal false positive ratio ε,

ε = (
1

2
)ln 2· m

αn∗ . (12)

In practice, we must use at least of one hash function. Hence,

k = max{1, 
ln 2 ·
m

αn∗
�}. (13)

The optimal threshold filter solution that chooses k by (13),

subject to the value of m, is named as OTFS-I, which attempts

to minimize the worst-case false positive ratio of Ti, 1 ≤ i ≤
a. After finding the value k, the coordinator sends m and k
to all monitors, which will construct BFi, 1 ≤ i ≤ a.

Threshold w
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Fig. 3: False positive ratios of TFS and OTFS with m = 30n∗.

2) Second Optimization OTFS-II: Suppose the coordinator

sets an upper bound ε∗ for the false positive ratio of Ti,

1 ≤ i ≤ a. Under this requirement, we want to find the

optimal value k that minimizes the size m of BFi, i.e.,

the communication overhead between the monitors and the

coordinator. The optimal threshold filter solution that achieves

the above goal is OTFS-II, whose parameters are set as

follows. From earlier analysis, we know that under any value

of m, the best possible false positive ratio is given by (12)

under the optimal k in (11). Replacing ε in (12) with its upper

bound ε∗, we derive the minimum value of m for such a false

positive ratio,

m = −
α ln ε∗

(ln 2)2
· n∗. (14)

Applying (14) to (11), we have

k = −ln ε∗/ln 2. (15)

Because k must be a positive integer, we set

k = max{1, 
−ln ε∗/ln 2�}. (16)

The coordinator sends the computed m and k to all monitors.

B. Numerical Results

We use simulations to compare TFS using optimal BFi

(Section IV) and OTFS-I. We set the value m to be 15n∗.

Figure 3 presents the average false positive ratios of individual

threshold filters Ti with respect to the threshold w. Clearly,

OTFS-I outperforms TFS with much smaller false positive

ratios. When the threshold w decreases, the false positive ratio

moves up, which is also expected from (12). When w is very

small (such as 3), the false positive ratio is 0.18 when m =
30n∗. To reduce the ratio, we will have to further raise m (thus

the communication overhead). Can we increase m without

causing higher communication overhead? This is what the

compressed threshold filter solution will do next.

VI. COMPRESSED THRESHOLD FILTER SOLUTION

A. Motivation

Consider OTFS-I. Its number of hash functions, computed

from (11) as k = ln 2 · m
αn∗ , is smaller than that of an optimal

Bloom filter, i.e., k = ln 2 · m
n∗ for encoding n∗ events.

For an optimal Bloom filter, each bit has an equal chance

to be one or zero. The filter cannot be further compressed.

The communication overhead for its transmission is m bits.
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However, BFi in OTFS-I is constructed with a smaller value

of k. Hence, BFi is not an optimal Bloom filter. In fact, each

of its bits has a greater chance to be zero, which means the

filter can be compressed to reduce communication overhead

[23].

Suppose we have a constraint for the communication over-

head to be bounded by 2az, where z is per-filter overhead.

If we send the filters BFi uncompressed, then m = z, which

is the case in the previous section. But if we compress the

filters before sending, we disconnect m from the overhead,

and can therefore increase it to reduce the false positive ratio;

see Figure 3. Similar to OTFS, there are also two types of

optimization. The first is to choose the optimal values of k
and m that minimize the worst-case false positive ratio of the

individual threshold filters Ti, subject to a given maximum

size z of BFi after compression, 1 ≤ i ≤ a. The second

optimization is to choose the optimal values of k and m that

minimizes the maximum size z of BFi after compression,

subject to an upper bound ε for the false positive ratios of Ti,

1 ≤ i ≤ a. The size m of BFi before compression can be

much larger than z.

We point out that the idea of compressed Bloom filters

was proposed in [23], but our work is completely different.

We optimize the performance of threshold filters Ti when

the Bloom filters BFi are compressed before transmission.

Threshold filter is a new concept in this paper, not in [23].

B. Design of CTFS

Upon query from the coordinator, all monitors report their

event sizes |Ei|, 1 ≤ i ≤ a, to the coordinator, which finds the

maximum event set size n∗. Depending on which optimization

will be used, the coordinator determines the values of the

system parameters k and m (see the next subsection). It then

sends k and m to all monitors. Each monitor xi encodes its

event set Ei in a Bloom filter BFi of m bits, and compresses

the filter before transmitting it to the coordinator. Upon receipt

of all compressed filters, the coordinator decompresses them

to recover BFi, 1 ≤ i ≤ a. It adds them to produce A and then

the master threshold filter T as described in Section IV-C. It

produces individual threshold filters Ti by performing bitwise

AND on T and BFi. It compresses Ti before sending it to

monitor xi. Ti has no more ones than BFi (which contains

more zeros than ones); in fact, all bits of ones in Ti must be

ones in BFi. Therefore, the size of Ti will be no greater than

that of BFi after compression. After monitor xi receives its

compressed threshold filter, it decompresses it to recover Ti.

Monitor xi performs membership lookup for all its events in

Ei. An event is classified as a w-widespread event if its k
bits in Ti (which the event is hashed to) are all ones.

CTFS is similar to OTFS except for the compression

/ decompression component. This seemly small difference

in operation has significant impact on performance. CTFS

performs much better than OTFS under the same overhead

constraint or the same false positive requirement. Technical-

ly, the addition of compression / decompression makes the

optimization problems much harder, which we will address

next.

C. Parameter Optimization

From the compression limit in Shannon’s source coding

theorem [24], for an m-bit Bloom filter BFi in which each

bit has a probability pi to be 0, it can be compressed down

to mH(pi) bits, where pi is given by (3) and H(pi) =
−pi log2(pi) − (1 − pi) log2(1 − pi) is the binary entropy

function. In the worst case, mH(pi) is maximized to mH(p∗)
when pi takes the minimum value p∗ as specified in (4).

1) First Optimization CTFS-I: Given the maximum event-

set size n∗ and an upper bound z for the size of any

compressed filter, we want to decide the values of k and m
that minimize ε, subject to mH(p∗) ≤ z, where z > n∗. We

know that a larger filter size m helps reduce false positive.

So we choose the largest value by letting

m =
z

H(p∗)
. (17)

Combining it with (9) for the worst-case false positive ratio

of threshold filters, we have

ε =
(
1− (p∗)α

) −z ln p∗

n∗H(p∗) =
(
e−

ln(p∗)·ln(1−(p∗)α)
H(p∗)

) z
n∗

=
(
exp( ln(p∗)·ln(1−(p∗)α)

(log2 e)(p∗ ln(p∗)+(1−p∗) ln(1−p∗)) )
) z

n∗ .
(18)

Define γ to be the exponent inside the parentheses,

γ =
ln(p∗) · ln(1− (p∗)α)

p∗ ln(p∗) + (1− p∗) ln(1− p∗)
. (19)

Since z > n∗ and log2(e) > 0, in order to minimize ε, we

shall minimize the exponent γ. Appendix A of the supplement

material [25] shows that γ decreases as p∗ increases when

α > 1. To minimize γ, we need to maximize p∗. Initially,

let’s assume that p∗ can take any value from 0 to 1. The

proof of the following lemma can be found in Appendix A

of the supplement material [25].

Lemma 1: Given any value α ≥ 1, γ is minimized in the

limiting case to −1 as p∗ goes to 1.

Theorem 1: For an arbitrary value α ≥ 1, the minimal false

positive ratio ε is (0.5)
z
n∗ .

Proof: According to Lemma 1, γ is minimized in the

limiting case as p∗ goes to 1. The value of ε is minimized

when γ is minimized. In this limiting case, γ goes to -1, and

ε goes to e
− z

n∗ log2 e = (0.5)
z
n∗ .

In theory, we can achieve a false positive to (0.5)
z
n∗ by

approaching p∗ to 1. However, P ∗ cannot take arbitrary

values. It is a function of integer k. In order for p∗ to approach

to 1, according to (4), k should approach to zero, which is

not possible. In practice, if we set k to its smallest value

of 1, p∗ takes its maximum practically-possible value e−
n∗

m ,

which in turn minimizes γ (and thus ε), since γ monotonically

decreases as p∗ increases. Consequently, with the use of

compressed filters, the optimal value of k should be set to

one, for the optimization problem of minimizing the false

positive ratio of threshold filters under the constraint of per-

filter communication overhead of z bits. A small value for

k has an additional benefit that construction of the Bloom

filters BFi and lookup of the threshold filters Ti require

fewer hash operations, which saves computation overhead.
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Although compression and decompression require additional

computation, they are one-time cost, and there are extremely

efficient algorithms to do so [26].

With k = 1, we can compute the optimal value of

m, together with the corresponding value of p∗, from the

equations of (17) and (4). Applying k = 1 to (4), we have

p∗ = e−
n∗

m . (20)

Applying (17) to (20) to eliminate m, we have

p∗ = e−n∗H(p∗)/z. (21)

We can solve the above equation numerically for the value of

p∗. We then apply this value back to (17) for the optimal value

of m. We use CTFS-I to denote the compressed threshold filter

solution that uses the optimal values of k and m as computed

above. Applying the computed value of p∗ to (18), we can

find the worst-case false positive ratio of the threshold filters

under the optimal values of k and m.

2) Second Optimization CTFS-II: Given the maximum

event-set size n∗ and an upper bound ε∗ for the false positive

ratios of the threshold filters, we want to decide the values of

k and m that minimize the worst-case compressed filter size

z for transmission. From (17) and (4), we have the worst-case

filter size after compression as

z = −kn∗H(p∗)/ln(p∗). (22)

Replacing ε in (8) with ε∗, we have

k = ln ε∗/ln(1− (p∗)α). (23)

Applying (23) to (22), we have

z = − H(p∗) ln ε∗n∗

ln(p∗) ln(1−(p∗)α)

=
p∗ ln(p∗) + (1− p∗) ln(1− p∗)

ln(p∗) · ln(1− (p∗)α)
n∗ log2 e ln ε

∗.
(24)

According to (19), the fraction term on the right is 1
γ . Hence,

z =
1

γ
n∗ log2 e ln ε. (25)

The value of γ is negative. We know earlier that it decreases

as p∗ increases. Hence, its absolute value increases as p∗

increases. To minimize z, we want to maximize the absolute

value of γ, which means maximizing the value of p∗. The

values of p∗ and k are connected through (8), for a given value

of ε∗. According to (8), in order to maximize p∗, we shall

minimize k to its smallest possible value of one. Applying

k = 1 and (4) to (8), we simplify it to

ε∗ = 1− (p∗)α = 1− e−
αn∗

m . (26)

m = −αn∗/ln(1− ε∗). (27)

Applying (27) and k = 1 to (4), we can find the value of p∗

under the optimal values of m and k:

p∗ = e
ln(1−ε)

α . (28)

Finally, applying this p∗ value and k = 1 to (22), we will

get the minimized filter size z after compression in the worst

case.

VII. SIMULATIONS

In this section, we evaluate the performance of OTFS and

CTFS through simulations. Since this is the first work on

threshold-based widespread event detection, there is no prior

work to compare with. Therefore, we will use our baseline

approach, TFS with optimal Bloom filters BFi (Section IV),

as a benchmark for comparison. The most related work [4]

is a special case of our generalized solution. In fact, when

w = a, the proposed solution reduces nicely to [4]. Namely,

the two will have the same performance. However, the method

in [4] cannot handle any case of w < a.

A. Simulation Settings

We consider two types of optimization as described in

Section V and Section VI. The first optimization is to min-

imize the worst-case false positive ratio ε of the threshold

filters when per-filter transmission overhead is bounded by

m for OTFS and z for CTFS. The second optimization is

to minimize the communication overhead concentrated at

the coordinator, subject to a preset false-positive ratio upper

bound ε∗.

The default number of monitors a is set to 10 though we

will vary it for scalability study. The number |Ei| of events

at each monitor is randomly chosen from [100000, 500000]
with max value n∗ = 500000. Each event has a 64-bit unique

identifier. The frequency f(e) of event e ∈ E∗ follows a zipf-

like distribution in [1, a]. When studying the first optimization,

we vary the per-filter overhead bound m (z), with m for

TFS/OTFS and z for CTFS. We compare the average false

positive ratio of all monitors under different solutions, includ-

ing TFS with optimal Bloom filters, OTFS-I and CTFS-I, with

respect to m (z). For the second optimization, we vary the

false-positive ratio upper bound ε∗, and compare the overall

communication overhead at the coordinator under different

solutions, including OTFS-II and CTFS-II, with respect to

ε∗. TFS with optimal Bloom filters is not included here

because it cannot guarantee a false positive upper bound.

Each simulation is repeated for 100 times to obtain statistical

results.

B. Performance w.r.t. Per-filter Overhead Bound

In the first set of simulations, we compare the perfor-

mance of TFS, OTFS-I and CTFS-I with respect to the per-

filter transmission overhead bound m (z), where m is for

TFS/OTFS-I and z is for CTFS-I. The simulation results for

threshold w = 3 and w = 8 are given in Figure 4, where

x-axis shows the per-filter transmission overhead bound m
(z) in units of n∗. Since similar comparisons are observed for

other threshold values w, we omit those to save space.

Figure 4a and Figure 4c compare the average false positive

ratios of TFS, OTFS-I and CTFS-I when w = 3 and w = 8,

respectively. OTFS and CTFS are based on TFS, thereby they

all meet the completeness requirement in Section II-B. Thus,

a smaller false positive ratio means more accurate detection.

When the threshold value is large (e.g., w = 8 as shown in

Figure 4c), all solutions can achieve very accurate detection

with false positive ratios consistently below 0.01. When the

threshold value is relatively small (e.g., w = 3 as shown
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Fig. 4: Performance comparison of TFS, OTFS-I and CTFS-I with respect to per-filter communication overhead m (z) when
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Fig. 5: False positive ratio of CTFS-I with respect to per-filter communication overhead bound z under different monitor

number a

(a) w = 3 (b) w = 3 (c) w = 8 (d) w = 8

Fig. 6: Performance comparison of OTFS-II and CTFS-II with respect to false positive ratio bound ε∗

in Figure 4a), the false positive ratios of TFS and OTFS-I

become large, while that of CTFS-I stays small, ranging from

0.0004 to 0.03, which is expected because compression makes

CTFS-I more effective in information transfer for the same

communication overhead. One can also see that the accuracy

of our solutions all improve when m (z) increases, which is

consistent with our earlier theoretical analyses.

Figure 4b and Figure 4d compare the actual communication

overhead of different solutions. Clearly, CTFS-I incurs much

less communication overhead than TFS and OTFS-I under the

same per-filter bound. This is because CTFS-I compresses

filters before transmission, and the compression ratios vary

with different sparsity in the filters. More sparse filters will

have higher compression ratios, thereby saving more com-

munication overhead. These results demonstrate the superior

performance of CTFS-I.

C. Detection Accuracy w.r.t. Number of Monitors

Next, we evaluate the performance of CTFS-I with respect

to different number of monitors, a. We vary a from 10 to 20

to 40. The results are presented in Figure 5. From the figure,

under the same threshold w, the detection accuracy (i.e., false

positive ratio) becomes slightly worse as a increases. For

example, in Figure 5b, when w = 8 and z = 10n∗, the

false positive ratio is 0.0002 when a = 10, 0.0008 when

a = 20, and 0.0028 when a = 40. Intuitively, a larger number

of monitors will incur more noise in the filter A, which will

cause more false positives, as explained in Section IV-C.

D. Performance w.r.t. False Positive Ratio Bound

In the last set of simulations, we compare the performance

of OTFS-II and CTFS-II with respect to the false-positive

ratio bound ε∗. The simulation results with w = 3 and
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w = 8 are shown in Figure 6, where ε∗ varies from 0.005
to 0.05. Figure 6b and Figure 6d present the average false

positive ratios among all monitors. We can see that the average

false positive ratios for OTFS-II and CTFS-II are smaller

than the preset upper bound, which conforms to their design

goals. Figure 6a and Figure 6c compare the communication

overhead of the two solutions, where the overhead is defined

as the amount of data that is received and sent by the

coordinator. CTFS-II incurs far less communication overhead

than OTFS-II under every threshold value w. For example,

when w = 3 and ε = 0.03, the overhead of CTFS-II is

only 38Mb, far less than 583Mb of OTFS-II, thanks to its

communication reduction by compression. This confirms the

superior performance of CTFS-II as its compression design

intends to achieve.

VIII. CONCLUSION

In this paper, we introduce and formalize a new problem

of probabilistic threshold-based widespread event detection

in large networks. We first propose a threshold filter solution

(TFS) based on highly compact Bloom filters, from which

we develop two improved solutions, optimal threshold filter

solution (OTFS) and compressed threshold filter solution

(CTFS). OTFS theoretically optimizes the communication

cost by selecting appropriate parameters for Bloom filters.

CTFS further introduces compression and decompression for

transmitting Bloom filters. We not only theoretically analyze

their performance, but also perform extensive simulations

to complement the theoretic analysis. The simulation results

demonstrate that our solutions can efficiently provide accurate

threshold-based widespread event search results with low

communication cost.
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