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Abstract—Thanks to the proliferation of Internet access and
modern digital and mobile devices, online survey has been
flourishing into data collection of marketing, social, financial and
medical studies. However, traditional data collection methods in
online survey suffer from serious privacy issues. Existing privacy
protection techniques are not adequate for online survey for
lack of strong privacy. In this paper, we propose a practical
strong privacy online survey scheme SPS based on a novel
data collection technique called dual matrix masking (DM2),
which guarantees the correctness of the tallying results with
low computation overhead, and achieves universal verifiability,
robustness and strong privacy. We also propose a more robust
scheme RSPS, which incorporates multiple distributed survey
managers. The RSPS scheme preserves the nice properties of
SPS, and further achieves robust strong privacy against joint
collusion attack. Through extensive analyses, we demonstrate our
proposed schemes can be efficiently applied to online survey with
accuracy and strong privacy.

I. INTRODUCTION

The proliferation of Internet access and modern digital

and mobile devices has sparked interest in online data

collection, which has resulted in a vast amount of online

surveys conducted among different individuals, organizations

and institutions across the world. According to the ESOMAR

report [1], global marketing research spent over 40 billion

dollars in 2013 to collect people’s marketing strategies.

Creating new and expanded meanings to surveys, online

survey [2]–[5] has many advantages over the conventional

data collection methods such as face-to-face, mail and

telephone surveys: It can establish asynchronous contacts

with respondents on the move, achieve faster, simpler and

cheaper surveys, improve the quality of survey responses,

extend contacts across national boundaries, and adjust through

different situations.

However, great benefit comes with great risk. With

its tremendous advantages, online survey also face major

challenges. One serious concern is privacy [5]–[7]. As the

collected data become more vulnerable and can be abused

easier than before, many online survey participants worry

about unauthorized disclosure of their submitted responses.

Due to the lack of trust in confidentiality protection [8],

they may refuse to participate in online survey or consent to

research but purposely provide wrong information. Therefore,

protecting the privacy of survey data is crucial to avoid

reluctance in online survey participation. Today’s common

practice of online survey data management is to collect

data by trustworthy parties such as authorized institutions

and organizations, and store the data at their servers, which

will be protected through means of access control, personnel

training, encryption and de-identification. However, it has

been demonstrated that these traditional methods can hardly

provide the high level of confidence [9]. They are ineffective

against internal attacks by system administrators, principal

investigators or data analysts who have access to the raw data

and intend to steal them for personal benefits.

We define two privacy models for online survey: weak
privacy and strong privacy. With weak privacy, although

the raw survey data from each participant are collected,

anonymous data submission is ensured by hiding the identity

of each participant. However, linkage attacks [10] [11] can

occur in small-count cases where the adversary is able to guess

out the identities of some participants based on the raw survey

data. With strong privacy, which is the subject studied in this

paper, anonymous data submission is not required, but the

raw data must be randomized before leaving the participant,

and no one in the system can recover the raw data from the

randomized data. In other words, you know someone provides
data, but you do not know what the data are. We do not find

any prior work that achieves strong privacy for online survey.

There only exists work on weak privacy [12]–[15]: you know
what the data are, but you do not know which person provides
which data. This paper attempts to achieve strong privacy.

In this paper, we propose two practical strong privacy

preserving schemes, SPS and RSPS, to remove the major

obstacles in online survey. Our SPS scheme is based on a

novel and efficient data collection technique called dual matrix
masking (DM2). Ensuring that the raw response data stay with

their original sources and the data collector (survey manager)

only collects masked data, SPS retains the utility of the survey

data from the tallying point of view, and guarantees strong

privacy for individual participants because the raw survey

response will not be available to any adversary. SPS also

achieves the universal verifiability such that any participant can

independently check whether the survey outcome corresponds

to the published result. We then propose a more robust

RSPS scheme, which incorporates multiple distributed survey

managers. RSPS preserves the nice properties of SPS, and

further achieves robust strong privacy against joint collusion

attack. Through extensive analyses on correctness, efficiency,

universal verifiability and robustness, we demonstrate our

proposed schemes can be efficiently applied to online survey

with accuracy and strong privacy.
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The rest of the paper is organized as follows. Section II

formalizes the problem. Section III gives some preliminary

information. Section IV and Section V present our novel SPS

and RSPS schemes, respectively. Section VI summarizes the

related work. Section VII draws the conclusion.

II. PROBLEM FORMALIZATION

A. System model

We consider an online survey system model as illustrated

in Fig. 1, which consists of three software components: client,

participant, and survey manager.

• Client: Representing a government, an organization, a

company or an individual who wants to perform an online

survey, the client-side software initiates the survey through

a survey manager, receives the masked survey data via the

manager, and produces the final tally from those data. The

client-side software may be run by a third-party company

specialized for online survey design and execution, or by a

server set up by the party that conducts the survey. In either

case, we conveniently use the term “client” for the entity

carrying out these operations. We use V to denote a client.

• Participant: Representing people who are invited to

participate in an online survey, the participant software

(executed as a Javascript through browsers or as an app on

mobile devices) masks the user’s response data and submits

the masked data through a survey manager. Depending on the

context, we also use the term “participant” to refer to a person

that submits survey data. Let U denote an arbitrary participant.

• Survey Manager: A server (set up by a commercial

company or non-profit organization) for carrying out online

surveys. It takes survey requests from the client, configures the

surveys based on client requirements, invites and authenticates

participants, collects valid response data from authorized

participants, aggregates the received data, and forwards the

aggregated data to the client. We will first consider the case of

one survey manager and later expand it to multiple managers

for better security. In the latter case, let s be the number of

available managers, which are denoted as M1,M2, · · · ,Ms.

Each survey involves a client, a survey manager, and a

certain number of participants. The client is responsible for

the initialization of the online survey system. The participants

can communicate with the client through a web interface or

a mobile app. They need to first register themselves with the

client to obtain masking keys. After that, the participants can

use the masking keys to generate masked responses and submit

them to the survey manager. The survey manager aggregates

masked data from the participants into group survey data,

which are then sent to the client. Finally, based on the received

group data, the client will generate the final survey result.

B. Problem Statement

Under the above online survey system, we formally define

our problem. The goal is to allow the client to efficiently

obtain the survey result from the participants while protecting

the privacy of each individual participant throughout the

survey process. More specifically, the client first sets up an

Fig. 1. Online survey system model.

appropriate web-based questionnaire, which contains a list of

multiple-choice questions, each allowing the participants to

select one or more response choices. During the data collecting

period, the participants submit their responses to the survey

manager, which will aggregate the responses into group data

and transfer to the client. We want to achieve the following

objectives:

1) Accuracy: The client should get the exact survey result

of the questionnaire with no bias.

2) Efficiency: The computation overhead for the three parties

in the online survey system should be as small as possible.

3) Privacy: The original survey response should never leave

the participant’s device. The adversary should never know

about the original response of any individual participant.

As discussed in the introduction, we define two privacy

models for online survey, weak privacy and strong

privacy. This paper attempts to achieve strong privacy.

4) Fairness: Each authenticated participant can only submit

one valid response. If a participant submits multiple

times, only one response should be counted into the final

tally.

5) Universal Verifiability: Participants can check if

the survey outcome corresponds to published result

independently.

C. Threat Model

We assume a semi-honest model for the survey manager

and the client, which follow the operations of the proposed

scheme but are curious about the data reported from the

participants. We also assume that the key sharing process

between the client and the participants is secure, which

can be achieved through secure authentication protocols

and encrypted communications. Therefore, any external

eavesdropper will not be able to learn the participants’ masking

keys. If an adversary compromises the survey manager, it

does not have more capability than the survey manager in

learning the participants’ data. If an adversary compromises

the client, it does not have more capability than the client in

learning the participants’ data. If an adversary compromises

both the survey manager and the client, it is equivalent to a

joint collusion attack, which we will introduce multiple survey

managers to mitigate.

Our schemes are not designed to guard against participants

from reporting wrong data to the survey manager. However,

20082005711



if a compromised survey manager attempts to report wrong

data to its client, or a compromised client attempts to report

wrong survey result, our schemes can easily detect those

misbehaviors. And even when these happen, our schemes still

make sure that their design goal holds — no raw survey data

is leaked.

Note that there are other active attacks that will affect the

normal usage of the online survey system, such as denial-of-

service (DoS) attack. Those attacks are beyond the scope of

this paper. We focus on preventing privacy disclosure caused

by the online survey scheme itself.

III. PRELIMINARIES

Before presenting our novel schemes for strong privacy

online survey, we first give some preliminary information,

including the matrix masking technique, response formatting

and a simple solution as well as its limitation.

A. Matrix Masking

Matrix masking, which refers to a class of statistical

disclosure limitation (SDL) methods, is one of the most

popular techniques used for data collecting and publishing

with disclosure limitations [16]–[18]. It uses some specific

matrices transforming a data matrix to a masked matrix via

pre- and post- multiplication and a possible addition of noise

or perturbations to protect the confidentiality of statistical data.

For example, Duncan [16] proposes to transform an n×p data

matrix X to the masked data of the form:

X → AXB + C,

where matrix A is a row operator, matrix B is a column

operator, and matrix C is the noise or perturbations added to

the data. There are a wide variety of variations of the standard

matrix masking approach. In our scheme, we adopt matrix

masking as a building block to propose a novel dual matrix
masking (DM2) technique. In particular, two matrices A and

B are used to mask the original data X:

X → AXB, (1)

where A is a random invertible matrix as a row operator, and

B is a random invertible matrix as a column operator. Both

masking matrices are only known to the participants and the

client. We will prove that our online survey scheme based on

DM2 achieves strong privacy and guarantees the same final

tallying result as the original data X .

Lemma III.1 (DM2 - masked data disclosure limitation). The
adversary cannot recover the original data X from the DM2

masked data AXB if it has no knowledge about the masking
matrices A and B.

Proof: Since A and B are invertible, there exits a

sequence of row operations and column operations such that

PA
sA · · ·PA

2 PA
1 AQA

1 Q
A
2 · · ·QA

tA = E,

PB
sB · · ·PB

2 PB
1 BQB

1 Q
B
2 · · ·QB

tB = E,

Fig. 2. An example of the response formatting. In this example, a response
to N = 16 choices is first formatted to a 1 × N data vector, which is then
formatted to an n× p data matrix (p = 6, n = 3). The last 2 empty cells are
both set to be 1 (flag parameters).

and then

A = PA
1

−1
PA
2

−1 · · ·PA
sA

−1
EQA

tA

−1 · · ·QA
2

−1
QA

1

−1
,

B = PB
1

−1
PB
2

−1 · · ·PB
sB

−1
EQB

tB

−1 · · ·QB
2

−1
QB

1

−1
,

(2)

where PA
1 , PA

2 , · · · , PA
sA , PB

1 , PB
2 , · · · , PB

sB and QA
1 , QA

2 , · · · ,
QA

tA , QB
1 , QB

2 , · · · , QB
tB are elementary invertible matrices,

and E is the unit matrix. Therefore, from (1) and (2), the

masked data can be presented as follows:

AXB =PA
1

−1
...PA

sA

−1
QA

tA

−1
...QA

1

−1
X

PB
1

−1
...PB

sB

−1
QB

tB

−1
...QB

1

−1
.

(3)

Since PA
1
−1

, · · · , PA
sA

−1
and QA

1
−1

, · · · , QA
tA

−1
are all

random row operation elementary matrices used for random

row switching, multiplication and adding, without knowledge

of all these random matrices in advance, the adversary cannot

get any information related to the rows of the original data X .

Similarly, since PB
1
−1

, · · · , PB
sB

−1
and QB

1
−1

, · · · , QB
tB

−1
are

all random column operation elementary matrices unknown

to the adversary, the information related to the columns of

the original data X is also protected. More specifically, if the

original data X has a uniform distribution over R
D, where

D is the dimensions of X , the masked data AXB also has

a uniform distribution over R
D. Since the masking matrices

A and B are randomly selected from the set of all invertible

matrices, from the adversary’s point of view, it can only guess

the original data X from R
D with equal probability. Therefore,

the DM2 technique protects the original information of X
as long as the masking matrices A and B are unknown

to the adversary. Note that the data which are masked in

online survey will be made pseudo-random in our schemes.

[17] provides more details, which can be used to prove that

DM2 is complete statistically defensible method of disclosure

limitation. This completes the proof.

B. Response Formatting

As we described in Section II-B, the survey questionnaire

contains several multiple-choice questions that may or may not

specify the number of choices for the participants to select. For
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Fig. 3. An example of our simple solution.

the purpose of facilitating data transmission and processing,

the response of a participant will first be formatted to an N -

dimensional binary vector x, where each 0/1 value in x denotes

the participant unselects/selects the corresponding choice and

N is the total number of all choices in the questionnaire.

Sometimes, the value of N can be very large. Directly using

the data vector x as input data X will cause a scalability

problem since the DM2 masking matrix B will be high-

dimensional, i.e., N × N . To improve the computation and

communication efficiency, the N -dimensional binary vector x
will be further formatted to an n × p binary matrix X by

positioning all binary values from x to X in sequence and

appending flag parameters to the last few empty slots (if any)

in X . Here p is a parameter determined by the client and

n = �Np �. The flag appending will be discussed later. For now,

we just fill the empty slots with 1’s. An example of response

formatting is shown in Fig. 2.

C. A Simple Solution and Its Limitation

With the response of each participant formatted into a data

matrix X , we now propose a simple solution based on the

DM2 technique (i.e., X → AXB). The solution contains the

following three steps, and an example is illustrated in Fig. 3.

• Step 1: Client chooses keys to generate an n×n random

invertible matrix A and a p× p random invertible matrix

B, and distributes A and B to registered participants. For

example, in Fig. 3, participants Ua, Ub and Uc all receive

the masking matrices {A,B} from the client.

• Step 2: Each participant takes the survey, and its response

is formatted to an n × p data matrix X as discussed in

Section III-B. Later X will be masked by the masking

matrices A and B before leaving the participant’s devices;

only the masked data AXB are sent to the survey

manager. As shown in Fig. 3, participants Ua, Ub and

Uc send their masked data AXaB, AXbB and AXcB to

the survey manager M1, respectively.

• Step 3: After receiving data from all participants, the

survey manager aggregates these data into masked group

data AXgB =
∑

AXUB = A
∑

XUB, and sends to the

client. Finally, the client employs de-masking matrices

A−1 and B−1 to recover Xg (i.e.,
∑

XU ), which is the

final result for this survey.

Through the DM2 technique, the simple solution masks

the original data X from the time of data generation at

participant’s devices. The original responses never leave the

participants, and the tallying can be performed directly on

the masked data. However, it may still leak some important

information since all participants use the same masking

matrices and the data matrix X comes from a small binary

space. For instance, some participants may submit a same

response. If one response is revealed, the adversary can obtain

the responses of all people who submit the same response,

which is not acceptable. To address this problem, our online

survey schemes should take into consideration the following

statements: (i) the participants with the same response should

submit different masked data; (ii) the data space of X should

be extended to R
n×p.

IV. STRONG PRIVACY ONLINE SURVEY SCHEME WITH

SINGLE SURVEY MANAGER

In this section, we propose a Strong Privacy online Survey
scheme with single survey manager (SPS) based on DM2.

We first describe SPS in detail, then analyze its correctness,

efficiency, universal verifiability, robustness and strong privacy.

A. SPS: Strong Privacy Online Survey

Here we present our SPS scheme, which includes three

phases: initialization, data collecting, and data tallying.

1) Initialization Phase: The initialization phase occurs

at the beginning of the online survey. The client V first

sets up the questionnaire, initializes the system parameters,

and defines the data formats. The survey manager M1

then configures a website for this questionnaire, and sends

invitations to the participants.

Having accepted the invitation, a participant U will register

with the client V using its identification information IDU

(e.g., email address). Upon receipt of U ’s registration request,

the client generates a piece of registration information

RegU , and sends U an encrypted certification E(κ,CertU ),
a survey identifier SIDU , and some system parameters

Params = {Seed, k, n, p}, where κ is a shared symmetric

key between the client V and the survey manager M1,

Seed is a universal random seed to generate DM2

masking keys, k is a decomposition factor, n and p
are the data matrix dimensions for response formatting

as discussed in Section III-B. The SIDU serves an

important purpose of assuring double-submission detection,

which we will explain more later. Finally, the client

stores the information {RegU , SIDU , CertU}, and shares

the certification information (SIDU |CertU ) with the survey

manager M1 for it to later verify participants. The initialization

phase is summarized below:

U IDU−−−→ V
(Params |SIDU |E(κ,CertU ))−−−−−−−−−−−−−−−−−−−−→ U

↓(SIDU |CertU )

M1

20102007713



Fig. 4. An example of our SPS scheme.

2) Data Collecting Phase: In this phase, participants

submit masked survey data to the survey manager M1. The

survey manager gathers the masked data, further generates

masked group survey data, and sends to the client V . There

are four steps as shown in the following. An example for the

data collecting phase with a particular participant is given in

Fig. 4.

a) Step 1: Participants submit masked survey data. From

the previous initialization phase, each participant U receives

Params, SIDU , and E(κ,CertU ) from the client. It then

uses the random seed Seed to generate a set of n×n random

invertible matrices {Ai}i∈[1,k] and a set of p × p random

invertible matrices {Bi}i∈[1,k] as its DM2 masking keys. Note

that the Seed for each participant U is the same, so the DM2

masking keys are also the same for all participants.

During the survey process, the participant U takes the

survey and the response is formatted into an n × p data

matrix XU as described in Section III-B. Then, the data

matrix XU is randomly decomposed into k n × p matrices

{X1
U , X

2
U , ..., X

k
U} such that XU = X1

U + X2
U + · · · + Xk

U .

More specifically, ∀1 ≤ i ≤ k, Xi
U [u][v] = wi

uvXU [u][v],
where w = {wi|1 ≤ i ≤ k} with each wi denoting an n × p
matrix of random weight parameters such that

∑k
i=1 w

i
uv = 1,

∀1 ≤ u ≤ n, 1 ≤ v ≤ p. Through this, the original binary data

matrix XU is converted to k data matrices in the R
n×p space.

After that, each decomposition data matrix Xi
U (1 ≤ i ≤ k)

is left multiplied by Ai and right multiplied by Bi, which

generates the masked survey data MDU of U :

MDU = {MDi
U | MDi

U = AiX
i
UBi, i ∈ [1, k]}. (4)

Finally, U submits its result by sending MDU , SIDU and

E(κ,CertU ) in a message Msg1 to the survey manager M1:

U
Msg1 =(MDU |SIDU |E(κ,CertU ))−−−−−−−−−−−−−−−−−−−−−−−→ M1

b) Step 2: Survey manager verifies each submission. Upon

receiving a submission message Msg1 from a participant, the

survey manager M1 first decrypt the certification information

with the shared key κ:

D(κ,E(κ,CertU )) = (CertU ), (5)

and obtain the information (MDU |SIDU |CertU ). After that,

the survey manager looks up the (SIDU |CertU ) in its

database, and checks whether the survey identifier SIDU

is in the set S, which contains the SID of all already-

responded participants to detect potential double submission.

If the (SIDU |CertU ) exists in the survey manager’s database,

and SIDU does not exist in S, it means this submission is

the first response of a registered participant. So the survey

manager will accept the response, store MDU , and insert

SIDU into S. Otherwise, the survey manager will reject the

submission and do nothing. Note that it can be easily adjusted

to support response update: the survey manager will only keep

the latest response of each participant. We omit this for space

limitation.

c) Step 3: Survey manager generates masked group data.
When the survey period ends, the survey manager M1 finishes

collecting all participants’ masked survey data MDU . Next,

it will aggregate these data to generate the masked group

data GD. Suppose in the online survey system, there are m
participants {U1, U2, · · · , Um} who have submitted valid

survey responses (i.e., their survey identifiers are in the set

S), and their masked survey data are {MDU1
, MDU2

, · · · ,
MDUm}. The masked group survey data GD contains k n×p
matrices, which is the sum of the masked survey data:

GD =

{
GDi

∣∣∣∣GDi =
m∑
j=1

MDi
Uj

=
m∑
j=1

AiX
i
Uj
Bi, i ∈ [1, k]

}

(6)

d) Step 4: Survey manager uploads masked group survey
data. Now the survey manager M1 has generated the masked

group survey data GD. Next, it will send GD with the set S
in a message Msg2 to the client V :

M1
Msg2 =(GD |S )−−−−−−−−−−−→ V

3) Data Tallying Phase: Upon receiving the message

Msg2, the client fetches the Seed to obtain the DM2 masking

keys used by the participants, {Ai}i∈[1,k] and {Bi}i∈[1,k],
and then computes their inverse matrices, {A−1

i }i∈[1,k] and

{B−1
i }i∈[1,k]. To obtain the aggregate tally of the responses

from all participants, the client simply left multiplies the ith
element of GD (i.e., GDi) by A−1

i , and then right multiplies

it by B−1
i to recover the ith de-masked group survey data Gi:

Gi = A−1
i ×GDi ×B−1

i

= A−1
i ×

m∑
j=1

AiX
i
Uj
Bi ×B−1

i =
m∑
j=1

Xi
Uj
.

(7)

The final tally result is simply

G =
k∑

i=1

Gi. (8)

In the next subsection, we will prove G = R, where R =∑m
j=1 XUj

is the sum of the original data matrices of all

participants who have submitted valid survey data. Finally,

the client verifies if the number of participants matches the

number of elements in the set S. If they match, the client

obtains the final result on how many participants have selected

each individual question choice. It will also publish the final

tally and the set S if necessary.
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B. Correctness

We prove that the final tally G of the client equals the actual

survey result R =
∑m

j=1 XUj
.

Proof: From (8) and (7), we have

G =

k∑
i=1

Gi =

k∑
i=1

m∑
j=1

Xi
Uj

=

m∑
j=1

k∑
i=1

Xi
Uj

=

m∑
j=1

XUj = R.

(9)

This completes the proof.

C. Efficiency

Suppose there are a total of m participants. The original

response x of each participant is a 1 × N vector, and the

formatted data matrix X is n× p. The computation overhead

of each entity in SPS is given as follows.

1) Participant: Each participant U first needs to perform

response formatting (from x to X), whose cost is O(n × p).
Then U splits the response X to k n×p data matrices, whose

cost is O(k × n × p). Finally, U generates k masked data

{AXiB}1≤i≤k by left- and right- matrix multiplication, whose

computation cost is O(k × (n2 × p + n × p2)). So the total

computation overhead for each participant U is O(kN(n+p)).
2) Survey manager: The survey manager M1 only needs

to aggregate m participants’ masked data (k n× p matrices).

Clearly, its total computation overhead is O(k ×m×N).
3) Client: For each masked group data GDi, the client V

needs to left multiply it by an n × n matrix A−1
i and right

multiply it by a p × p matrix B−1
i to recover the de-masked

n× p group data Gi, whose cost is O(k× (n2× p+n× p2)).
Then it adds up all k de-masked group data, whose cost is

O(k×n×p). So its total computation overhead is O(kN(n+
p)).

Since k is a constant number far smaller than m and N ,

the computation complexity for each participant, the survey

manager, and the client are actually O((n+p)×N), O(m×N),
and O((n+ p)×N), respectively. One can see that our SPS

scheme is indeed very efficient.

D. Universal Verifiability

When the client V publishes the final result, the participants

should be able to verify it. Our SPS scheme achieves

the universal verifiability property: any participant U can

independently check if the survey outcome corresponds to

the result published by the client. This optional verification

occurs after V publishes the result, and it includes two steps

as follows.

Step 1 - Publishing Information: After accomplishing the

data tallying task, the client V publishes the tally result RV

of the survey. Also, the survey manager M1 will publish the

masked group survey data GDM = {GDi
M}1≤i≤k.

Step 2 - Verifying Result: Each participant U can

independently perform the same procedure to verify the

correctness of the published result RV . More specifically,

U first computes the inverse of the DM2 masking keys,

{A−1
i }i∈[1,k] and {B−1

i }i∈[1,k], and then calculates the de-

masked group survey data GU similar to (7),

GU = {Gi
U | Gi

U = A−1
i GDi

MB−1
i , i ∈ [1, k]}, (10)

and the survey result RU =
∑k

i=1 G
i
U . Finally, the participant

U can verify the final result by comparing RU with RV . If

RU = RV , U verifies that the final result is correct.

E. Robustness

1) Double submission detection: In SPS, only registered

participants are allowed to submit responses, and each

participant can only submit one valid response. In particular,

each participant obtains a unique survey identifier SID from

the client, which must accompany its response for submission.

The survey manager keeps track of a set S of the survey

identifiers of already-responded participants. If a participant U
submits multiple times, the survey manager will only accept

one response and ignore others. Even if the survey manager is

compromised to cooperate with the participant to cast multiple

submissions, the client can easily detect this cheating behavior

through mismatched number of participants and the final tally.

Therefore, SPS achieves double submission detection.

2) Submission tamper detection: If a compromised survey

manager attempts to duplicate, modify or replace any

individual response, the number of participants and the final

tally will be mismatched during the data tallying phase, which

can be easily detected by the client. The survey manager

cannot remove any individual response either. When the client

publishes the set S, any participant U who has submitted its

response can check if its survey identifer SIDU is in the set S.

If SIDU /∈ S, then U detects its response has been removed

and report to the client V . In summary, no entity can modify,

duplicate, or remove any individual submission without being

detected.

3) Error detection: In the response formatting, the original

response x, which is a 1×N vector, is converted to an n× p
data matrix X . The remaining r = n× p−N empty slots in

X can be filled by some flag parameters for error detection.

For example, each empty slot can be set as a constant ci for

decomposition Xi. In the data tallying phase, the client can

check whether the value of this slot in Gi equals m×ci, where

m is the total number of participants. If it does not match, the

client will detect the error in decomposition Xi.

F. Privacy Analysis

We now demonstrate that SPS achieves strong privacy under

the pre-defined threat model in Section II-C: the adversary

compromises either the survey manager or the client, but

not both. When the adversary compromises both the survey

manager and the client, it is equivalent to a joint collusion

attack, which we will introduce a more robust scheme RSPS

with multiple survey managers to mitigate in the next section.

1) Strong privacy: As described in Section II-C, any

external eavesdropper will not be able to learn the participants’

masking keys. If an adversary compromises the client, it

does not have more capability than the client in learning the
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participants’ data. If an adversary compromises the survey

manager, it does not have more capability than the survey

manager in learning the participants’ data.

In the former case where the adversary compromises the

client, since the client V only gets the masked group response

of all participants from the survey manager M1, the only

information that the adversary can obtain is the masked group

response and final results, from which it cannot derive any

original response of any individual participant.

Consider the latter case where the adversary compromises

the survey manager. Recall that in SPS, the response data

matrix X of each participant is split into k decomposition

matrices {Xi}i∈[1,k], with each Xi being masked by

a different pair of DM2 masking keys {Ai, Bi}. Each

participant U only submits its masked survey data MDU =
{AiX

i
UBi}i∈[1,k] to the survey manager M1. Therefore,

through compromising the survey manager, the adversary can

only get MDU , from which the adversary still cannot extract

U ’s original response. We will demonstrate this using a game

between a challenger and an adversary A. The game proceeds

in the following:

• The survey response space D = {SR1, SR2, · · · , SRα}
is available to both the adversary A and the challenger.

The adversary knows that there is only one participant U
in the game, and the challenger knows U ’s DM2 masking

matrices, {Ai}i∈[1,k] and {Bi}i∈[1,k].
• At some time, the challenger picks a random index

j ∈ {1, 2, · · · , α} to obtain the survey data XU = SRj ,

and randomly split XU into k matrices {Xi
U}i∈[1,k] such

that XU =
∑k

i=1 X
i
U . Then the challenger generates a

message Θ = {Θi | Θi = AiX
i
UBi, i ∈ [1, k]}, and

sends Θ to the adversary A.

• After receiving the message Θ, the adversary A returns a

guess j∗ ∈ {1, · · · , α} on j and wins the game if j∗ = j.

Definition IV.1. We define that the advantage of A breaking
the strong privacy property of Θ is

AdvA = α ·
(
Pr[j = j∗]− 1

α

)
= α · Pr[j = j∗]− 1.

The strong privacy of Θ is achieved if the advantage AdvA
is negligible for an arbitrary adversary A. Furthermore, if

AdvA is exactly 0, then the strong privacy is unconditional.

We now prove that the information Θ achieves the

unconditional strong privacy in the following theorem.

Theorem IV.1. The information Θ achieves unconditional
strong privacy through the decomposition DM2 masking.

Proof: From Lemma III.1, with the DM2 technique, the

adversary cannot recover the original data X from the masked

data AXB if it has no knowledge about the masking matrices

A and B. Since the adversary has no knowledge about U ’s

DM2 masking matrices, {Ai}i∈[1,k] and {Bi}i∈[1,k], it cannot

extract any Xi
U from Θi = AiX

i
UBi, and thereby cannot

obtain the survey response XU picked by the challenger. In

the eye of the adversary, each survey response in D is equally

suspicious by the decomposition DM2 masking. Therefore,

Pr[j = j∗] = 1
α . Then, by Definition IV.1, we have

AdvA = α · Pr[j = j∗]− 1 = α · 1
α
− 1 = 0. (11)

This completes the proof.

From Theorem IV.1, the information Θ achieves the

unconditional strong privacy, which means the information

MDU submitted by a participant U to the survey manager

M1 in SPS also achieves the unconditional strong privacy.

Therefore, even if the adversary compromises the survey

manager, the adversary still cannot derive any original

response of any participant.

2) Joint collusion attack: We have demonstrated that SPS

preserves strong privacy when the adversary compromises

either the client or the survey manager. When the adversary

compromises both the survey manager and the client, it is

equivalent to a joint collusion attack, where the compromised

survey manager M1 cooperates with the compromised client

V to gain the confidential survey response of a targeted group

of one or more participants. More specifically, the survey

manager M1 acquires the DM2 masking keys {Ai}i∈[1,k]
and {Bi}i∈[1,k] from the client V , thereby it can get their

inverse matrices and further calculate X1, X2, · · · , Xk from

the masked data MD of any participant to recover its original

survey data X , which is equal to X1 + X2 + · · · + Xk. In

other words, the original response of every participant will be

revealed to the joint adversaries. To guard against the joint

collusion attack, we propose a more robust strong privacy

scheme RSPS with multiple survey managers, which will be

discussed in the next section.

V. ROBUST STRONG PRIVACY ONLINE SURVEY SCHEME

WITH DISTRIBUTED SURVEY MANAGERS

In this section, we propose a Robust Strong Privacy online
Survey scheme with distributed survey managers (RSPS). We

first introduce the key idea of additive secret sharing, and then

describe RSPS in detail and analyze its properties.

A. Additive Secret Sharing

Secret sharing refers to securely distributing a secret among

a group of entities, each of whom is allocated a share of

the secret. More specifically, there is one dealer and some

players. The dealer gives a share of the secret to each player

by a sharing algorithm Share. The secret can be reconstructed

from all the shares by the algorithm Rec only when specific

conditions are fulfilled. Different implementations of the

Share algorithm will lead to different secret sharing schemes

with different security properties. In our RSPS scheme, we

design a specific additive secret sharing among s distributed

survey managers. A secret data matrix X is split to s shares

X1, X2, · · · , Xs such that

X1 +X2 + · · ·+Xs = X, (12)

where X1, X2, · · · , Xs are determined by Algorithm 1.
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Fig. 5. An example of our RSPS scheme.

Algorithm 1 Share algorithm of RSPS additive secret sharing

1: Inputs: X , s, n, p
2: for i← 1 to s− 1 do
3: Xi ← uniformly chosen from R

n×p

4: end for
5: Xs = X −∑s−1

i=1 Xi

B. RSPS: Robust Strong Privacy Online Survey

In order to further improve the confidentiality protection

of the participants, we utilize s distributed survey managers

to propose a more robust RSPS scheme. Below we will

explain the three phases in RSPS: initialization, distributed

data collecting, and data tallying. An example of RSPS is

illustrated in Fig. 5.

1) Initialization Phase: Similar to SPS, in the initialization

phase, the client initializes the online survey system, and

segregates the data collection task to s distributed survey

managers. Specifically, each survey manager is responsible for

collecting some part of the survey data of all participants. Each

participant U does almost the same work as in the SPS: It

obtains the system parameters Params = {Seed, s, n, p}, a

survey identifier SIDU , and a series of encrypted certifications

(E(κ1, Cert1U )| · · · |E(κs, CertsU )) from the client V , where

κi is a shared symmetric key between V and the survey

manager Mi, i ∈ [1, s]. Finally, the client V also shares

the certification information (SIDU |CertiU ) with the survey

manager Mi for it to later verify participants. The initialization

phase of RSPS is summarized in the following:

U IDU−−−→ V
(Params|SIDU |E(κ1,Cert1U )|···|E(κs,CertsU ))−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ U

↓ (SIDU |CertiU )

Mi

2) Distributed Data Collecting Phase: In this phase, each

participant U takes the survey and formats its response to a

data matrix XU similar to SPS, and then applies Algorithm 1

to obtain s shares X1
U , · · · , Xs

U . Next, U uses the random

seed Seed to generate a set of random invertible matrices

{Ai}i∈[1,s] and {Bi}i∈[1,s] as its DM2 masking keys to

produce its masked survey data MDU = {AiX
i
UBi}i∈[1,s].

Finally, for each survey manager Mi, U distributes the ith

masked share of MDU , MDi
U = AiX

i
UBi, with SIDU and

E(κi, CertiU ) in a message Msgi1 to the survey manager Mi:

U
Msgi

1 =(MDi
U |SIDU |E(κi,CertiU ))−−−−−−−−−−−−−−−−−−−−−−−−→ Mi

Upon receiving a message Msgi1 from a participant, the

survey manager Mi decodes the message Msgi1 with κi, and

gets (MDi
U |SIDU |CertiU ). Then it takes the same process as

in SPS to verify each survey response and maintain a set Si,

which contains the SID of all already-responded participants

to detect potential double submission.

When the survey period ends, each survey manager Mi

starts to aggregate received responses from all m participants

to generate the ith masked group survey data GDi,

GDi =

m∑
j=1

MDi
Uj

=

m∑
j=1

AiX
i
Uj
Bi, (13)

and then sends GDi with the set Si in a message Msgi2 to

the client V :

Mi
Msgi

2 =(GDi |Si)−−−−−−−−−−−−→ V

3) Data Tallying Phase: After receiving the message Msgi2
from every distributed survey managers Mi, the client uses

{A−1
i }i∈[1,s] and {B−1

i }i∈[1,s] to obtain the de-masked group

survey data Gi for each survey manager Mi:

Gi = A−1
i ×

m∑
j=1

AiX
i
Uj
Bi ×B−1

i =
m∑
j=1

Xi
Uj
. (14)

The final tally is simply

G =
s∑

i=1

Gi =

m∑
j=1

s∑
i=1

Xi
Uj

=

m∑
j=1

XUj = R, (15)

where R =
∑m

j=1 XUj
is the sum of the original data matrices

of all valid participants. Finally, the client verifies if the

number of participants matches the number of elements in

each set Si. If they all match, the client gets the final tally for

every question choice.

C. Property Analysis

RSPS preserves the nice properties of SPS. First, the

correctness of RSPS is obvious from (15), similar to the

analysis of SPS in Section IV-B. In addition, the participant

and the client work almost the same as in SPS. Our two

schemes diverge from the data collecting phase, where RSPS

utilizes multiple survey managers to each aggregate a share of

masked data, but the total work for all survey managers does

not change. Similar to the analysis of SPS in Section IV-C,

IV-D and IV-E, our RSPS scheme also achieves the universal

verifiability and robustness with comparable efficiency as SPS.

We will omit the duplicate discussion.

D. Privacy Analysis

In this subsection, we show that RSPS achieves strong

privacy as SPS, and demonstrate that it is also robust against

the joint collusion attack.
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1) Strong privacy: In SPS, all masked data can be

monitored if the adversary compromises the survey manager.

However, in RSPS, the adversary cannot obtain such

information until it compromises all s survey managers.

Clearly, RSPS also achieves comparable strong privacy as SPS,

if not stronger.

2) Robustness against joint collusion attack: We now

demonstrate that RSPS is robust against the joint collusion

attack: The adversary cannot derive any original response of

any individual participant unless it compromises the client and

all s survey managers.

Lemma V.1. The additive secret sharing scheme by
Algorithm 1 splits the secret X to s shares X1, · · · , Xs. Any
subset of s− 1 shares of X is uniformly distributed.

Proof: According to the secret sharing in Algorithm 1,

the shares X1, · · · , Xs−1 are uniformly distributed and

independent in R
n×p. Let X

′
= X2 + · · ·+Xs−1 for a fixed

X2, · · · , Xs−1. From Algorithm 1, we have

Xs = X −X1 − (X2 + · · ·+Xs−1)

= (X −X
′
)−X1.

(16)

As X1 is still uniformly distributed when X2, · · · , Xs−1

are fixed, we get that Xs is uniformly distributed and

independent from X2, · · · , Xs−1. Therefore, X2, · · · , Xs are

also uniformly distributed and independent in R
n×p. The same

argument can be extended for any other s− 1 different shares

and the proof is completed.

Theorem V.2. In the joint collusion attack, the adversary
cannot learn anything about the original survey data X for
any coalition of up to s− 1 survey managers.

Proof: If s − 1 survey managers become compromised

and cooperate with the compromised client to get the DM2

masking keys, the adversary can reveal at most s − 1 shares

{Xi1 , · · · , Xis−1} of the participants’ response. According to

Lemma V.1, any s − 1 element subset {Xi1 , · · · , Xis−1} is

uniformly distributed. Therefore, for any two secret values in

R
n×p, their secret shared forms are indistinguishable for any

coalition of up to s−1 survey managers. The coalition cannot

get the remaining share to recover the original survey data X .

This completes the proof.

According to Theorem V.2, the adversary cannot learn

anything about the original survey data X unless all s survey

managers are compromised to launch the joint collusion attack

together with a compromised client, which demonstrate RSPS

is more robust than SPS.

VI. RELATED WORK

In this section, we review some existing privacy protection

techniques, which can be adopted in online survey to address

the privacy issues to some degree. The related research efforts

can be briefly categorized into the following groups.

Secure Multi-party Computation (SMC): SMC [19] [20]

allows multiple data sources to jointly compute a function

over their input without revealing their original data to each

other. The computation and communication overhead of SMC

is prohibitively high when the number of participants is large.

Moreover, the data sources have to directly involve in any

joint computation, and stand by ready for any data analysis

that may happen for a long time, which is not applicable to

online survey due to lack of submit-and-go property.

Privacy-preserving Data Mining (PPDM): PPDM

techniques [21]–[23] target at extracting statistical results from

perturbed data without compromising the privacy of the data

sources. They can be applied to online survey, but with great

limitations. For example, the “random response” technique

proposed by Warner [21] has not been widely used in practice

because it is only applicable to binary data. Other perturbation-

based approaches [22] [23] add noise directly to the raw data

before collecting. But these perturbation techniques reduce

the precision of the final result, and the data collector can

use privacy intrusion techniques [24] [25] to filter noise from

the perturbed data, thereby rediscovering part of the original

private data. Therefore, they are not adequate in providing

strong privacy or exact final result for online survey.

De-identification and Anonymous Data Collection:
Traditional approaches of identity removal cannot achieve

strong privacy because even after standard participant

identifiers are removed, it is still sometimes possible to

deduce the participant identities from the remaining data.

Anonymous data collection methods are designed with the

intention to collect data anonymously without revealing the

participants’ identities, including cryptographic solutions [12]

[13] and anonymous communications [14] [15]. With a goal of

unlinkability, these methods try to prevent data collector from

learning which input came from which participant. But they

do not hide the data values, and linkage attack [10] [11] can

still occur in many situations. So these methods still cannot

achieve strong privacy.

In summary, the past research focuses on secure multi-party

computation, privacy-preserving data mining, de-identification

and anonymous data collection, with success in various

degrees. However, they are inadequate in providing the strong

privacy or exact survey results, which are essential to online

survey. We point out that as long as the raw survey data

are collected, leaking of private information is always a

possibility. Our paper takes a bold step to avoid this problem

by developing new solutions based on data masking. Our

solutions ensure that the original survey responses never leave

the participants and the survey manager only collects masked

responses, which retain the tallying utility of the original

survey data and also achieve strong privacy for participants.

VII. CONCLUSION

In this paper, we propose two novel efficient strong

privacy online survey schemes SPS and RSPS. Unlike many

existing privacy protection techniques in other scenarios, our

schemes apply a novel efficient dual matrix masking (DM2)
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technique, and achieve accurate outcomes and strong privacy.

In particular, RSPS is more robust against the joint collusion

attack. Through extensive analysis on correctness, efficiency,

universal verifiability and robustness, we demonstrate that our

schemes can be efficiently applied to online survey in a variety

of situations with accuracy and strong privacy.
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