
Deploying Default Paths by Joint Optimization of
Flow Table and Group Table in SDNs

Gongming Zhao1,3 Hongli Xu∗1,3 Shigang Chen2 Liusheng Huang1,3 Pengzhan Wang1,3
1School of Computer Science and Technology, University of Science and Technology of China, China

2Department of Computer & Information Science & Engineering, University of Florida, USA
3Suzhou Institute for Advanced Study, University of Science and Technology of China, China

Abstract—Software Defined Networking (SDN) separates the
control plane from the data plane to ease network management
and provide flexibility in packet routing. The control plane
interacts with the data plane through the forwarding tables,
usually including a flow table and a group table, at each switch.
Due to high cost and power consumption of Ternary Content
Addressable Memory (TCAM), commodity switches can only
support flow/group tables of limited size, which presents serious
challenge for SDN to scale to large networks. One promising
approach to address the scalability problem is to deploy aggregate
default paths specified by wildcard forwarding rules. However,
the multi-dimensional interaction among numerous system pa-
rameters and performance/scalability considerations makes the
problem of setting up the flow/group tables at all switches for
optimal overall layout of default paths very challenging. This
paper studies the joint optimization of flow/group tables in the
complex setting of large-scale SDNs. We formulate this problem
as an integer linear program, and prove its NP-Hardness.
An efficient algorithm with bounded approximation factors is
proposed to solve the problem. The properties of our algorithm
are formally analyzed. We implement the proposed algorithm on
an SDN testbed for experimental studies and use simulations for
large-scale investigation. The experimental results and simulation
results demonstrate high efficiency of our proposed algorithm.

Index Terms—Software Defined Networks, Default Paths, Load
Balancing, Flow Table, Group Table.

I. INTRODUCTION

Software defined networking (SDN) separates the control
and data planes to different devices. Consisting of one or a
cluster of controllers, the control plane provides centralized
management by installing proper forwarding rules on switches.
The switches, which comprise the data plane of an SDN,
perform packet forwarding based on the installed rules. Thanks
to SDN’s flexibility in network management and capability in
rapid deployment of new functionalities, there is an increasing
interest of deploying SDN in different networking environ-
ments, such as wide-area networks [1], and data centers [2].

In an SDN network, the control plane interacts with the
data plane through the forwarding tables. As specified in the
OpenFlow standard [3], each SDN switch usually has two
forwarding tables for installing rules: the flow table and the
group table. Each entry in the flow table (also called flow
entry) specifies an action for flows that match the fields in the
entry. Each entry in the group table (also called group entry)
can specify more than one action. A flow entry may refer to a
group entry in order to apply multiple actions to its matching

flows; this mechanism can be used to support more complex
operations, such as multi-path forwarding and multicasting [4].

One serious challenge faced by SDN is that the sizes
of flow/group tables are very limited on today’s commod-
ity switches. Broadcom Trident [5] has only 4k flow en-
tries and 1k group entries. Moreover, the limited num-
ber of flow/group entries may have to be shared by rout-
ing/performance/measurement/security functions that are im-
plemented on the same chip. For example, if the controller
expects some flows to be processed by middleboxes, there
should install extra rules for these flows on switches [6] [7].
Hence, the memory for storing forwarding rules is often small,
which is a limiting factor on the scalability of the network. Yet,
large SDN networks are experiencing more and more flows.
For example, in a practical data center network with 1,500
server clusters [8], the average arrival rate reaches 100k flows
per second. If we perform per-flow routing (i.e., one flow entry
for each flow), it will require tens of thousands of flow entries
at each switch. Since the switches do not have enough flow
entries for so many flows, we have to reject some flows [9]
or replace existing entries in the table with new forwarding
rules, which causes churns and increases the controller load
to repetitively deploy paths for the same flows. Therefore, per-
flow routing is impractical for large-scale networks [10] [11].

To address the size limitation of the flow/group tables, an
interesting idea is to deploy aggregate routing (or default
paths) specified by wildcard rules. For example, we may
perform prefix aggregate routing (instead of per-flow routing),
where flows with the same address prefix will share a common
path. As a result, it requires fewer flow entries for all flows.
However, since all flows that match a flow entry will always
be forwarded to a same next hop, it may cause imbalance
in traffic load distribution, where some paths are congested
while alternative paths are left under-utilized [1]. One may
say that we can combine aggregate routing and per-flow
routing to avoid load imbalance. However, our simulation
results show that the number of required flow entries for
the combined routing scheme is still unacceptable for many
commodity switches, especially with a large number of flows.
To choose some large (or elephant) flows for per-flow routing
[12], we need to know the traffic intensity of all flows in the
network. Thus, the flow statistics collection (FSC) is necessary.
However, it is time-consuming and resource-intensive for FSC

978-1-5090-6501-1/17/$31.00 c⃝2017 IEEE

2

in a large-scale dynamic network [11]. Thus, the aggregate
routing (or combined with per-flow routing) may not work
well for many practical applications.

The idea of multi-path routing holds great promise of solv-
ing the dilemma between the desire for network performance
and the practical limitation in the number of forwarding rules.
To support multi-path forwarding, a flow entry may refer to
a group entry, in which multiple next hops are specified. The
matching flows will be randomly dispatched to the multiple
downstream paths [13] [14]. ECMP is a widely used multi-
path routing protocol in large-scale networks as it provides
load balancing over equal cost paths through group tables [15].
However, ECMP performs poorly in asymmetric topologies,
which are common topologies in today’s networks due to
link failures and heterogeneous network components [14].
Moreover, ECMP does not consider the detailed method to
install group entries for multi-path routing. Since the number
of group entries is less than the number of flow entries, and
the number of processing rules (i.e., action buckets specified
in OpenFlow) supported by each group entry is limited, how
to efficiently use these group entries is also a challenge.
Therefore, alternative solutions adapted to both asymmetric
and symmetric topologies under group table size and action
buckets constraints are in urgent need.

The prior works [13] [14] [15] have focused on multi-path
packet forwarding operations at the switches after the wild-
card forwarding rules are installed. This paper addresses the
complementary problem at the controller on how to optimally
decide the default paths for all flows and the corresponding
flow/group rules at all switches. This is a fundamental and
complex problem that directly affects network performance.

It is highly desired to reduce the number of entries that are
used to support default paths, so that more flow entries can be
reserved for supporting other policies (e.g., middlebox deploy-
ment, management and security [6]) and more group entries
can be used for other purposes such as multicasting [4]. This is
however a difficult undertaking. To address this challenge, we
study the joint optimization of flow table and group table in a
large-scale network. We formulate this problem as an integer
linear program, and prove its NP-hardness. A rounding-based
algorithm with bounded approximation factors is proposed to
solve the problem. The properties of the algorithm are formally
analyzed. We implement the proposed algorithm on an SDN
testbed for experimental studies and use simulations for large-
scale investigation. The experimental results and simulation
results show that, under the same number of flow entries, our
method can achieve better network performance than ECMP
while reducing the use of group entries about 70%. Besides,
with additional 10% group entries, our method can reduce link
load ratio about 13% compared with DevoFlow while reducing
the use of flow entries about 60%.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Network Model
A software defined network typically consists of three

device sets: a cluster of controllers; an SDN switch set,

V = {v1, ..., vn}, with n = |V |; and a terminal set,
U = {u1, ..., um}, with m = |U |. The controllers are
responsible for route selection of all flows in the network and
will not participate in the packet forwarding. These switches
and terminals comprise the data/forwarding plane of an SDN.
Thus, on the view of the data plane, the network topology can
be modeled by a directed graph G = (U ∪ V,E), where E is
the directed link set in the network. For ease of expression, let
c(e) and E(v) denote the capacity of link e ∈ E and the set
of links outgoing from switch v ∈ V in graph G, respectively.

The OpenFlow specification (from the earlier version 1.1
to the latest version 1.5.1) defines two main types of tables
in the logical switch architecture: the Flow Table and Group
Table. In an SDN, each controller will interact with switches
through the flow table and group table. More specifically, if a
switch can match an incoming packet with a particular flow
entry, the action specified by this flow entry will be performed.
If no matched flow entry is found, the switch will report
the header packet of this flow to the controller, which then
determines the flow’s route and installs the forwarding rules
on the switches along this path. In order to support multi-path
forwarding or multicast, a group table is necessary. Due to the
high price of Ternary Content Addressable Memory (TCAM),
the forwarding table size of an SDN switch is usually limited.
For example, most commodity switches contain less than 4k
flow entries [11] and 1k group entries [5]. Even the high-end
Broadcom Trident2 chipset only supports 16k flow entries [9],
which is not enough for per-flow routing in most large-scale
networks.

B. Interaction between Flow/group Tables
We introduce the operational interaction between the flow

table and group table. When a flow reaches a switch, the
header packet will be matched with entries in the flow table.
If there is a matched entry, the packet will be processed based
on the Instructions field of this flow entry, such as dropping
or forwarding to a certain port. Meanwhile, it may refer to a
specific group entry, which mainly contains Group Identifier
and Action Buckets fields. Specifically, the Group Identifier
field uniquely identifies the group entry, and the Action Buckets
field specifies the complex operational rules for the matched
flow(s). A group table is unable to work without the help of a
flow table. That is, a group entry will be matched and executed
only if a flow entry uses an appropriate instruction that refers
to its group identifier. Due to space limit, the reader can refer
to [3] for detailed description of the group table.

C. Default Paths by Joint Optimization of Flow Table and
Group Table (DP-JFG)

This section provides a more precise description of the
DP-JFG problem. Similar to [10] [11] [16], we assume that
the controllers have pre-deployed aggregate paths based on
destination terminals (e.g., OSPF-based paths). That is, each
switch has installed a flow entry for each destination. Thus,
the number of occupied flow entries for default paths on each
switch is nearly equal to the number of terminals in U , which

3

is usually less than the number of flow entries. Note that our
proposed algorithm and theorems are also applicable for other
schemes of pre-deployed paths except terminal-based OSPF
(e.g., prefix-match paths based on rack or edge switch). It will
be discussed in Section III-D.

In this paper, we do not consider per-flow routing. For
simplicity, all flows with the same source and destination will
be aggregated into one macroflow. The set of all macroflows in
the network is denoted by Γ. Let Γu denote all the macroflows
with the same destination u ∈ U . Due to the prior work of
traffic matrix estimation on SDNs [17], it is reasonable to
assume that the controller knows the traffic demand, denoted
by f(γ), of each marcoflow γ ∈ Γ. We use Pγ to represent
a set of feasible paths from source to destination for each
macroflow γ ∈ Γ. These paths can be pre-computed based
on the network topology and dynamically updated at the
controller by an OSPF-like protocol after link state information
is collected from all switches. When computing the feasible
paths, if there exist network policies, we should take these
policies into consideration [6]. Hence, we assume that if
there is any user-specified policy, the pre-computed paths will
conform. We further discuss Pγ in Section III-A.

As described in Section II-B, if more than one default path
for the same destination is deployed, we need to use group
entries on some switches. When a group entry is installed,
we should specify each action bucket and its weight. Since
each action bucket is expressed by an outgoing port (i.e.,
an outgoing link) for packet forwarding, the weight for each
action bucket is also called the link weight in the following
description. For simplicity, let G(v) denote the number of
available group entries for deploying default paths on an SDN
switch v. Since some group entries should be reserved for
other applications, such as multicast and broadcast, G(v) is
less than the maximum number of group entries on a switch
v [4]. After installing the group entries, some flow entries
(mainly for instructions fields) should be accordingly modified.
For each macroflow, we will add some (or zero) feasible paths
as default paths subject to following two constraints. (1) The
number of required group entries on each switch should not
exceed G(v). (2) Due to the capacity limitation, we assume
that each group entry can only support up to h operations. For
example, h is 4 for the Broadcom Trident switch [5]. Note that,
the number of required flow entries on switch v is related with
the number of terminals (edge switches or tacks) in a network.
Thus, we do not consider the flow table size constraint. Our
objective is to achieve load balancing in a network.

Fig. 1: Illustration of variable Iuv,p. The OSPF path from v1 to u2

is v1 → v3 → u2. There are two paths from u1 to u2, p1 = u1 →
v1 → v3 → u2 and p2 = u1 → v1 → v2 → v3 → u2. The next hop
of v1 on p2 is v2, which does not overlap with the OSPF path from
v1 to u2, so Iu2

v1,p2 = 1. On the contrary, for path p1, Iu2
v1,p1 = 0.

We will formulate the DP-JFG problem as an integer linear
program. Let variable ypγ ∈ [0, 1] denote the traffic proportion
of macroflow γ through path p. Variable xu

e ∈ {0, 1} denotes
whether some traffic forwarded to terminal u will pass through
link e ∈ E or not. We use variable guv ∈ {0, 1} to denote
whether the macroflow set Γu contributes a unit towards the
group table size constraint on switch v ∈ V or not. Let Iuv,p
be a binary constant as follows: if the next hop of switch
v on path p overlaps with the OSPF path from switch v to
destination u, we set Iuv,p = 0, which means that there is no
need to install a group entry on switch v; otherwise Iuv,p = 1.
An example is presented in Fig. 1 to explain this variable. We
assume that the OSPF path from switch v1 to terminal u2 is
v1 → v3 → u2. There are two feasible paths from u1 to u2,
p1 = u1 → v1 → v3 → u2, and p2 = u1 → v1 → v2 → v3 →
u2. For switch v1, its next hop switch on p2 is v2, which does
not overlap with the OSPF path from switch v1 to terminal u2,
so Iu2

v1,p2
= 1. That means, when path p2 is selected as one of

default paths, a group entry should be installed on switch v1.
On the contrary, the next hop of switch v1 on p1 is v3, which
overlaps with the OSPF path from switch v1 to terminal u2,
so Iu2

v1,p1
= 0. We formulate the DP-JFG problem as follows:

min λ

S.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p∈Pγ

ypγ = 1, ∀γ ∈ Γ

ypγ ≤ xu
e , ∀e ∈ p, p ∈ Pγ , γ ∈ Γu

∑
e∈E(v)

xu
e ≤ h, ∀v ∈ V, u ∈ U

∑
v∈p:p∈Pγ

Iuv,p · ypγ ≤ guv , ∀γ ∈ Γu, u ∈ U, v ∈ V

∑
u∈U

guv ≤ G(v), ∀v ∈ V
∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγf(γ) ≤ λc(e), ∀e ∈ E

ypγ ∈ [0, 1], ∀p ∈ Pγ , γ ∈ Γ

xu
e , g

u
v ∈ {0, 1}, ∀u ∈ U, v ∈ V

(1)
The first set of equations represents that each macroflow

will be forwarded through one or several feasible paths from
source to destination. The second set of inequalities denotes
whether fraction of traffic forwarded to terminal u will pass
through link e or not. The third set of inequalities denotes that
all traffic from set Γu should be forwarded by no more than
h ports on switch v. The fourth set of inequalities denotes
that we need to install a group entry for macroflow γ ∈ Γu

on switch v if some traffic of γ ∈ Γu passes through non-
OSPF default paths on switch v (i.e., Iuv,p = 1). The next
two sets of inequalities indicate the group table size and link
capacity constraints, respectively. Our objective is to achieve
load balancing on all links, that is, min λ.

Theorem 1: The DP-JFG problem is NP-hard.
We show that the multi-commodity flow with minimum con-
gestion problem [18] is a special case of DP-JFG. Due to space
limit, we omit the detailed proof here.

4

III. ALGORITHM DESCRIPTION

Due to the NP-hardness, it is difficult to optimally solve
the DP-JFG problem in polynomial time. This section presents
an approximate algorithm, called RBDP, for DP-JFG (Section
III-A). We analyze the approximation performance of the pro-
posed algorithm (Section III-B). Then, we give the complete
description of RBDP so as to satisfy the group table size
constraint (Section III-C). Finally, we give some discussion
on our algorithm (Section III-D).

A. Rounding-Based Algorithm
In this section, we design a rounding-based algorithm (RB-

DP) for deploying efficient default paths. As in Eq. (1), there is
a feasible path set for each macroflow γ. However, the number
of feasible paths connecting two terminals may be exponential.
Moreover, as our default path scheme is destination-oriented,
feasible paths for different macroflows to the same destination
may lead to forwarding loop. To achieve the trade-off between
algorithm complexity and network performance, same as [9],
we only construct some of feasible paths for each macroflow.
These feasible paths may be the shortest paths between ter-
minals, which can be found by depth-first search. Since we
consider the shortest paths for each macroflow, the forwarding
loop can be avoided. For macroflow γu′,u from u′ to u, if there
is few (e.g., only one) feasible paths, we will add other feasible
paths to set Pγu′,u as follows: for each terminal t ∈ U , we
add the feasible path set Pγt,u to a directed graph Gu. Given
a sub-shortest path p for macroflow γu′,u, after we add path p
to graph Gu, there are two cases. If there is no loop in graph
Gu, which means that p will not lead to forwarding loop, we
add this path to Pγu′,u . Otherwise, we remove p from Gu. To
decrease time complexity, the computation of feasible paths is
only triggered by topology changes.

To solve the integer linear program in Eq. (1), the algorithm
first constructs a linear program as a relaxation of the DP-JFG
problem. More specifically, DP-JFG assumes that the traffic of
each macroflow γ can be forwarded through at most h ports
(or outgoing links) on each switch. In the relaxed version,
the traffic of each macroflow γ can be arbitrarily split on any
switch v and the number of required group entries is permitted
to be fractional. We formulate the linear program LP1.

min λ

S.t.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
p∈Pγ

ypγ = 1, ∀γ ∈ Γ

∑
v∈p:p∈Pγ

Iuv,py
p
γ ≤ guv , ∀γ ∈ Γu, u ∈ U, v ∈ V

∑
u∈U

guv ≤ G(v), ∀v ∈ V
∑
γ∈Γ

∑
e∈p:p∈Pγ

ypγf(γ) ≤ λc(e), ∀e ∈ E

ypγ ∈ [0, 1], ∀p ∈ Pγ , γ ∈ Γ

guv ∈ [0, 1], ∀u ∈ U, v ∈ V
(2)

Since Eq. (2) is a linear program, we can solve it in
polynomial time with a linear program solver. Assume that
the optimal solutions for Eq. (2) are denoted by ỹ and g̃, and

the optimal result is denoted by λ̃. As Eq. (2) is a relaxation
of the DP-JFG problem, λ̃ is a lower-bound result for this
problem.

In the second step, we determine how to install group entries
on each switch for default paths. We obtain an integer solution
ĝuv using the rounding method [19]. More specifically, we set
ĝuv = 1, which means that a group entry will be installed on
switch v for terminal u, with the probability of g̃uv . If ĝuv =
0, this means that all macroflows with destination u will be
forwarded through the OSPF link on switch v and there is no
need to install a group entry.

For each ĝuv = 1, we discuss how to choose other h −
1 forwarding ports/links at most besides the OSPF link for
macroflows Γu on switch v and how to determine the weight
of each next hop based on the solution of LP1. For ease of
expression, euv denotes the outgoing OSPF link from switch v
to destination u, and wu

v denotes the weight of euv in the group
entry. Let Eu(v) denote all the outgoing links connected with
switch v except euv , i.e., Eu(v) = E(v) − {euv}. For each
destination u, each link e ∈ Eu(v) will be assigned a weight
wu

e , initialized as 0, which denotes the weight of link in the
group entry. Note that, wu

v = wu
euv

.

Algorithm 1 RBDP: Rounding-Based Algorithm for DP-JFG
1: Step 1: Solving the Relaxed DP-JFG Problem
2: Construct a linear program LP1 in Eq.(2)
3: Obtain the optimal solutions ỹ and g̃
4: Step 2: Installing Entries for load balancing
5: Derive an integer solution ĝuv by randomized rounding
6: for ∀ ĝuv = 1 do
7: Compute f̃(v, u), zuv , wu

v with Eqs. (3),(4),(6)
8: for each e ∈ Eu(v) do
9: Compute zue with Eq. (5)

10: if zue ≥ 1
h−1 then

11: Add e into Pb
v,u and update wu

e with Eq. (7)
12: Add link e ∈ Eu(v)− Pb

v,u with zue > 0 into set Ps
v,u

13: if |Ps
v,u| > 0 then

14: Set h′ = min{h− 1− |Pb
v,u|, |Ps

v,u|}.
15: Compute zsv,u with Eq. (8)
16: for each e ∈ Ps

v,u do
17: p(e) = h′·zu

e
zs
v,u

18: Put links in h′ knapsacks with min-max weight
19: for for each knapsack j do
20: zj =

∑
e∈Pj

v,u
p(e)

21: Choose link e ∈ Pj
v,u with probability p(e)

zj
22: Update wu

e with Eq. (9) for the chosen link e
23: Install a group entry on switch v for terminal u and the

weight for each connected link e ∈ E(v) is wu
e .

Based on the solution of LP1, the total incoming traffic
forwarded to destination u on switch v is:

f̃(v, u) =
∑

γ∈Γu

∑
v∈p:p∈Pγ

ỹpγf(γ) (3)
The proportion of traffic through the OSPF link euv is:

zuv =

∑
γ∈Γu

∑
euv∈p:p∈Pγ

ỹpγf(γ)

f̃(v, u)
(4)

5

The traffic amount through non-OSPF links is (1−zuv)f̃(v, u),
and the proportion of traffic through each non-OSPF link e ∈
Eu(v) is:

zue =

∑
γ∈Γu

∑
e∈p:p∈Pγ

ỹpγf(γ)

(1− zuv)f̃(v, u)
. (5)

Obviously, we know that
∑

e∈Eu(v) z
u
e = 1.

To guarantee the expected proportion of traffic through link
euv is zuv after randomized rounding, wu

v should satisfy:

(1− g̃uv) + g̃uv · wu
v = zuv ⇒ wu

v =
zuv + g̃uv − 1

g̃uv
(6)

By the second set of constraints in Eq. (2), we have g̃uv ≥
1−zuv . To choose other appropriate h−1 outgoing links/ports
at most on switch v, the link set Eu(v), with zue > 0, is
divided into two subsets, Pb

v,u and Ps
v,u. First, we add each

link e ∈ Eu(v) with zue ≥ 1
h−1 into the set Pb

v,u and the
weight for link e is:

wu
e = zue · (1− wu

v). (7)
That means, we will select each link e ∈ Pb

v,u as one next hop
and the weight for this link is wu

e in the group entry. After
that, we add each link e ∈ Eu(v) − Pb

v,u, with zue > 0, into
the set Ps

v,u. If |Ps
v,u| > 0, we compute h′ = min{h − 1 −

|Pb
v,u|, |Ps

v,u|}, which indicates that we still need to choose h′

links as default paths to destination u. Then, we compute the
total proportion of traffic through links Ps

v,u as follows:

zsv,u =
∑

e∈Ps
v,u

zue (8)

For each link e ∈ Ps
v,u, we define another variable p(e) =

h′·zu
e

zs
v,u

, Obviously, it follows that
∑

e∈Ps
v,u

p(e) = h′.
We put all links in Ps

v,u into h′ knapsacks so as to minimize
the total weight of all links in each knapsack. For each
knapsack j, assume that it contains a set of links, denoted
by Pj

v,u, and let zj =
∑

e∈Pj
v,u

p(e). One link e ∈ Pj
v,u will

be chosen with probability p(e)
zj

, and the weight of this link is:

wu
e =

zj · zsv,u · (1− wu
v)

h′ (9)
The weight for each link e ∈ E(v) in the group entry is wu

e .
The RBDP algorithm is formally described in Alg. 1.

B. Performance Analysis
This section proves the correctness of our RBDP algorithm

and analyzes its approximate performance. We give the fol-
lowing lemma according to the rounding operations.

Lemma 2: Our proposed RBDP algorithm can guarantee that
each macroflow γ will be forwarded through no more than h
outgoing links on each switch v ∈ V .

Proof: We consider all the macroflows Γu on switch v. By
the algorithm description, we divide the link set Eu(v), with
zue > 0, into two subsets, Pb

v,u and Ps
v,u. On one hand, all

links in set Pb
v,u will be chosen as default paths. On the other

hand, the algorithm chooses h′ links from set Ps
v,u. Moreover,

the OSPF link euv will be included. In all, the total output
ports/links on switch v ∈ V for Γu is |Pb

v,u|+ h′ +1 ≤ h.
Lemma 3: The total weight of all the chosen links, i.e., all

specified action buckets, configured in each group entry is 1.

Lemma 4: The RBDP algorithm can guarantee that the
expected traffic load on each link e is same as the solution
f̃(e) of the linear program LP1.
The proofs of lemmas 3 and 4 have been relegated to the
Appendixes A and B, respectively.

In the following, we analyze the approximation performance
of RBDP. Assume that the minimum capacity of all links is
denoted by cemin. We define two constant values as follows:

α = min{ λ̃c
e
min

f(γ)
, γ ∈ Γ}, α′ = min{G(v), v ∈ V } (10)

Under many scenarios, the macroflow intensity is usually
much less than the link capacity, because the macroflow
intensity is not more than the corresponding terminal-switch
link capacity [9] [12]. Besides, G(v) is much larger than 1
[5]. Thus, it is reasonable to assume that α ≫ 1 and α′ ≫ 1.
We give the approximation performance of our algorithm.

Theorem 5: The proposed RBDP algorithm guarantees that
the total traffic on any link e ∈ E will not exceed the traffic
of the fractional solution by a factor of 4 logn

α + 3.
Theorem 6: After the rounding process, the number of

required group entries on any switch v will not exceed
the number of available group entries G(v) by a factor of
3 logn

α′ + 3.
Due to space limit, we omit the proofs of theorem 5 and
theorem 6. The reader can refer to [9] [12] for the performance
analysis of the randomized rounding method.

Approximation Factors. Following from our analysis, by
forwarding all the flows on chosen paths, the capacity of links
will hardly be violated by a factor of 4 logn

α +3, and the group
table size constraint will not be violated by a factor of 3 logn

α′ +
3. By using the traffic controlling method, the intensity of all
the flows can be limited to specific values. Thus, we can reduce
the traffic of all flows by a factor of 4 log n

α + 3 to satisfy the
link capacity constraint.

Moreover, we want to address that the RBDP algorithm
can reach almost the constant bi-criteria approximation in
most situations. For example, let λ̃ and n be 0.4 and 1000,
respectively. The capacity of each switch-switch link will be
a bandwidth of 1Gbps at least. Observing the practical flow
traces, the maximum intensity of a macroflow may reach
10Mbps. Under this case, cemin

f(γ) will be 100. The approximation
factor for the link capacity constraint is 4. Since G(v) is
usually at least 102 [5], the approximation factor for the group
table constraint is 3.3. In other words, our RBDP algorithm
can achieve almost the constant bi-criteria approximation for
the DP-JFG problem in many practical network situations.
C. Complete RBDP Algorithm Description

Though the RBDP algorithm obtains the bi-criteria ap-
proximation performance for the DP-JFG problem, the group
table size constraint may not be satisfied after the random-
ized rounding process. Below we give the complete RBDP
algorithm so as to satisfy this constraint on all switches. The
complete RBDP algorithm consists of three main steps. The
former two steps are the same as those in Alg. 1. By theorem
6, some switches may violate the group table size constraint.

6

Algorithm 2 Complete RBDP Algorithm Description
1: Steps 1 and 2: Same as that in Algorithm 1
2: Step 3: Removing Some Group Entries
3: Put all switches that violate the group table size constraint

in set V ′

4: while V ′ ̸= φ do
5: Select a switch v ∈ V ′ with maximum number of

required group entries
6: The terminals that have installed group entries on switch

v is denoted by Uv

7: Rank terminals u ∈ Uv with the increasing order of guv
8: for each terminal u ∈ Uv do
9: Remove the group entry for terminal u, until the

group table size constraint on v is satisfied.
10: V ′ = V ′ − {v}

Thus, the third step will remove some redundant group entries
so as to satisfy the group table size constraints on all switches.
Note that though the group entries for some macroflows are
removed, they will still be forwarded through OSPF links on
these switches. Let V ′ denote the set of switches that violate
the group table size constraint. We choose a switch v, which
requires the maximum number of group entries in V ′ by the
second step. The set of terminals, for which switch v has
installed group entries, is denoted by Uv . The algorithm ranks
all the terminals in Uv by the increasing order of g̃uv . We
remove the group entry for terminal u ∈ Uv one by one, until
the group table size constraint is satisfied on switch v. Then we
remove switch v from V ′. The iteration is terminated until all
switches satisfy the group table size constraint. The complete
RBDP algorithm is formally described in Alg. 2.

D. Discussion

• In this paper, we assume that the SDN has pre-deployed
terminal-based paths for simplicity. However, the pro-
posed algorithm is also applicable for other pre-deployed
path schemes. For example, assume that the network
has pre-deployed prefix-match paths based on egress
switches. To deal with this case, we only need to change
the variables related to destination u (e.g., guv and xu

e)
to variables related to egress switch ve (e.g., gve

v and
xve
e). Specifically, variable gvev denotes whether switch

v needs to install a group entry for egress switch ve or
not, which is very similar to variable guv . So, our proposed
algorithm has decent applicability. We should note that d-
ifferent pre-deployed path schemes may require different
number of required flow entries and routing performance.
The pre-defined path scheme may be determined by the
application’s requirement.

• Due to frequent flow dynamics in a network, if we deploy
default paths statically, the network performance may
become worse. So, we should update the default paths
to avoid sub-optimal flow routes that may cause network
congestion. To deal with this challenge, we will re-run

the RBDP algorithm in the following situations. (1) The
topology changes, which will trigger the update of default
paths. (2) We compute the optimal load balancing factor
by LP1 at a suitable interval (e.g., 5 min), and compare
with the current load balancing factor. If the ratio between
the optimal and the current values is less than a threshold,
we should trigger the RBDP algorithm and update the
deployment of default paths in an SDN.

IV. PERFORMANCE EVALUATION

A. Performance Metrics and Benchmarks

We adopt six main metrics for performance evaluation of
our proposed algorithm. Since this paper studies how to deploy
default paths by joint optimization of flow/group tables on each
switch, we care for the use of flow/group entries and routing
performance, respectively. The former four metrics are the
maximum/average number of required flow/group entries on
all the switches in an SDN. After executing these algorithms,
we measure the number of installed flow/group entries on
each switch, and compute the maximum/average number of in-
stalled flow/group entries in an SDN. Moreover, we adopt link
load ratio (LLR) and network throughput factor (NTF) as two
metrics of the routing performance. During system running, we
measure the traffic load f(e) of each connected link e, and the
link load ratio is defined as: LLR = max{f(e)/c(e), e ∈ E}.
The smaller LLR means better load balancing. When there
is congestion on some links, we can only forward fractional
traffic to the destination. For each macroflow γ, the traffic of
δ · f(γ) at most can be forwarded from source to destination
without link congestion, where δ is the network throughput
factor, with 0 < δ ≤ 1 .

To evaluate how well our proposed algorithm performs, we
compare with other four benchmarks. The first benchmark is
the most widely used OSPF method [20]. Each switch will
construct the shortest path to each destination, that is, each
switch will install a flow entry for each terminal. Thus, the
number of required flow entries does not exceed the number
of terminals in a network. We will compare our algorithm
with this benchmark for routing performance while using the
same number of flow entries. The second one is ECMP [13],
which is widely applied for performance optimization in data
center networks. The ECMP method needs to install group
entries on switches when there exist some equal-cost paths to
the destination. Otherwise, flows will be forwarded through
the OSPF paths without the help of group entries. Since
the number of group entries is limited, the group table size
constraint may likely be violated by ECMP. To be practical,
the controller should remove some group entries on switches
so as to satisfy the group table size and action buckets
constraints. We denote this modified method as ECMP-G
for distinguishing with ECMP. The final one is DevoFlow
[11]. It combines pre-installed wildcard rules and dynamically-
established exact-match rules. We will compare our algorithm
with this benchmark for the number of required flow entries
while achieving similar network performance.

7

 0

 5

 10

 15

 20

 25

V1 V2 V3 V4 V5 V6 V7 MaxAvgN
u
m

b
er

 o
f

R
eq

u
ir

ed
 F

lo
w

 E
n
ti

re
s

Swith ID

DevoFlow

RBDP

Fig. 2: Number of Required Flow
Entries on Each Switch

 0

 1

 2

 3

 4

 5

 6

V1 V2 V3 V4 V5 V6 V7 MaxAvgN
u
m

b
er

 o
f

R
eq

u
ir

ed
 G

ro
u
p
 E

n
ti

re
s

Swith ID

ECMP

RBDP

Fig. 3: Number of Required
Group Entries on Each Switch

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4 5 6

L
in

k
 L

o
ad

 (
M

b
p
s)

Number of Group Entries

OSPF

ECMP-G

DevoFlow

RBDP

Fig. 4: Link Load vs. Number of
Group Entries

 0

 50

 100

 150

 200

 250

 300

 350

 400

 100 200 300 400 500 600 700

L
in

k
 L

o
ad

 (
M

b
p
s)

Number of Flows

OSPF

ECMP-G

ECMP

DevoFlow

RBDP

Fig. 5: Link Load vs. Number of
Flows

Note that, to be fair, RBDP, OSPF, ECMP and ECMP-G
all adopt destination-based prefix-match scheme for default
paths in our simulations, so these methods require the same
number of flow entries. Moreover, as OSPF and DevoFlow do
not support the multi-path forwarding in our simulations, they
need no group entry accordingly. So, we just compare RBDP
with DevoFlow for the number of required flow entries and
compare RBDP with ECMP for the number of group entries.

B. System Implementation on Platform
1) Implementation on the Platform: We implement the

OSPF, DevoFlow, ECMP, ECMP-G and RBDP algorithms on a
small-scale testbed. Our SDN platform is comprised of three
parts: a controller, 7 SDN-enabled physical/virtual switches
and 6 virtual machines (acting as terminals). To expand the
testing topology and collect testing data conveniently, we
adopt the virtualization technology for system implementation.
Each open virtual switch (OVS, version 2.4.0) [21] and the
connected Kernel-based Virtual Machines (KVMs) are imple-
mented on a server with a core i5-3470 processor and 8GB of
RAM. The topology of our SDN testbed is illustrated in Fig. 6.
More specifically, {v1,u1},{v5,u2,u3,u4} and {v3,u5,u6} are
run on 3 servers, respectively. These servers (acting as one
virtual switch and several terminals) are connected with 4 H3C
S5120-28SC-HI switches (v2,v4,v6,v7), which support the
OpenFlow v1.3 standard. Besides, We use the OpenrDayLight
Lithium-SR1 release [22] as the controller software running
on another server with a core i5-3470 processor and 16GB
of RAM. Since the controller will not participate in data
forwarding, it is not explicitly included in Fig. 6 for simplicity.

Fig. 6: Topology of the SDN testbed. Our SDN testbed consists of 7
physical/virtual switches and 6 virtual machines.

2) Testing Results: We run three sets of testings on the
SDN platform. In each set, we generate 300 flows by default in
the network, and the expected traffic intensity for each flow is
1Mbps. Moreover, there are 20% elephant flows and 80% mice
flows to simulate the realistic scenario [11]. We first observe

the number of required flow/group entries on all switches. The
testing results are presented in Figs. 2-3. Fig. 2 shows that
DevoFlow and RBDP need 24 and 6 flow entries at most,
respectively. RBDP can reduce the number of required flow
entries by about 64% on average compared with DevoFlow.
That’s because DevoFlow combines aggregate routing and per-
flow routing while RBDP only adopts aggregate routing. Fig.
3 shows that RBDP and ECMP need 5 and 2 group entries
at most, respectively. Meanwhile, RBDP reduces the number
of required group entries by about 58% on average compared
with ECMP. That’s because our RBDP algorithm takes the
group table size constraint into consideration. The second set
of testing observes the link load by changing the number
of available group entries on each switch. Fig. 4 shows that
RBDP reduces the link load by about 42% compared with
ECMP-G while using the same number of flow/group entries.
Moreover, with the increase of the number of group entries,
the link load of RBDP is lower than that of DevoFlow. The last
group of testing shows the link load by changing the number
of flows in an SDN. The testing results in Fig. 5 indicate that
RBDP reduces the link load by about 28%, 45% and 60%
compared with ECMP, ECMP-G and OSPF, respectively, and
achieve similar routing performance as DevoFlow.

From the testing results, our RBDP algorithm can (1) reduce
the link load by about 60% compared with the OSPF method
using the same number of flow entries and additional 10%
group entries, and (2) achieve similar routing performance as
DevoFlow while reducing 64% flow entries. Moreover, our
proposed algorithm can (3) reduce the link load by about 45%
compared with ECMP-G using the same number of flow/group
entries, and (4) save the group entries about 58% compared
with ECMP, whose routing performance is worse than ours.

C. Simulation Evaluation
1) Simulation Setting: We select two practical topologies.

The first topology, denoted by (a), is for campus networks, and
contains 100 switches and 200 servers from [23]. The second
one is the fat-tree topology [24], denoted by (b), contains
80 switches and 128 servers. It has been widely applied in
many datacenters. For both topologies, each server runs 10
virtual machines (VMs), and each link has a uniform capacity,
10Gbps. We execute each simulation 100 times and average
the numerical results. The authors of [11] have shown that
less than 20% of the top-ranked flows may be responsible
for more than 80% of the total traffic. Thus, we allocate the
size for each flow according to this 2-8 distribution and the
expected traffic demand of each flow is 0.5Mbps. Besides,

8

No. of Flow Entries Topology (a) Topology (b)
Max. Avg. Max. Avg.

DevoFlow 5k 4.4k 5k 4.5k
RBDP 2k 1.9k 1.28k 1.1k
ECMP 2k 1.9k 1.28k 1.1k
OSPF 2k 1.9k 1.28k 1.1k

TABLE I: Comparison on Number of Flow Entries

No. of Group Entries Topology (a) Topology (b)
Max. Avg. Max. Avg.

ECMP 1.4k 0.9k 1.1k 0.8k
ECMP-G 0.3k 0.23k 0.3k 0.24k

RBDP 0.3k 0.23k 0.3k 0.24k
TABLE II: Comparison on Number of Group Entries

the flow table size is set as 5k for the following reasons. On
the one hand, due to the high price and energy-consuming
of TCAM, SDN switch usually contains less than 5k flow
entries (e.g., Broadcom Trident has 4k flow entries [5]). On
the other hand, even if some commodity switches have lager
rules, these rules may have to be shared by various functions
(e.g., security, management and flow statistics collection [6]).
The number of available group entries for default paths is set
as 300 on each switch by default for the same reason.

2) Simulation Results: We run three sets of simulations
on two different topologies to check the effectiveness of
our proposed algorithm. The first set of simulations shows
the required flow/group entries by different algorithms in a
network which contains 300k flows (about 150 flows per VM).
We execute four algorithms on two different topologies, and
the simulation results are shown in Tables I and II. From Table
I, we can see that our proposed algorithm reduces the flow
entries about 60% compared with DevoFlow on average. For
example, for topology (a), RBDP only needs no more than 2k
flow entries while DevoFlow needs about 5k flow entries at
most and 4.4k flow entries on average. Note that, the number
of required entries for DevoFlow will increase with the number
of flows and there may contain millions of flows in some large
networks. Thus, it is highly meaningful to reduce the number
of flow entries that are used to support routing, so that more
flow entries can be reserved for supporting other policies [6].
Since only ECMP, ECMP-G and RBDP need to install group
entries on switches, we compare the use of group entries of
ECMP, ECMP-G and RBDP on both two topologies. Table II
shows that the number of required group entries of RBDP is
same as that of ECMP-G and fewer than that of ECMP. For
example, when there are 300k flows in topology (b), ECMP
needs about 1.1k group entries at most and about 0.8k group
entries on average while RBDP only needs about 0.3k group
entries at most and 0.24k group entries on average. In other
words, our proposed algorithm can reduce group entries about
70% compared with ECMP.

The second set of simulations mainly shows how the number
of flows affects the routing performance on two topologies.
We change the number of flows from 100k to 900k, and the
simulation results are shown in Figs. 7-10. Figs. 7 and 8 show
that the link load ratio increases with the number of flows

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

L
in

k
 L

o
ad

 R
at

io

Number of Flows (× 10
4
)

OSPF

ECMP-G

ECMP

DevoFlow

RBDP

Fig. 7: LLR vs. Number of Flows
for Topology (a)

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

L
in

k
 L

o
ad

 R
at

io

Number of Flows (× 10
4
)

OSPF

ECMP-G

DevoFlow

ECMP

RBDP

Fig. 8: LLR vs. Number of Flows
for Topology (b)

0.2

0.4

0.6

0.8

1

10 20 30 40 50 60 70 80 90

T
h
ro

u
g
h
p
u
t

 F
ac

to
r

Number of Flows (× 10
4
)

RBDP

DevoFlow

ECMP

ECMP-G

OSPF

Fig. 9: NTF vs. Number of Flows
for Topology (a)

0.6

0.7

0.8

0.9

1

10 20 30 40 50 60 70 80 90

T
h
ro

u
g
h
p
u
t

 F
ac

to
r

Number of Flows (× 10
4
)

RBDP

ECMP

DevoFlow

ECMP-G

OSPF

Fig. 10: NTF vs. Number of
Flows for Topology (b)

for all algorithms. Our RBDP algorithm has decent link load
ratio performance on both two topologies. For example, when
there are 300k flows, the proposed RBDP algorithm reduces
link load ratio about 42% and 31% compared with the OSPF
method in topologies (a) and (b), respectively. Meanwhile,
RBDP can reduce link load ratio by about 25% compared
with ECMP-G using the same number of flow/group entries,
and achieve better link load ratio performance compared with
ECMP, which requires more group entries than ours illustrated
by Table II. Even compared with DevoFlow, which increases
the number of required flow entries about 60%, our proposed
algorithm also can reduce link load ratio about 13%. Figs.
9-10 indicate that the throughput factor decreases with the
number of flows in both two topologies. For example, when
there are 600k flows in topology (a), RBDP improves the
network throughput factor about 110% compared with the
OSPF method, and achieves better throughput factor compared
with DevoFlow and ECMP.

The last set of simulations shows how the number of
available group entries affects the routing performance on two
topologies. By default, there are 400k flows in Figs. 11-12.
These two figures show that, the link load ratio of our RBDP
algorithm is better than that of DevoFlow when the number of
available group entries is more than 250. Meanwhile, RBDP
can achieve lower link load ratio compared with ECMP-G
while using the same number of flow/group entries. For exam-
ple, when the group table size constraint is 600 in topology (a),
RBDP reduces link load ratio about 32% and 24% compared
with OSPF and ECMP-G, respectively. By default, there are
800k flows in Figs. 13 and 14. These two figures show the
throughput factor performance by changing the number of
available group entries on two different topologies. When each
switch contains 300 available group entries in topology (a), our
proposed algorithm can increase throughput factor about 98%
and 30% compared with OSPF and ECMP-G, respectively.

From these results, we can draw some conclusions. First,
from Table I, RBDP reduces the number of required flow
entries about 60% compared with DevoFlow. Second, RBDP

9

 0.5

 0.6

 0.7

 0.8

 0.9

 1

0 100 200 300 400 500 600 700 800

L
in

k
 L

o
ad

 R
at

io

Number of Group Entries

OSPF

ECMP-G

DevoFlow

RBDP

Fig. 11: LLR vs. Number of
Group Entries for Topology (a)

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 100 200 300 400 500 600 700 800

L
in

k
 L

o
ad

 R
at

io

Number of Group Entries

OSPF

ECMP-G

DevoFlow

RBDP

Fig. 12: LLR vs. Number of
Group Entries for Topology (b)

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

F
ac

to
r

Number of Group Entries

RBDP

DevoFlow

ECMP-G

OSPF

Fig. 13: NTF vs. Number of
Group Entries for Topology (a)

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800

T
h
ro

u
g
h
p
u
t

F
ac

to
r

Number of Group Entries

RBDP

DevoFlow

ECMP-G

OSPF

Fig. 14: NTF vs. Number of
Group Entries for Topology (b)

reduces the number of required group entries about 70%
compared with ECMP from Table II. Third, from Figs. 7-10,
RBDP improves routing performance about 35% on average
compared with OSPF while using additional 10% group en-
tries, and improves routing performance about 13% on average
compared with DevoFlow while reducing the flow entries
about 60% and using additional 10% group entries. Moreover,
RBDP can achieve similar performance compared with ECMP
while reducing the number of required group entries by about
70%. Fourth, RBDP can increase routing performance about
30% compared with ECMP-G using the same number of
flow/group entries by Figs. 11-14.

V. RELATED WORKS

Since routing is a critical issue to achieve better network
performance in an SDN, there are many related works to
handle the routing problem. To provide the fine-grained flow
control, a natural way is to install one individual forwarding
rule for each flow. M. Al-Fares et al. [10] designed a dynamic
flow scheduling for datacenter networks that set up a rule for
every new flow in the network.

As the networks are experiencing more and more flows
while the commodity switches only contain a few thousand
TCAM entries [11] [15], these works can not be applied
directly to scenarios with a massive number of flows. This
challenge can be solved by dropping some flows or using
wildcard routing. Works [9] [25] dropped some flows so that
the controller could install per-flow rules for other flows with
flow table size constraint. However, since the dropped flows
can not be served, it reduces the user experience.

To serve all flows in the network and accommodate the flow
table size constraint, default path [11] is an efficient solution
for SDNs. Many works based on wildcard routing have been
proposed to minimize the rule space consumption. DevoFlow
[11] combined pre-installed wildcard rules and dynamically-
established exact rules. DomainFlow [26] divided the network
into two parts, one part using wildcard rules and another part

using exactly matching rules. However, these works did not
mention how to deploy default paths.

As in [11], OSPF was the widely-used method for
destination-based wildcard routing. However, these works suf-
fered from worse network performance, for many flows would
be forwarded through one single path. To improve the network
performance, multi-path forwarding has been proposed. ECMP
[13] was the most popular technique for spreading traffic
among available paths, which has been applied in [1]. ECMP
split a set of flows uniformly over a group of next hops
to achieve load balancing. WCMP [14] focused on how to
establish weighted multi-path to divide traffic based on the
hash table, which likely violated the action buckets constraint
in each group entry. Niagara [15] established weighted multi-
path through prefix and suffix. This problem was completely
different from ours.

All the above works can not achieve trade-off optimization
between the occupied flow/group entries and network per-
formance. The per-flow routing methods can achieve better
network performance while the required flow entries is much
more than the flow table size. Meanwhile, the previous default
path methods, such as OSPF and ECMP, may lead to worse
network performance, or can not satisfy the group table size
and action buckets constraints. Thus, this paper focuses on
deploying default paths to achieve better trade-off performance
by joint optimization of flow table and group table in an SDN.

VI. CONCLUSION

In this paper, we have studied efficient deployment of de-
fault paths by joint optimization of flow table and group table
for an SDN. We have designed a rounding-based algorithm for
the DP-JFG problem. The testing results on the SDN platform
and the extensive simulation results on the Mininet show the
high efficiency of our algorithm.

ACKNOWLEDGEMENT

The corresponding author of this paper is Hongli Xu. This
research of Zhao, Xu, Huang and Wang is supported by NSFC
under No.61472383, U1301256, 61472385 and 61728207, and
NSF of Jiangsu in China under No. BK20161257.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-driven
wan,” in ACM SIGCOMM, 2013, pp. 15–26.

[2] D. Li, Y. Shang, and C. Chen, “Software defined green data center
network with exclusive routing,” in IEEE INFOCOM, 2014, pp. 1743–
1751.

[3] O. N. Foundation, “Openflow switch specification version 1.3.4,” 2014.
[4] L.-H. Huang, H.-C. Hsu, S.-H. Shen, D.-N. Yang, and W.-T. Chen,

“Multicast traffic engineering for software-defined networks,” in IEEE
INFOCOM, 2016, pp. 1–9.

[5] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past: Scalable
ethernet for data centers,” in CoNEXT. ACM, 2012, pp. 49–60.

[6] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu, “Simple-
fying middlebox policy enforcement using sdn,” ACM SIGCOMM
computer communication review, vol. 43, no. 4, pp. 27–38, 2013.

[7] J. Fan, M. Jiang, and C. Qiao, “Carrier-grade availability-aware mapping
of service function chains with on-site backups,” in Quality of Service
(IWQoS), 2017 IEEE/ACM 25th International Symposium on. IEEE,
2017, pp. 1–10.

10

[8] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in ACM
SIGCOMM, 2009, pp. 202–208.

[9] R. Cohen, L. Lewin-Eytan, J. S. Naor, and D. Raz, “On the effect of
forwarding table size on sdn network utilization,” in INFOCOM, 2014
Proceedings IEEE. IEEE, 2014, pp. 1734–1742.

[10] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat,
“Hedera: Dynamic flow scheduling for data center networks.” in NSDI,
vol. 10, 2010, pp. 19–19.

[11] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma, and
S. Banerjee, “Devoflow: Scaling flow management for high-performance
networks,” Acm Sigcomm Computer Communication Review, vol. 41,
no. 4, pp. 254–265, 2011.

[12] H. Xu, Z. Yu, X.-Y. Li, C. Qian, L. Huang, and T. Jung, “Real-time
update with joint optimization of route selection and update scheduling
for sdns,” in Network Protocols (ICNP), 2016 IEEE 24th International
Conference on. IEEE, 2016, pp. 1–10.

[13] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “Vl2: a scalable and flexible data
center network,” in ACM SIGCOMM computer communication review,
vol. 39, no. 4. ACM, 2009, pp. 51–62.

[14] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat, “Wcmp: Weighted cost multipathing for improved fairness
in data centers,” in Proceedings of the Ninth European Conference on
Computer Systems. ACM, 2014, p. 5.

[15] N. Kang, M. Ghobadi, J. Reumann, A. Shraer, and J. Rexford, “Efficient
traffic splitting on commodity switches,” in CoNEXT, 2015, pp. 1–6.

[16] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-defined
networking through hybrid switching,” in Proc. IEEE INFOCOM, 2017.

[17] Z. Hu and J. Luo, “Cracking network monitoring in dcns with sdn,”
in Computer Communications (INFOCOM), 2015 IEEE Conference on.
IEEE, 2015, pp. 199–207.

[18] S. Even, A. Itai, and A. Shamir, “On the complexity of time table
and multi-commodity flow problems,” in Symposium on Foundations
of Computer Science, 1975, pp. 184–193.

[19] A. Srinivasan, “Approximation algorithms via randomized rounding: a
survey,” Series in Advanced Topics in Mathematics, Polish Scientific
Publishers PWN, pp. 9–71, 1999.

[20] M. Y. O. Network, “Ospf network design solutions,” 2003.
[21] “Open vswitch: open virtual switch.” http://openvswitch.org/.
[22] “Linux foundation collaborative project,” http://opendaylight.org/.
[23] “The network topology from the monash university,”

http://www.ecse.monash.edu.au/twiki/bin/view/InFocus/
LargePacket-switchingNetworkTopologies.

[24] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” Acm Sigcomm Computer Communication
Review, vol. 38, no. 4, pp. 63–74, 2008.

[25] M. Huang, W. Liang, Z. Xu, W. Xu, S. Guo, and Y. Xu, “Dynamic rout-
ing for network throughput maximization in software-defined networks,”
in IEEE INFOCOM, 2016, pp. 1–9.

[26] Y. Nakagawa, K. Hyoudou, C. Lee, S. Kobayashi, O. Shiraki, and
T. Shimizu, “Domainflow: Practical flow management method using
multiple flow tables in commodity switches,” in ACM CoNext, 2013,
pp. 399–404.

APPENDIX A
PROOF OF LEMMA 3

Proof: By the algorithm description, for terminal u and
switch v, we divide all links in Eu(v) with zue > 0 into two
subsets, Pb

v,u and Ps
v,u. On one hand, according to Eq. (7),

the total weight of all links in Pb
v,u is :

wb
v,u =

∑
e∈Pb

v,u

zue · (1− wu
v) (11)

On the other hand, by Eq. (9), the total weight of all links in
Ps

v,u is :

ws
v,u =

∑h′

j=1

zj · zsv,u · (1− wu
v)

h′ = zsv,u · (1− wu
v) (12)

Combining Eqs. (8), (11) and (12), we have

wb
v,u + ws

v,u =
∑

e∈Pb
v,u

zue · (1− wu
v) +

∑
e∈Ps

v,u

zue · (1− wu
v)

=
∑

e∈Eu(v)
zue · (1− wu

v) = 1− wu
v (13)

Thus, the total weight of all the chosen links configured in
each group entry is wu

v + wb
v,u + ws

v,u = 1

APPENDIX B
PROOF OF LEMMA 4

Proof: Let f̃(e, u) and f̃(v, u) denote the traffic load on
link e and the traffic amount on switch v from macroflows Γu

by the linear program LP1, respectively. The algorithm derives
an integer solution ĝuv one by one. We consider the situation
that the controller processes the first variable guv . After the
rounding operation, if ĝuv = 1, we install a group entry on
switch v for terminal u. Otherwise, we forward all macroflows
γ ∈ Γu through the OSPF link from switch v to terminal u.
After rounding on variable guv , the traffic on switch v from
macroflows Γu is denoted by f̂t(v, u). This operation will not
affect the incoming traffic on switch v, i.e.,

f̂t(v, u) = f̃(v, u). (14)
Then, we consider the traffic load on the outgoing links from

switch v. The traffic load on link e ∈ E(v) from macroflows
Γu is denoted by f̂t(e, u) after the rounding process. We prove
that, for each link e ∈ E(v), E

[
f̂t(e, u)

]
= f̃(e, u), so that

this rounding operation will not affect the expected traffic load
of link e ∈ E. There are three cases of link e ∈ E(v).

1) If link e ∈ Pb
v,u, combining Eqs. (5), (6), (7) and (14):

E
[
f̂t(e, u)

]
= wu

e · f̂t(v, u) · g̃uv
= zue · (1− wu

v) · f̃(v, u) · g̃uv

= zue · 1− zuv
g̃uv

· f̃(v, u) · g̃uv

=
∑

γ∈Γu

∑
e∈p:p∈Pγ

ypγf(γ) = f̃(e, u) (15)
2) If link e ∈ Ps

v,u, combining Eqs. (5), (6), (9) and (14):

E
[
f̂t(e, u)

]
=

p(e)

zj
· wu

e · f̂t(v, u) · g̃uv

=
p(e)

zj
·
zj · zsv,u · (1− wu

v)

h′ · f̃(v, u) · g̃uv

=
h′ · zue
zsv,u

·
zsv,u · (1− wu

v)

h′ · f̃(v, u) · g̃uv

=
∑

γ∈Γu

∑
e∈p:p∈Pγ

ypγf(γ) = f̃(e, u) (16)
3) If link e = euv , based on Eqs. (4) and (6), it follows:
E
[
f̂t(e, u)

]
= wu

v · f̂t(v, u) · g̃uv + f̂t(v, u) · (1− g̃uv)

=
∑

γ∈Γu

∑
euv∈p:p∈Pγ

ỹpγf(γ) = f̃(e, u) (17)
Thus, the expected traffic load on each link e is:

E
[
f̂t(e)

]
= E

[∑
u∈U

f̂t(e, u)
]
= E

[∑
u∈U

f̃(e, u)
]
= f̃(e)

(18)
Similarly, after we install the required group entries, the

expected traffic load on each link e is same as f̃(e).

