
Speed Up Queries in Unstructured Peer-to-Peer
Networks

Zhan Zhang Yong Tang Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida 32611–6120
{zzhan, yt1, sgchen}@cise.ufl.edu

Abstract—Unstructured peer-to-peer networks have gained a
lot of popularity due to their resilience to network dynamics. The
core operation in such networks is to efficiently locate resources.
However, existing query schemes, e.g., flooding, random walks
and interest-based shortcut, suffer various problems in reducing
communication overhead, and shortening response time. In this
paper, we study the problems in prior works, and propose a
new query scheme by mixing inter-cluster queries, and intra-
cluster queries. Specifically, the proposed scheme works by
efficiently locating the clusters sharing similar interests with
inter-cluster queries, and then exhaustively searching the nodes
in the found clusters with intra-cluster queries. To facilitate the
scheme, we propose a clustering algorithm to cluster nodes that
share similar interests, and a labeling algorithm to explicitly
capture the clusters’s borders. As demonstrated by extensive
simulations, our new query scheme can improve the system
performance significantly by delivering a better tradeoff between
communication overhead and response time.

I. INTRODUCTION

Peer to peer networks surged in popularity in recent years.
The core operations in most peer-to-peer networks is to effi-
ciently locate data items, in which the fundamental challenges
are to achieve faster response time, smaller network diameter,
and better resilience to network dynamics.

Structured P2P networks have been proposed by many
researchers [1], [2], [3], [4], [5], [6], [7], in which distributed
hash tables (DHT) are used to provide data location man-
agement in a strictly structured way. While structured P2P
networks can offer better performance in response time and
communication overhead for query procedures, they suffer
from the large overhead for overlay maintenance due to
network dynamics.

Unstructured P2P networks such as Gnutella rely on a
random process, in which nodes are interconnected in a
random manner. The randomness offers high resilience to the
network dynamics. However, they rely on flooding for users’
queries, which is expensive in computation and communica-
tion overhead. Consequently, scalability has always been a
major weakness for unstructured networks [8].

Searching through random walks are proposed in [9], [10],
[11], in which incoming queries are forwarded to the neighbors
that are chosen randomly. In random walks, there is typically
no preference for a query to visit the most possible nodes
maintaining the queried data, resulting in long response time.

Interest-based shortcut [12] exploits the locality of inter-
ests among different nodes. The basic principle behind this
approach is that a node tends to revisit accessed nodes again

since it was interested in the data items from these nodes
before. However, this approach may raise new problems, and it
may even work worse than uniform random walks as discussed
later.

In this paper, we take the unstructured approach, and
propose a new query scheme to address these problems, which
is able to deliver a better tradeoff among response time and
communication overhead.

The rest of the paper is organized as follows. Section II
reviews the possible problems in prior works, and gives the
motivation of our scheme. Section III defines the interest
similarity, and proposes a light-weight algorithm to cluster
nodes within the same interest group and a labeling algorithm
to explicitly border the clusters. Section IV introduces our
query scheme in details. Section V evaluates the scheme with
extensive simulations. Section VI draws the conclusion.

II. PROBLEMS AND MOTIVATION

A. Problems in Prior Works

Current query schemes suffer various problems in achiev-
ing a better tradeoff between communication overhead and
response time.

Flooding: Flooding, e.g., [13], [14], [15], is a popular
query scheme to search a data item in fully unstructured
P2P networks, such as Gnutella. While flooding is simple
and robust, its communication overhead, i.e., the message
number, increases exponentially with the hop number, and
most of these messages visit the node that have been searched.
Consequently, communication overhead and scalability are
always the main weakness in this approach [8], [16].

Random Walks: Random walks [9], [10], [11], [17] rely
on query messages randomly selecting their next hops among
neighbors to reduce the communication overhead, but this
approach takes a long time to locate queried data items.
If a network is well-clustered (nodes with similar interests
are densely connected), the query latency is expected to be
reduced significantly. However, it is not true, because the
chance of a random walk message escaping out of the original
cluster increases exponentially with the ratio r, defined as the
inter-cluster edge number to the intra-cluster edge number. In
the case of a network with a small value of r, e.g., r < 0.01,
and the queried data items are in different clusters from the
source node, a query message has to walk a long distance to
be able to traverse the cluster border and locate the queried
data items. In the case of a network with a large value of r,

1-4244-0353-7/07/$25.00 ©2007 IEEE 

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6181



e.g., r > 0.1, and the queried data is in the original cluster, a
query message may escape out of the original cluster within
a small number of hops, resulting in a long response time.
Consequently, random walks may suffer long response time
regardless of the network having been well-clustered or not.

Interest-based shortcut: Interest-based shortcut, e.g.,[12],
tries to avoid the blindness in random walks by favoring
nodes sharing similar interests with the source, which can be
regarded as a variation of markov random walks. However,
it causes new problems. Suppose nodes in an interest group
have formed a cluster, and query messages can be artificially
confined in this specific cluster. In the sense of nodes in the
cluster share similar interests, any of them possibly maintains
the queried data. Thus, the query message should visit the
nodes as many as possible, instead of visiting some specific
nodes as soon as possible. However, due to the bias in selecting
next hops in markov random walks, it tends to keep visiting
some specific nodes, resulting in less distinct nodes being
covered comparing to uniform random walks. Consequently,
markov random walks work worse than uniform random walks
if query messages can be confined in specific clusters.

B. Motivation

Researchers [12], [18], [19] have found many peer-to-peer
networks exhibit small-world topology, and most of queried
data items are offered by the nodes that share similar interest
with the source node.

Intuitively, the nodes sharing similar interests with the
source node should have higher priority to be searched than
others. Practically, there are two challenges in designing such
a query scheme. The first one is how to construct a small-
world topology to cluster nodes sharing similar interests.
By saying “similar interests”, we actually mean that two
nodes are interested with a common set of data items. Thus,
the number of common accessed data items can serve as a
metric to measure the interest similarity between two nodes.
Based on this metric, we can design a clustering algorithm to
densely connect the nodes with similar interests, and a labeling
algorithm to enable a node to explicitly pick up its inter-cluster
neighbors that have different interests from itself, and intra-
cluster neighbors that share similar interests with itself.

The second challenge is how to fast locate the clusters
that share similar interests with the source node, and how
to exhaustively search nodes in the found clusters, if the
queried data items are in the source node’s interest group. This
challenge is addressed by two types of queries: inter-cluster
queries, and intra-cluster queries. The inter-cluster queries
carry the interest information, and only travel on inter-cluster
neighbors. The purpose of them is to fast locate the clusters
that share similar interests with the source node. The intra-
cluster queries are spawned by inter-cluster queries when a
cluster sharing similar interest with the source node is hit.
They only travel on intra-cluster neighbors for the purpose of
exhaustively searching nodes in specific clusters.

Occasionally, queried data may be out of the source node’s
interest group, and possibly maintained by a cluster(s) with
different interests. This problem can be addressed by blind

5

4

3

2

1

cluster

inter-cluster query

intra-cluster query

Fig. 1. A query scheme mixing inter-cluster queries and intra-cluster queries
(the nodes in the grey clusters fall into the same interest group).

search: inter-cluster messages randomly spawning intra-cluster
messages when hitting clusters with different interests.

Take Figure 1 as an example. The network consists of 5
clusters, and nodes in the same cluster fall into the same
interest group. Note that there exists an interest group con-
sisting of two clusters: 1, and 5. In our schemes, inter-queries
are initiated by a node in cluster 1, which travel among
different clusters. By the interest information carried in the
inter-queries, cluster 5 is found to share similar interests when
it is hit, and an intra-cluster query is spawned, which then will
exhaustively search the nodes in it. In addition, an intra-cluster
query is spawned in cluster 2 by inter-cluster queries to support
blind search.

III. CONSTRUCTING A SMALL-WORLD TOPOLOGY

A. Measuring the Interest Similarity between Two Nodes

We start our discussion with the definition of interest
similarity between two nodes in P2P networks.

If node u and node v share similar interests, then it is
very likely that they have accessed same data items more or
less previously. Therefore, the size of the common subset of
accessed data items can serve as a metric to measure to what
extent the interests of two nodes are similar.

However, a node may offer hundreds of data items, and
hence, there may exist a large number of data items even in
a small network. As a result, only if u and v have visited
a large number of data items respectively, they are able to
show some degree of similarity. An alternative to evaluate
the interest similarity is by the number of common accessed
nodes, which may enable a clustering algorithm to converge
faster than the former approach. The problem in this approach
is that two nodes visiting a common node does not indicate
they have similar interests, because a node may offer data
items belonging to multiple interest groups. For instance, a
user u may offer resources for two groups: a set of mp3
music files for one group, and a set of research literatures for
the other group. It is possible that two nodes visiting u have
different interest. Thus, we have to address the discrepancy
between the common set of accessed nodes and the common
set of visited data items.

Suppose there are n nodes N = {1, 2, ..., n} in the whole
P2P network, and each node i offers a number of data items
to the community. It categorizes (maps) all of these data items

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6182



u v

N

..

1

n

3

2

n-1

200

5

5
10

100

50

u v

N

..

1

n

3

2

n-1

200

5

58

2
100

50

u v

N

..

1

n

3

2

n-1

200

5

5

8

2
100

50

Fig. 2. Interest similarity between nodes. The number of data items in 1,
2, and n are 50, 100, and 200 respectively. left: no common visited nodes,
center: u and v have visited node 2 (100 data items) with 8 and 5 times
respectively, right: u and v have visited node n (200 data items) with 8 and
5 times respectively.

into αi different categories, denoted as Ci = {ci
1, c

i
2, ..., c

i
αi
}.

Suppose a data item x in i is mapped to a category ci(x),
where ci(x) ∈ Ci. How to categorize the data items is
determined by the node i independently. For instance, node
i may classify music files as category 1, while another node
may classify music files as category 2. On the other hand,
node i may fall into multiple interest groups, denoted as
Gi = {gi

1, g
i
2, ..., g

i
βi
}. For a node u, the access history with

respect to each of its interest groups, e.g., gu
1 , can be specified

by a set of data items x, denoted as (i, ci(x)), where i
represents the node offering the data item, and ci(x) is the
category in Ci defined by i. If two nodes u and v share
“similar interests”, e.g., gu

1 ≈ gv
2 , their histories for gu

1 and gv
2

tend to consist of a common set of (i, ci(x)). Note that in the
above definitions, each node determines its interest groups and
categories independently without maintaining any any global
information.

For easy explanation, we study a basic approach by assum-
ing each user only falls into one interest group, and offers one
category of data items. In this scenario, the access history can
be represented by the accessed nodes alone. This approach can
be easily extended to the multi-categories and multi-groups
based on the definitions above.

The access history of a node u can be represented by a
vector V u = (vu

1 , .., vu
n), 1 where vu

x represents how many
times node u has visited node x. To cancel out the number of
queries a node has issued, the access vector V u is normalized
to the frequency vector Fu, in which the i-th element in
Fu is denoted as fu

i , computed by V u as fu
i = vu

i∑
j∈N vu

j
,

representing the access frequency of the node i. Note that if a
node i has not been visited by both u, then fu

i = 0, indicating
that a node does not need to maintain any information of
unvisited nodes.

Moreover, given that two nodes u and v have visited a
common node i, the probability of them visiting a common
items correlates with the number of items offered by i, denoted
as di. Take Figure 2 as an example, u and v in the middle part
have more chance of having visited common data items than
that in the right part because the number of data items in
node 2 is half of that in node n. To account for this issue, we

1The real size of the vector V u can be fixed to only record the nodes
accessed most frequently by u

introduce a weighted diagonal matrix W with (i, i)-th value
wi,i equal to 1

di
. It represents the probability of both u and v

visiting a common data items, if both of them visit i once.
Now we define the following metric Au,v

w to evaluate the
interest similarity between two nodes (Take the middle part in
Figure 2 as an example):

Au,v
w = FuT WF v

=




.2

.8
0
.
.
0




T 


.02 0 0 0 0 0
0 .01 0 0 0 0
0 0 d3 0 0 0
0 0 0 . 0 0
0 0 0 0 . 0
0 0 0 0 0 .005







0
.5
0
.
.
.5




= 0.004

Similarly, Au,v
w in the right part is equal to 0.002, indicating

less interest similarity than that in the middle part.
If we view fu

i and fv
i as the probabilities of nodes u

and v visiting node i, and 1
di

as the probability of u and v
visiting a common data items if both of them visit i, then the
summation Au,v

w can be used to predict the probability that
both u and v will visit a common data item in their future
queries. Our definition is advantageous in manyfold. Due to
space limitation, we omit the discussion in details.

B. Clustering Nodes with Similar Interests

Given the metric to evaluate the interest similarity between
two nodes, we propose a light-weight clustering algorithm to
connect nodes sharing similar interests.

In our strategy, each node i maintains a list L with limited
size, e.g., 30, to record the nodes that possibly share same
interests with itself. Each time a query message is processed,
the similarity between the querying node itself and the node
that owns the data items is computed. The newly obtained
interest similarity, and the corresponding node’s address are
inserted into the list L. If the list is full, the stored neighbor
with the lowest interest similarity is dropped.

By assuming that interests of nodes do not shift in a limited
time frame, the nodes in L will serve as candidates of i’s intra-
cluster neighbors that sharing similar interests with itself.

C. Bounding Clusters

Although nodes with similar interests can be clustered by
our clustering algorithm along with queries, existing query
schemes, e.g., random walks, can only benefit marginally as
discussed in Section II. To exploit the characteristics of the
small world topology, our approach is to explicitly capture
the clusters by each node i selecting inter-cluster neighbors
in different interest groups, and intra-cluster neighbors in its
own interest group.

A node i can learn its inter-cluster neighbors as follows. The
node i issues a certain number of random walk messages only
traveling on others’ inter-cluster neighbors, and chooses the
nodes hit by the messages as its inter-cluster neighbors. Note
that inter-cluster neighbors should not overlap with the nodes
in list L, which are candidates of i’s intra-cluster neighbors.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6183



Thus, it is of the most importance to learn the intra-cluster
neighbors. As discussed, for a node i, the nodes in L are
candidates for its intra-cluster neighbors. We normalize the
interest similarity of its neighbors j in L as:

pi,j =
Ai,j

w∑
k Ai,k

w

Naturally the transition probability pi,j can serve as a good
metric to determine whether i and j are in the same interest
group or not by introducing a threshold as a lower bound,
denoted as T .

The purpose of intra-cluster neighbors is to confine intra-
cluster queries within a specific interest group. Two nodes
falsely regarded as intra-cluster neighbors may create a dra-
matic impact because an intra-cluster query may traverse
to another cluster with different interests. On the contrast,
two nodes i and k that are falsely regarded as inter-cluster
neighbors will only have limited impact, because i and k may
be connected by other intermediate intra-cluster neighbors j.
In addition, the chance of i and k falling into the same cluster
tends to become larger along with query procedures if they
are in the same interest group. Based on this observation, T
can be set as a relatively larger value. Suppose there are α
neighbors in L that are possibly in the same interest group
with i. In our paper, T is set to be 1

α . Note that pi,j and T are
computed by node i locally, and the labeling algorithm does
not involve any extra communication.

IV. SPEED UP QUERIES

A. Query Messages

By explicitly capturing the cluster borders, we can formally
define following three types of query messages.

The first one is called l-query message, denoted as Ml,
which is a type of inter-cluster message only traveling on inter-
cluster neighbors. The purpose of it is to quickly locate the
clusters that may share similar interests with the source node
and disperse intra-queries among different clusters.

The second one is called s-query message, denoted as Ms,
which is a special type of intra-cluster message confining itself
within a specific cluster by doing uniform random walks only
on intra-cluster neighbors. An s-query message can only be
spawned in a cluster sharing similar interests with the source
node. The purpose of it is to exhaustively search nodes in
the specific clusters. Each node having received the message
should be able to estimate to what extent the cluster has
been covered by the message. If most of nodes have been
visited, an s-query message has little chance to discover more
new nodes by keeping walking in the cluster, indicating the
received message should be discarded. Otherwise, the message
should be forwarded. Accurately estimating the covering time
of a cluster is difficult and resource-consuming in a distributed
system. Heuristically, if the message has been consecutively
hitting a certain number, denoted as h, of nodes that have
been visited by previous intra-cluster messages, the message
is discarded. Thus, all messages in Ms need to maintain a
counter to keep track on the number of consecutive nodes
having been visited by previous intra-cluster messages.

The last one is called b-query message, denoted as Mb,
which is also a special type of intra-cluster message similar
to s-query message. The difference of b-query messages from
s-query messages is that b-query messages may be spawned in
clusters that have different interests from the source node. The
purpose of it is to support blind search, because occasionally,
the queried data may be out of the source node’s interest group.
The chance that the queried data item in a cluster having
different interests is very small. Thus, once a b-query message
hits a node that has been visited, the message is discarded to
reduce the number of duplicated messages.

Moreover, to control the communication overhead, the total
number of concurrent query messages has to be limited. It is
achieved by the source node counting the number of l-query,
s-query and b-query messages, denoted as ml, ms and mb

respectively. Whenever an intra-cluster message, e.g., s-query
message or b-query message, is spawned or discarded, the
corresponding counter in the source node needs to updated.
Only if the summation of ml, ms, and mb is smaller than a
certain number, denoted as m, a new b-query message can
be spawned to support blind search. In addition, all messages
need to periodically check the status of the source node so
that they can stop if the query has been successfully returned.

B. Mixing Inter-Cluster Queries and Intra-Cluster Queries

With three types of messages defined above, our query
scheme is designed as follows.

Initialization: To initiate a query request, a node u issues a
number ml of l-query messages. If the queried data item falls
in u’s interest group, l-query messages carry the source’s fre-
quency vector, and a certain number ms of s-query messages
are issued to exhaustively search its own cluster. Otherwise,
the message does not carry any interest information, and a
b-query message is issued.

Receiving an l-query message: In the case of a node
u receiving an l-query message, it calculates the interest
similarity with the source node. If interest similarity is larger
than a predefined value, a new s-query message is spawned
and ms in the source node is updated. Otherwise, a new b-
query message is spawned, if the node has not been hit by
other messages in Ms and Mb, and ml + ms + mb < m.
Finally, node u forwards the received message to a randomly
selected inter-cluster neighbor.

Receiving an s-query message: In the case of a node u
receiving an s-query message, if u has been hit by messages
in Ms or Mb, it increases the counter in the message by 1.
Otherwise, it resets the counter to 0. Next, if the counter is
larger than the threshold h, e.g., 10, the node discards the
message and notifies the source node to update the counter
ms. Otherwise, it forwards the message to a randomly selected
intra-cluster neighbor.

Receiving a b-query message: In the case of a node u
receiving a b-query message, if it has been hit by messages
in Ms or Mb, the node discards the message and notifies the
source node to update the counter mb. Otherwise, it forwards
the message to a randomly selected intra-cluster neighbor.

Our query scheme is stateful. If the same queries are
reissued multiple times, less intra-cluster queries will be

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6184



spawned in the well-searched clusters, and more intra-cluster
queries will be spawned in the less-searched clusters, resulting
in stronger ability to locate more replicas.

V. SIMULATION

In this section, the performance of the proposed clustering
algorithm and query scheme is studied by simulations. If not
explicitly defined, the number of nodes is 10, 000, and the
average group size is 150. Each node maintains 1,000 data
items, the average number of queries issued by each node is
30, the threshold h is equal to 10, and the probability of a
node incorrectly classifying its queries or data items is 0.1.
Moreover, m and ml are set to be 32 and 16 respectively.

We compare our scheme to random walks, in which a
source node issues 32 random walk messages in each query,
correspondingly. In the figures, the legend “Uniform random
walks (0)”/“Uniform random walks (1)” refers to the queried
data items are out of/in the source node’s interest group in the
uniform random walks query scheme, and similarly “Inter-
intra (0)”/“Inter-intra (1)” refers to the queries are out of/in
the source node’s interest group in the proposed scheme.

First, we study the effectiveness of our clustering and
labelling algorithms. In Figure 3, it is observed that when the
average query number is larger than 10, the algorithm reaches
a stable state and almost all nodes in the same interest group
form a single cluster. It indicates that our algorithm converge
fast with the average number of queries, which is especially
useful in highly dynamic P2P networks. By Figure 4, it can
be observed that the average number of nodes in a cluster is
almost the same as group size, demonstrating that Au,v

w can
effectively measure the nodes’ interest similarity.

Second we study the performance of our scheme with
respect to query latency and communication overhead. In
Figure 5, it is observed that if the queried data items fall into
the original node’s interest group, the number of hops needed
for the majority of the queries is significantly reduced to about
20, while in the uniform random walks, it takes much longer
time. Correspondingly, the number of messages is also much
smaller in our scheme than that in random walks, as shown
in Figure 6. The figures also show that if the queried data are
out of the source node’s interest group, the performance of
our scheme is similar to uniform random walks.

We also have studied the performance of a network, in
which each group consists of multiple different clusters. The
results show the similar trends, which keeps true with respect
to all other metrics that will be studied later. Moreover, the
simulation results verify that the performance of random walks
in a well-clustered network is similar to that in a poor-clustered
network. Due to space limitation, we omit the details.

As have been observed, our scheme works much better
than random walks in locating data items belonging to the
same group as the source node. The reason behind it is that
our scheme can discover more distinct nodes in the source
nodes’ interest groups within the same number of messages
or hops, as shown in Figure 7 and Figure 8. It also indicates
our scheme has stronger ability to locate more replicas, since
it can discover a much larger number of nodes sharing similar
interests.

( 0, 5] ( 5,10] (10,15] (15,20] (20,25] (25,30] (30,35] (35,40] (40,45] (45,50]
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

range of messages (*100)

pe
rc

en
ta

ge
 o

f u
se

fu
l m

es
sa

ge
s

Uniform random walks
Inter−Intra (1)
Inter−Intra (0)

Fig. 9. The percentage of messages discovering distinct nodes within a
certain message range.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0  50  100  150  200
nu

m
be

r 
of

 d
is

tin
ct

 n
od

es

number of hops

Uniform random walks
Inter-Intra (1)
Inter-Intra (0)

Fig. 10. The total number of distinct nodes discovered within a specific hop
number.

Occasionally, the queried data item may be out of the
source’s interest group, or classified into wrong interest group
by source node. In the former case, l-queries will not carry any
interest information, but in the latter case, l-queries will carry
wrong interest information. In both cases, the efficiency of
our query scheme can be evaluated by the number of distinct
nodes discovered by queries, including those out of the source
node’s interest group, within a certain number of messages
and hops. Note that whether the queries are in or out of the
original node’s interest group makes no difference to random
works. Figure 9 and Figure 10 show that in the first 1,000
messages, if the queries carrying interest information, less dis-
tinct nodes can be searched in our scheme. The reason is that
s-query messages mistakenly exhaustively search the nodes
in the clusters that share “similar” interests in the beginning,
which has been demonstrated by our previous simulations.
Consequently, the number of b-query messages is limited.
Along with the increment of the number of messages/hops,
our scheme works similar to the uniform random walks. It
is because after most of nodes sharing similar interests are
covered, more b-query messages will be spawned to search
clusters with different interests, which are able to discover
more distinct nodes. In addition, by the figures, if the queries
carry no interest information, our scheme works similar to
uniform random walks.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6185



 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  10  20  30  40  50

cl
us

te
r 

si
ze

number of queries

Clustering algorithm

Fig. 3. The effect of average query number on
the cluster size.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0  20  40  60  80  100  120  140  160

cl
us

te
r 

si
ze

group size

Clustering algorithm

Fig. 4. The interest association is a good metric
to estimate interest similarity

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  20  40  60  80  100  120  140  160  180  200

pe
rc

en
ta

ge
 o

f 
re

tu
rn

ed
 q

ue
ri

es

number of hops

Uniform random walks (1)
Uniform random walks (0)

Inter-Intra (1)
Inter-Intra (0)

Fig. 5. The percentage of returned query within
a specific hop number.

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0  5  10  15  20  25  30  35  40  45  50

pe
rc

en
ta

ge
 o

f 
re

tu
rn

ed
 q

ue
ri

es

number of messages (*100)

Uniform random walks (1)
Uniform random walks (0)

Inter-Intra (1)
Inter-Intra (0)

Fig. 6. The percentage of returned query within
a specific message number.

( 0,  5] ( 5, 10] (10, 15] (15, 20] (20, 25] (25, 30]
0

10

20

30

40

50

60

70

80

90

100

110

range of messages (*100)

nu
m

be
r 

of
 d

is
tin

ct
 n

od
es

Uniform random walks (1)
Inter−Intra (1)

Fig. 7. The number of distinct nodes discovered
in the same group within a certain message range.

 0

 20

 40

 60

 80

 100

 120

 140

 0  50  100  150  200

nu
m

be
r 

of
 d

is
tin

ct
 n

od
es

number of hops

Uniform random walks (1)
Inter-Intra (1)

Fig. 8. The number of distinct nodes discovered
in the same group within a specific hop number.

VI. CONCLUSION

In this paper, a clustering algorithm and a labelling algo-
rithm are proposed to connect nodes sharing similar interests
and capture clusters in the underlying networks explicitly.
Then a query scheme mixing inter-cluster and intra-cluster
queries is designed to speed up queries. Our scheme can
achieve a better tradeoff among communication overhead, re-
sponse time, and the ability to locate more resources (replicas).
The performance of the algorithms has been demonstrated by
simulations.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, F. M. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Transactions on Network-
ing (TON), 2003.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A scal-
able content-addressable network,” in Proc. of ACM SIGCOMM’2001.
ACM Press, 2001.

[3] B. Y. Zhao, L. Huang, S. C. Rhea, J. Stribling, A. D. Joseph, and
J. D. Kubiatowicz, “Tapestry: A global-scale overlay for rapid service
deployment,” IEEE J-SAC, January 2004.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
Middleware’2001, Nov. 2001.

[5] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” Theory of Computing
Systems, vol. 32, no. 3, pp. 241–280, 1999.

[6] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: a scalable and dynamic
emulation of the butterfly,” Proc. of ACM PODC’2002, 2002.

[7] A. Kumar, S. Merugu, J. Xu, and X. Yu, “Ulysses: A robust,
low-diameter, low-latency peer-to-peer network,” in IProc. of EEE
ICNP’2003, Nov. 2003.

[8] J. Ritter. (2001) Why gnutella can’t scale. no, really. gnutella.html.
[Online]. Available: http://www.darkridge.com/ jpr5/doc/

[9] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” in Proc. of ACM SIG-
COMM’03. ACM Press, 2003, pp. 407–418.

[10] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer
networks,” in Proc. of IEEE INFOCOM’04, Mar. 2004.

[11] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proc. of ICS’02: the 16th
International Conference on Supercomputing. ACM Press, Sep. 2002,
pp. 84–95.

[12] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location
using interest-based locality in peer-to-peer systems,” in Proc. of IEEE
INFOCOM’03, Mar. 2003.

[13] N. Chang and M. Liu, “Revisiting the ttl-based controlled flooding
search: Optimality and randomization.” Proc. of ACM MobiCom’04,
2004.

[14] ——, “Controlled flooding search in a large network.” Proc. of Modeling
and Optimization in Mobile, Ad Hoc and Wireless Networks, 2005.

[15] Y. Tang, Z. Zhang, S. Chen, and G. Fan, “A distributed hybrid scheme
for unstructured peer-to-peer networks.” Proc. of ICC’06, 2006.

[16] K. Sripanidkulchai. (2001, Feb.) The popularity of gnutella queries
and its implications on scalability. gnutella.html. [Online]. Available:
http://www.cs.cmu.edu/ kunwadee/research/p2p/

[17] C. Gkantsidis, M. Mihail, and A. Saberi, “Hybrid search schemes
for unstructured peer-to-peer networks,” Proc. of IEEE INFOCOM’05.,
2005.

[18] A. Iamnitchi, M. Ripeanu, and I. Foster, “Locating data in (small-
world?) peer-to-peer scientific collaborations.” Proc. of IPTPS’02: 1st
International Workshop on Peer-to-Peer Systems, 2002.

[19] ——, “Small-world filesharing communities,” Proc. of IEEE INFO-
COM’04., 2004.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the ICC 2007 proceedings. 

6186


