
Memory Efficient Protocols for Detecting Node
Replication Attacks in Wireless Sensor Networks

Ming Zhang Vishal Khanapure Shigang Chen Xuelian Xiao
Department of Computer & Information Science & Engineering, University of Florida

Abstract—Sensor networks deployed in hostile areas are
subject to node replication attacks, in which an adversary
compromises a few sensors, extracts the security keys, and
clones them in a large number of replicas, which are introduced
into the network to perform insider attacks. Memory overhead,
energy efficiency and detection probability are the main technical
concerns for any replication detection protocol. The previous
distributed solutions either require network-wide spontaneous
change of pseudo-random numbers or incur significant memory
and energy overhead to the sensors, especially in the central
area of the deployment. In this paper, we propose four replication
detection protocols that have high detection probability, low mem-
ory requirement, and balanced energy consumption. The new
protocols use Bloom filters to compress the information stored at
the sensors, and use two new techniques, called cell forwarding
and cross forwarding, to improve detection probability, further
reduce memory consumption, and in the mean time distribute the
memory and energy overhead evenly across the whole network.
Simulations show that the protocols can achieve nearly 100%
detection probability with average memory reduction up to 91%.

I. INTRODUCTION

Security is one of the top design criteria for many sensor
networks, particularly for large-scale military deployment in-
volving thousands of sensor nodes that perform critical tasks in
hostile areas. These areas are sometimes physically accessible
to camouflaged enemies. If an adversary manages to capture
a sensor and extract the authentication/encryption keys, it can
produce a large number of replicas with the keys and integrate
them into the sensor network at chosen locations, which is
called the node replication attack. Once these replicas gain
the trust of other nodes, they can launch a variety of insider
attacks [1]. For instance, the replicas may spy for confidential
information and leak it to the adversary. It may inject false data
to cause an intended bias in the aggregation of the sensors’
readings. It may block packets at critical locations. It may
collaborate to revoke legitimate nodes. If left undetected, these
replicas will cause severe consequences and can even subvert
the entire network.

The challenge for detecting node replication attacks stems
from the resource scarcity of sensor nodes. An effective
solution must be able to detect each occurrence of an authenti-
cation key being used at two or more different locations in the
network. Such detection requires network-wide comparison of
location-dependent authentication information. However, the
limited memory (less than 10K RAM for typical low-end
sensors that can be used in large quantities [2]) and energy
supply place severe constraints on how much authentication
information can be stored and exchanged in the network.

Therefore, the main performance criteria for replication de-
tection are memory efficiency, energy efficiency, and detection
probability. The recent research has been striving for solutions
that use less memory and energy.

Parno et al. [1] pioneered a Line-Selected Multicast (LSM)
solution, which produces a digitally-signed location claim for
each sensor and stores the claim at sensors along k random
line segments in the network. In normal situations, one key is
only used to sign for one location (where the sensor that owns
the key resides). However, the replicas have to use the same
key to sign for different locations where they reside. It can be
shown that, when k is reasonably large, the line segments of
two conflicting location claims (signed by the same key for
different locations) are highly probable to intersect. The node
at the intersection will have both claims and thus be able to
detect the replication attack.

LSM has a few limitations that remain unsolved to date.
For a network of n nodes, each sensor has to store O(k

√
n)

location claims on average, which can easily exceed 10K RAM
as our analysis in Section IV-B shows. The bigger problem is
that random line segments tend to pass the central area of
the deployment region more frequently. The nodes there will
suffer far worse memory/energy overhead than the average.
This is called the crowded center problem. Furthermore, we
demonstrate in this paper that, even when two line segments
intersect, they may not intersect at a common node. In such
a case, the replication attack will not be detected. It is called
the cross over problem.

Conti et al. [3] solve the crowded center problem by
introducing a network-wide pseudo random number seed that
is periodically renewed and must be known instantaneously to
all nodes in the network. The infrastructure for distributing
such a pseudo-random number seed (such as a satellite or
a broadcasting ground station) may not always be available.
Other related work that does not use location claims also has
their limitations, which will be discussed shortly.

In this paper, we propose four replication detection protocols
(B-MEM, BC-MEM, C-MEM and CC-MEM) that are able
to detect the replicas with high probability, low memory
overhead, and balanced energy consumption. Our first pro-
tocol, B-MEM, reduces the number of location claims that
each sensor stores from O(k

√
n) to O(k) through the use of

two compact Bloom filters. We design a novel mechanism
to encode location-claim information in the Bloom filters
and exploit this information for replication detection. Next,
we propose a new technique called cell forwarding to solve

978-1-4244-4634-6/09/$25.00 ©2009 IEEE 284

the cross over problem, which leads to our second protocol
BC-MEM. It improves the detection probability and in the
mean time further reduces the memory overhead. Our third
protocol C-MEM addresses the crowded center problem by
applying another new technique called cross forwarding to
evenly distribute communication/memory overhead among all
nodes in the network. Finally, our last protocol CC-MEM
integrates cell forwarding and cross forwarding to achieve the
best performance. We evaluate our protocols through extensive
simulations. The results show that 1) nearly 100% detection
probability can be achieved, 2) memory consumption is greatly
reduced — by up to 91% for the average memory requirement
and up to 97% for the maximal memory requirement, and 3)
energy consumption is balanced — the energy overhead in the
central area is cut by up to 47%.

II. MODELS

A. Network Model

We consider a large sensor network deployed in a hostile en-
vironment. Sensor nodes are densely and uniformly deployed
in a convex area. They are stationary after deployment. Neigh-
boring nodes form wireless links and data communications
between them are protected by preloaded key materials. Each
node knows its own geographic location and its neighbors’
locations. Many localization schemes [4], [5] can be used to
provide such location information. This enables geographic
routing [6], [7], which can route a packet hop by hop closer
to a given location. The sensors’ clocks are synchronized
before deployment. Information about location and time is
indispensable for critical applications that require sensors to
report the position and time of certain events such as where and
when an enemy tank is spotted. We expect that modern system
clocks carried by the sensors do not drift too much during the
operation period. We assume the use of the identity-based key
system. By carrying a private key that is derived from a master
secret and its ID, each node is able to establish a pairwise
secret with any neighboring node for mutual authentication
and negotiation of data encryption keys [8], [9]. In addition,
a node can make digital signature that is verifiable by other
nodes in the network simply based on its ID [10], [11].

B. Threat Model

We assume that the deployment region is neither under
the total control of friendly forces nor under the control of
the enemy forces. Small groups of camouflaged enemies may
operate at certain locations in the region and capture some
sensor nodes. But a blanket search of the region is not possible.
Otherwise, node replication attacks would not be necessary.
After extracting authentication/encryption keys from the com-
promised nodes, the adversary may launch arbitrary attacks
with the keys, including node replication attacks, in which fake
nodes that carry the compromised keys may be dropped into
the region. We also make the same assumption as in the prior
work [1], [3] that any cloned node has at least one legitimate
node as a neighbor. This assumption can be removed by using

a technique in [1], which probabilistically introduces virtual
neighbors (more than one hop away) for each node.

III. BACKGROUND

A. Distributed Solutions based on Location Claims

In some state-of-the-art solutions for detecting the node
replication attacks [1], [3], [12], each node is required to sign
its true location with its private key in a location claim. The
neighbors will verify the signature and the correctness of the
claim. If a node refuses to produce such a claim, the neighbors
will cut it off by refusing to communicate with it. The location
claims will then be stored centrally or distributedly. If it is
found that the same private key is used to sign two or more
different location claims, we can conclude that the node that
owns the private key was compromised and the key was
replicated on other malicious nodes. In order to allow new
legitimate nodes to join the network at any time and existing
nodes to relocate, the above detection process is performed
periodically to prevent malicious replicas from mixing in. In
each detection period, location claims are generated, stored,
and checked for replication.

Applying digital signatures in sensor networks has become
feasible [1], [13], thanks to the rapid advance in sensor
technologies. The identity-based public key system [10], [11]
is used so that each node only stores its own private key
and a master public key. The private key is computed before
deployment from the node’s ID and a master private key (a
secret not loaded on any node). For any other node to verify
the signature of a location claim, it only needs to compute
the public key of the node that produces the claim based on
the node’s ID and the master public key. Each location claim
must carry a node’s ID, its location and a signature. Two claims
conflict if they carry the same ID and their signatures can both
be verified correctly, while their locations are different.

Without knowing the master private key, the adversary will
not be able to produce a valid pair of ID and private key that
can generate a verifiable signature. The only thing he can do
is to replicate the compromised private keys, together with the
corresponding IDs, in the malicious nodes called replicas.

Existing solutions differ in how they store the location
claims, which has a huge implication on the memory and
communication overhead. The simplest solution is to send
all location claims to a base station, which however creates
a single point of failure and causes large communication
overhead at the nodes around the base station. Moreover, it will
not work if the base station stays quiet in a hostile environment
except when it needs to read data from the network.

Another simple solution is to broadcast each claim to the
entire network so that every node can detect conflicting claims.
But the communication overhead will be too high. To reduce
the overhead, we may store each claim at a pseudo-random lo-
cation determined by the ID, and consequently the conflicting
claims will be forwarded to the same location for detection.
The problem is that, after the adversary compromises a node
with a certain ID, it knows the location to which the conflicting
claims will go. By jamming that location or compromising the

285

node there, the adversary can produce as many replicas as he
wants without being detected [1].

To solve the above problem, one approach [12] is to divide
the deployment area into cells and send the location claim
of a node to one or several cells that are pseudo-randomly
determined by the node’s ID. The claim is broadcast to all
nodes in the cells but stored by some of them. This approach
only partially solves the problem because the cells for each
claim can still be determined by an adversary. Moreover,
broadcasting in the cells causes considerable communication
overhead. Another approach to solve this problem is to
spontaneously change the network-wide pseudo random seed
at the beginning of each detection period [3]. It assumes that
the adversary cannot physically move to a location faster
than the conflicting claims do in a short time after the new
seed is released. The approach works because the conflicting
claims are detected before the adversary can reach the pseudo-
random location to which the claims are forwarded. However,
spontaneous change of the network-wide pseudo random seed
either requires centralized broadcasting from a satellite, a UAV,
or a ground station, which may not be always available, or
requires expensive distributed mechanisms for leader election
and secure seed flooding.

Another solution for guarding the location where a claim
will be stored is to make the location unpredictable. Namely,
we store each claim at random, unpredictable places in the
network. This is the approach taken both by [1] and by this
paper.

In [1], Parno et al. propose two novel solutions that
randomize where the claims are stored. Their randomized
multicast (RM) stores each location claim in O(

√
n) randomly

selected witness nodes, where n is the number of nodes in the
network. The birthday paradox ensures that two conflicting
claims have a high probability of sharing a common witness
node. This node will detect the attack because it has both
claims that use the same key to sign for the same ID at different
locations. The node will then broadcast the conflicting claims
in the whole network, such that all nodes can verify the claims
and refuse to forward packets from the nodes with the ID in
the claims. However, each node has to store O(

√
n) claims on

average and the total communication overhead is O(n2) if the
average path length is O(

√
n). To reduce the communication

overhead, the line-selected multicast (LSM) stores a node’s
claim along several paths (also called line segments) from the
node to random locations in the network. The basic idea is
that the line segments for two conflicting claims are likely
to intersect and the node at the intersection can detect the
replication because it has both claims. Comparing with RM,
LSM significantly reduces communication overhead. However,
it also has problems, which are explained below.

B. Memory Overhead Problem

LSM requires each node to store O(k
√

n) claims, where
k is the average number of line segments for each claim. To
ensure a high probability for the line segments of conflicting
claims to intersect, k should be reasonably large (such as six

Fig. 1. An example of the cross over problem between two line segments.

in [1]). The adversary may have supercomputers at remote
sites at his disposal to crack the signatures for private keys.
Hence, to ensure high-level security, the size of each claim
should be large because the strength of a digital signature
depends on its length (which is 40 bytes for DSS [14]).
Therefore, when n is very large and each sensor has a small
memory due to low-cost constraints, O(k

√
n) location claims

can present a serious challenge to a sensor’s memory space,
considering that the sensor has to perform many other mea-
surement/communication/computation/security functions and
thus the space allocated for replication detection may be only
a small fraction of the available memory.

C. Crowded Center Problem

It is well known that randomly drawn line segments pass
the central area much more frequently than the peripheral
area in a convex deployment region [15], [3]. Consequently,
the nodes that reside in the central area may experience
much higher communication overhead than the nodes near the
borders. Moreover, as the location claims are each stored on
the nodes along k line segments, a node close to the center
will store much more claims than a node close to the edge
of the network. In our simulation with 5000 nodes, the space
requirement for a center node is more than 14 times that for a
peripheral node, and this ratio widens when the network size
increases.

D. Cross Over Problem

As illustrated in Figure 1, we observe a subtle “cross over
problem” in LSM — two line segments crossing each other
do not meet at a real node. If two line segments originating
from two replicas do not intersect at a common node, the
replicas will escape the detection. To increase the probability
of meeting at a common node, more line segments are needed
to create more crossing points such that, by chance, at least
one of the crossing points happens at a real node. However,
this will increase both memory and communication overhead.
The cross over problem cannot be solved by overhearing. The
energy consumption will be high if a node has to overhear
each location claim transmitted in the neighborhood, verify
the signature and check for conflict against the locally-stored
claims. Note that the energy spent for receiving a packet can
be half of the energy needed for transmitting a packet [16].

E. Other Related Work

In [17], in order to defeat the node replication attacks, neigh-
boring nodes establish social fingerprints after deployment and
police each other by using the fingerprints during operation.
This approach assumes that no node is compromised during
the deployment time and no new nodes join or existing nodes

286

relocate after deployment. Replication attacks in mobile sensor
networks are addressed in [18], which exploits mobility for
replication detection and cannot be applied in static sensor
networks. SET [19] requires the base station to periodically
coordinate the construction of a tree structure in the network
and pull the nodes’ IDs up in the tree to check for duplicate
identifiers. This approach requires a central coordinator. It also
requires each intermediate node in the tree to store the IDs
pulled from the subtree rooted at the node.

IV. MEMORY EFFICIENT PROTOCOLS FOR REPLICATION

DETECTION

In this section, we propose four memory efficient protocols
for replication detection. B-MEM uses two Bloom filters to
solve the memory overhead problem, such that the average
number of location claims stored at each node is reduced from
O(k

√
n) to O(k). Designed on top of B-MEM, BC-MEM

employs a new cell forwarding technique to solve the cross
over problem such that when two line segments intersect, they
intersect at a common node. Again designed on top of B-
MEM, C-MEM employs a new cross forwarding technique
to solve the crowded center problem such that all nodes
experience similar communication overhead. CC-MEM can be
viewed as the combination of BC-MEM and C-MEM. It only
uses a small fraction of the space required by LSM and yet
achieves higher detection probability. It balances the memory
usage and energy consumption over the whole network and
avoids the hotspot at the center of the network.

A. Preliminaries

1) Location Claim: We denote the location claim of a node
α as Cα = 〈IDα, lα, [H(IDα, lα)]Kα

〉, where IDα is the
node’s ID, lα is the node’s location, e.g., in the format of
(x, y), Kα is the node’s private key (which is used to generate
the digital signature), and H is a hash function.

2) Bloom Filter: It is a bit array used for membership test
[21]. It encodes a set of members and answers queries about
whether a given element is a member in the set. The bits are
initialized to zeros. When a new member z is inserted, it is
mapped to a number of bit locations in the array through u

hash functions, Hi(z), 1 ≤ i ≤ u. To encode the membership
of z in the array, those u bits are set to one. To test whether
an element z′ is a member in the set, we check if the u

bits, Hi(z
′), 1 ≤ i ≤ u, are all ones. If so, z′ is in the set;

otherwise, it is considered to be not. A Bloom filter has zero
false negative, meaning that if it answers that an element is
not in the set, the element is truly not in the set. The filter
however has false positives, meaning that if it answers that
an element is in the set, the element may not be in the set.
According to [22], the probability PB for a Bloom filter to
mistake a non-member z′ for a member is

PB = (1 − (1 − 1

m
)su)u ≈ (1 − e−

su
m)u, (1)

where s is the number of members and m is the number of
bits in the array. This probability quickly diminishes when

Fig. 2. The solid arrows show how the location claims are forwarded. The
dashed arrows show how a conflicting claim C′

α is forwarded during a claim
chase initiated by node γ. A witness node, either β or w that stores Cα, will
confirm and report the node replication attack once it receives C′

α.

we increase m. All our four protocols use the Bloom filter to
reduce memory consumption.

3) Watcher Nodes and Witness Nodes: To verify the legiti-
macy of a node α, two types of other nodes are involved: the
watcher nodes and the witness nodes. More specifically, as the
location claim Cα is forwarded from α to a random place in
the network, all intermediate nodes along the routing path (line
segment) are watcher nodes, whereas the first node and the
last node on the path are witness nodes. While a witness node
stores a complete copy of the location claim, a watcher node
does not. Instead, it inserts α’s ID and location into two Bloom
filters, called the ID filter and the location filter, respectively.
Using only a few bits, a watcher node stores the information
that it has seen IDα and lα. The Bloom filters are initialized
to zeros before each detection period begins.

B. Memory Efficient Multicast using Bloom filters (B-MEM)

1) Overview: In our first protocol, called B-MEM, the
location claim Cα of a node α is multicast via its neighbors
to a number of randomly-selected locations in the network.
Each neighbor β has a probability p to participate in the
multicast. If it does, it becomes a witness node and sends
Cα to a random location in the network. The node closest to
that location will be another witness node w to store Cα. The
watcher nodes on the routing path P from β to w only store
the membership of IDα and lα in the Bloom filters. Such
membership information can help them detect any conflicting
location claim C′

α received later, and guide C′

α along P to
either β or w, which will then broadcast both Cα and C′

α to
the entire network in order to revoke node α and its replicas.
Below we describe the protocol in detail.

2) Protocol Details: At the beginning of each detection
period, a node α is required to broadcast its location claim
Cα to its one hop neighbors; otherwise, neighbors will refuse
to communicate with α. Once a neighbor β receives Cα, it
checks the correctness of the location lα and then verifies the
signature. After Cα is validated, with probability p, β makes
itself a witness node and then picks a random location ldest,
to which Cα is forwarded.

When a node γ receives Cα, it performs two-phase conflict
check to see if conflicting claims can be detected. In phase
one, node γ first verifies the signature in Cα; a forged location
claim is immediately dropped. It then compares Cα with the
locally-stored location claims — node γ serves as witness
nodes for others and thus stores some location claims. If γ

287

finds a claim that conflicts with Cα, it detects a replication
attack. It will report the replicas by broadcasting the conflicting
claims to the whole network. If γ does not find a claim that
conflicts with Cα, it goes to the next phase.

There are two cases in phase two. In the first case, γ finds
that IDα is in its ID filter while lα is not in its location
filter. We say Cα conflicts with the Bloom filters. It means a
conflicting location claim C′

α that carries IDα and a different
location l′α has passed γ before and left its footprint in the
filters. As shown in Fig. 2, node γ will initiate a claim chase
by locally broadcasting Cα to its one-hop neighbors. Any
neighbor that also finds that Cα conflicts with its Bloom filters
will continue the chase with a one-hop local broadcast. If it is
a true conflict, the claim chase will eventually lead Cα to the
witness node β or w that possesses a complete copy of C′

α.
The replication attack is detected.

In the second case, γ finds that IDα is not in its ID filter
or lα is in its location filter. Cα is regarded as a legitimate
location claim, and we say it has passed the two-phase conflict
check. Node γ tries to find a neighbor closer to ldest. If
geographic routing cannot move further to ldest, node γ will
act as a witness node and store Cα in its buffer. Otherwise,
γ serves as a watcher node. It inserts IDα and lα in its two
Bloom filters respectively, and then forwards Cα toward ldest.

3) False Alarm, False Verification and Routing Disruption:
Suppose node γ receives α’s location claim Cα for the first
time. Both IDα and lα should not be in γ’s Bloom filters.
However, γ may find that IDα is in its ID filter due to false
positive. Now if lα is not found in the location filter, γ will
regard Cα as a conflicting claim and start the claim chase.
This is called a false alarm. The probability for a false alarm
to happen, denoted as Pf , is

Pf = PB(1 − PB) ≈ (1 − e−
su
m)u(1 − (1 − e−

su
m)u),

which can be made very small when we increase m. For
example, Pf = 0.1% in our simulations; see Section V for
parameter settings. Even when a false alarm occurs, the only
overhead is for Cα to travel one hop in the claim chase. The
probability for the claim chase to continue for r hops is (Pf)r,
which diminishes quickly in r. We stress that a false alarm
never leads to the misreport of a node replication attack, which
requires two digitally-signed conflicting claims to be actually
present at a node at the same time.

Now suppose node γ receives a true conflicting claim Cα.
It should detect that IDα is a member of the ID filter but lα
is not a member of the location filter, meaning that it has seen
IDα before but with a different location. However, a false
positive in the location filter may announce that lα is in the
filter even though it is not. This causes a false verification,
in which node γ mistakenly regards Cα as legitimate. The
probability for a false verification to happen is PB , given in (1),
which can be made exceedingly small. Moreover, since line
segments of two replicas may intersect at many (say, r′) nodes,
the probability for a replication attack to evade detection in one
detection period is (PB)r′

. Even if this happens, the attack will

be detected with probability (1 − (PB)r′

) in each subsequent
period (because the line segments that a location claim travels
in each detection period are different).

The replicas, after they are introduced into the network
and before they are detected and excluded from the network,
may try to disrupt the detection. The erratic behavior of the
replicas will be guarded by the surrounding neighbors that
will cut them off from the network if they operate abnormally.
However, the replicas may try to disrupt routing by dropping
the received location claims or replacing them with forged ones
that will be dropped by the next-hop nodes due to the failure
of signature verification. Dropping legitimate claims does not
cause any problem. However, dropping location claims that
originate from other replicas will reduce the lengths of the
corresponding line segments. The shortened line segments
are less likely to intersect. On the other hand, more replicas
mean more line segments, which increases the chance of
intersecting. Combining these two factors, our simulations in
Section V-B show that a larger number of replicas (that drop
instead of forwarding location claims) will actually increase
the probability for B-MEM to detect the node replication
attack. The same thing is true for other protocols in this
section.

4) Analysis: In LSM [1], each node stores O(k
√

n) lo-
cation claims on average. Hence, the memory complexity is
O(tk

√
n), where k is the average number of line segments

for each claim and t is the size of a location claim. Suppose
k = 6, the average length of a line segment is 50 (which is
the O(

√
n) component in the memory complexity), and t is

46 bytes (2 bytes for ID, 4 bytes for location coordinates, and
40 bytes for digital signature, the same as DSS). Then 13.8K
bytes are required on average for each node, which may exceed
the total RAM size of many sensors (4K ∼ 8K bytes [2]).

In B-MEM, each node only stores 2k location claims on
average. The size of a Bloom filter is O(t′k

√
n), where t′ is

the number of bytes that a Bloom filter uses to record the
membership of an element. Hence, the memory complexity is
O(tk + t′k

√
n). For example, if t′ = 2 bytes (that ensures

PB < 0.1%) and the other parameters are the same as above,
then only 1.15K bytes are needed for each node.

In terms of communication overhead, the number of mes-
sages sent and received by all nodes in the network is
O(kn

√
n) for both LSM and B-MEM.

C. Memory Efficient Multicast using Bloom filters and Cell
forwarding (BC-MEM)

1) Overview: BC-MEM is designed on top of B-MEM. It
adopts a cell forwarding technique that not only solves the
cross over problem (Figure 1) but also reduces the memory
overhead. We divide the deployment area into virtual cells. In
each cell, we assign an anchor point for every node in the
network. The anchor point for a node α is determined by α’s
ID. The node closest to the anchor point is called the anchor
node for α. Recall that when B-MEM forwards a location
claim on a line segment, all intermediate nodes on the line
serve as watchers, while the first node and the last node serve

288

Fig. 3. BC-MEM forwards a location claim through anchor points in the
cells that the line segment intersects.

as witnesses. In contrast, BC-MEM does not forward a claim
on the line segment. It forwards the claim to the anchor point
in the next cell that the line segment intersects. As shown
in Figure 3, the claim is forwarded from one anchor node to
another until reaching the last cell. The anchor nodes in the
intermediate cells are watchers, and the anchor nodes in the
first and last cells are witnesses.

2) Protocol Details: We only describe the part of the
protocol that is different from B-MEM. Every node is pre-
configured with the cell size and the coordinates of a base
point (x∗, y∗) that serves as the bottom-left corner of one
cell. The cell size and the base point together uniquely
define the cell structure of the whole network. Based on
its own coordinates, each node knows which cell it belongs
to. Consider an arbitrary cell whose bottom-left corner has
coordinates (x0, y0). Without losing generality, let the cell size
be 1 × 1. The anchor point (xα, yα) in the cell for node α is
defined as

xα = x0 + H ′(IDα|i), yα = y0 + H ′(IDα|i), (2)

where H ′ is a hash function whose range is [0, 1). Parameter
i is optional in the formula. It is the detection period number
that is increased by one after each period. Its purpose is to
make the anchor points different over time.

When a neighbor β of node α decides to forward Cα to a
random location ldest, it first computes the anchor point for
node α in the cell where it resides. It forwards Cα towards that
point. When the node γ closest to that point receives Cα, it
cannot forward Cα any further. The node will designate itself
as a witness node and perform the two-phase conflict check
as described in Section IV-B. If Cα passes the check, γ will
compute the anchor point for α in the next cell that the line
segment intersects and forward Cα towards that point. The
node closest to that point will perform the two-phase conflict
check and then become a watcher node before forwarding Cα

to the next cell that the line segment intersects. When Cα

reaches the last cell that intersects with the line segment, the
anchor node in that cell becomes a witness and stores Cα.

If Cα triggers the claim chase at a watcher node, the node
will forward Cα to the anchor points in the four adjacent cells.
After receiving Cα, if any of the nodes closest to those anchor
points finds that Cα conflicts with its Bloom filters, it will
repeat the process by forwarding Cα to the anchor points in its
adjacent cells except for the cell from which Cα was received.

Eventually, Cα will reach a witness node and result in the
detection of the node replication attack.

3) Discussion: Suppose the line segments of two conflict-
ing location claims, Cα and C′

α, intersect at a point (x, y).
Both claims carry the same ID. BC-MEM tries to forward
both claims to the same anchor node in the cell where (x, y)
resides, which addresses the cross over problem. The memory
overhead is also reduced because in each cell only one node
serves as a watcher (or witness). Each node is mapped to
a different set of anchor points that are pseudo-randomly
generated. Therefore, all nodes in a cell have equal chance to
serve as watchers and witnesses. The anchor points for a node
are distributed across the entire network, and it may change
over time according to (2), which makes it extremely difficult
for an adversary to capture all nodes that may serve as the
watchers or witnesses.

4) Analysis: For B-MEM, the average length of a line
segment is O(

√
n) nodes. For BC-MEM, the average length

of a line segment is O(
√

n′) cells. Hence, the memory
complexity of BC-MEM is O(tk + t′k

√
n′), comparing with

O(tk + t′k
√

n) for B-MEM, where n′ is the number of cells
in the network. It is smaller than the number of nodes, n.

The energy overhead is increased because a location claim is
not forwarded along a straight line but instead along a zig-zag
path. However, since it solves the cross over problem, BC-
MEM may use a smaller number of line segments in order to
achieve a certain detection probability, which compensates for
the increase in energy overhead due to zig-zag paths.

D. Memory Efficient Multicast using Cross forwarding (C-
MEM)

1) Overview: Designed on top of B-MEM, C-MEM incor-
porates a new cross forwarding technique to solve the crowded
center problem. Recall that B-MEM stores the information
about a location claim along randomly selected line segments,
which are likely to pass the center area of the deployment. C-
MEM first selects a random point (called the cross point) in
the network. It forwards the location claim to that point. From
there, it forwards the claim along the horizontal and vertical
lines that pass the cross point. While the node closest to the
cross point is a witness node, the nodes along the horizontal
and vertical lines are watchers. Since the cross points for all
location claims are distributed uniformly at random in the
network, it is no longer true that the lines pass the center
area more frequently. Note that C-MEM does not use cell
forwarding.

2) Protocol Details: First, we describe a simple local
coordination mechanism to elect a neighbor of node α, who
will be responsible for selecting the cross point. When the
network is deployed, each neighbor β of node α sets a backoff
counter to a random number, denoted as bβ . When β receives
Cα, it waits for bβ units of time, which should be much smaller
than the length of a detection period. During this time, if node
β hears the announcement from another neighbor of α that it
will pick the cross point, β will stop waiting and reduce bβ

289

by one. If β does not hear from anyone within bβ time, it
will make the announcement by a two-hop broadcast to cover
all α’s neighbors, and then randomly pick a cross point to
forward Cα. If β does not get the chance to pick a cross
point for a number of detection periods, its backoff counter
bβ will eventually be reduced to zero, and in this case, β will
immediately elect itself in the next period and then reset bβ

to another random value.
If β forwards Cα to the cross point, β and the node w

closest to that point are witnesses nodes, and all other nodes
on the path are watchers. Node w will then forward Cα in
four directions representing a horizontal line and a vertical
line passing the cross point. Nodes along the lines are watcher
nodes. Furthermore, C-MEM uses local multicast to alleviate
the cross over problem. When a watcher node γ forwards Cα

to its next hop node γ′ on the horizontal or vertical line, one
or multiple nodes between γ and γ′ are randomly selected
to receive Cα. These nodes only need to do the two-phase
conflict check and do not further forward the location claim.

In a convex deployment area, two sets of crossing lines are
likely to intersect at one or two locations, where the replication
attack is detected. The most important contribution of cross
forwarding in C-MEM is that because the crossing points
and the corresponding lines are uniformly distributed in the
network, the memory and communication overhead are also
uniformly distributed among all nodes.

3) Analysis: In C-MEM, each location claim has only two
witnesses. Hence, each node will store two location claims on
average. The watcher nodes are located along two lines that cut
across the network horizontally and vertically, as well as along
the line segment from a neighbor to the cross point. Hence,
the memory complexity for each node is O(2t + 3t′

√
n) =

O(t + t′
√

n), which is lower than that of B-MEM.

E. Memory Efficient Multicast using Cross and Cell forward-
ing (CC-MEM)

1) Overview: CC-MEM combines cross forwarding and
cell forwarding to solve both the crowded center problem and
the cross over problem, such that it can detect node replication
attacks with high probability and low overhead.

2) Protocol Details: Similar to BC-MEM, CC-MEM di-
vides the network into virtual cells. A node α has an anchor
point in each cell. Similar to C-MEM, after node α broadcasts
Cα to its one-hop neighbors, the local coordination mechanism
is executed and one neighbor β is elected to start cross
forwarding. Node β randomly selects a cell and uses the
anchor point for α in the cell as the cross point. It then sends
Cα to that point through cell forwarding. The node w closest
to the cross point, as well as the anchor node in the cell where
α resides, are chosen as witness nodes. In cross forwarding,
node w identifies the four adjacent cells and forwards Cα to the
anchor points in those cells. The nodes closest to the anchor
points will act as watchers. Each watcher forwards the received
location claim further along the horizontal or vertical line, cell
by cell, to the edge of the deployment area. In each cell, only

Fig. 4. An example of CC-MEM, where the location claims of two replicas,
α and α′, are each forwarded along two lines forming a cross.

the anchor node performs the two-phase conflict check and
serves as a watcher.

Figure 4 shows an example of CC-MEM. Two replicas α

and α′ are located in different places. For node α, its neighbor
β is elected to initiate the cross forwarding. Node β sends Cα

to a randomly selected cross point. The witness w, which is
closest to the cross point, stores a complete copy of Cα in its
buffer. From w, the location claim travels in four directions
to the borders. Along the way, Cα is forwarded to α’s anchor
points in the cells it passes, and the nodes closest to those
anchor points are watcher nodes, which insert IDα and lα to
their Bloom filters. The same thing happens to C′

α along two
different lines intersecting at w′, which is the witness node for
α′. The lines of the conflicting claims intersect at two watcher
nodes w̄ and w̄′. After querying their Bloom filters, both w̄

and w̄′ will detect the replication attack. They will initiate the
claim chase by sending C′

α (or Cα) to neighboring watcher
nodes. Eventually, the witness nodes w (or w′) will receive
the conflicting location claims and revoke the two replicas.

3) Discussion: CC-MEM combines cross forwarding and
cell forwarding. As we have discussed in the previous two
subsections, the former solves the crowded center problem and
the latter solves the cross over problem. Together, they are able
to achieve high detection probability with low overhead that
is evenly distributed across the whole network.

4) Analysis: In CC-MEM, each location claim has two
witnesses. Hence, each node will store two location claims
on average. Due to cell forwarding, there are O(

√
n′) watcher

nodes on each of the three lines that a location claim traverses.
Therefore, the memory complexity is O(t + t′

√
n′) for each

node, which is the smallest one among our four protocols.

V. SIMULATION RESULTS

A. Simulation Setup

The simulator is developed in C++. In the simulations, n

nodes are deployed uniformly at random in a 1000 × 1000
area, where n varies from 1000 to 10000. We assume that
each node has bidirectional communication links with its one-
hop neighbors, and select the transmission range such that
each node has approximately 20 neighbors. We implement a

290

simplified geographic routing protocol [7] to forward location
claims. A node always greedily forwards a location claim
to the neighbor closest to the destination. If a node has no
neighbor closer to the destination, it stops forwarding.

We implement five replication detection protocols: LSM [1],
B-MEM, BC-MEM, C-MEM, and CC-MEM. All protocols are
implemented at the application layer. We divide the network
into 10× 10 virtual cells for cell forwarding in BC-MEM and
CC-MEM. We use six line segments for LSM (according to
the original paper [1]) and B-MEM, and five line segments for
BC-MEM.1

In most simulations, we introduce one replica by randomly
compromising a node and inserting a replica at a random
location. We then run the protocols to collect data for detection
probability, memory overhead and energy overhead. For each
network size, we run the protocols on 200 different random
networks and average the simulation results. We also study the
case of multiple replicas in Table II.

B. Detection Probability

First, we run simulations to measure the detection proba-
bility, which is the probability Pd for a protocol to detect the
node replication attack in one detection period. If we consider
l consecutive detection periods, the probability becomes (1 −
(1 − Pd)

l), which approaches to one as l increases no matter
how big Pd is. The expected number of detection periods that
elapse before the replication attack is identified is 1

Pd
. Hence,

a greater value of Pd means that we can detect the attack
quicker and thus limit its damage.

Table I shows the detection probabilities of all five protocols
under different network sizes. B-MEM has a slightly lower
detection probability than LSM in some cases due to false
positive of Bloom filters. BC-MEM achieves a higher detection
probability than both LSM and B-MEM by using the cell
forwarding technique to solve the cross over problem. With
fewer line segments, C-MEM’s performance is comparable to
BC-MEM’s because two sets of crossing lines have a very
high probability to intersect at one or two locations. Finally,
CC-MEM achieves the highest and nearly perfect detection
probability because it combines the benefit of both cross
forwarding and cell forwarding.

Next, we increase the number of replicas. Each replica
will drop the received location claims in order to disrupt
the execution of the replication detection protocol. Will more
replicas drive down the detection probability because more
location claims are dropped? This issue has been discussed in
Section IV-B3. The simulation results in Table II show the
contrary: more replicas will actually increase the detection
probability. For networks of 5000 nodes, the detection proba-
bilities for all protocols improve to one with merely three (or
more) replicas. The reason is that more replicas produce more
line segments, which have a positive effect of increasing the

1Since BC-MEM employs cell forwarding to solve the cross over problem,
even with one fewer line segment it can achieve higher detection probability
than LSM and B-MEM.

TABLE I
DETECTION PROBABILITY IN A UNIFORMLY DEPLOYED SQUARE AREA

LSM B-MEM BC-MEM C-MEM CC-MEM
1000 0.89 0.86 0.93 0.95 0.99
2000 0.89 0.86 0.93 0.93 0.98
3000 0.81 0.86 0.97 0.93 1
4000 0.86 0.81 0.96 0.89 0.99
5000 0.86 0.83 0.93 0.95 1
6000 0.80 0.82 0.96 0.95 1
7000 0.82 0.82 0.86 0.90 1
8000 0.78 0.83 0.95 0.91 1
9000 0.83 0.86 0.92 0.91 1
10000 0.81 0.76 0.90 0.92 1

TABLE II
DETECTION PROBABILITY IN A UNIFORMLY DEPLOYED SQUARE AREA

WITH DIFFERENT NUMBER OF REPLICAS

LSM B-MEM BC-MEM C-MEM CC-MEM
1 0.86 0.83 0.93 0.95 1
3 1 1 1 1 1
5 1 1 1 1 1
10 1 1 1 1 1

100 1 1 1 1 1

probability for two line segments to intersect. This positive
effect compensates for the negative effect of claim drops.

C. Memory Overhead

Memory is a critical resource for wireless sensor nodes.
Many sensors have no more than a few thousand bytes of
memory [2]. Considering that the memory must be shared for
other applications, the space allocated for detecting replicas
will be very limited. In LSM, a node stores a complete copy
of each location claim it receives. Some nodes may have to
store several hundred location claims, which will exhaust their
memory space. In our protocols, a node exploits Bloom filters
to record the footprint of most location claims it receives, and
it only stores a few complete claims. This dramatically reduces
the memory overhead.

In the simulations, we assume that the size of each location
claim is 46 bytes (2 bytes for ID, 4 bytes for location
coordinates, and 40 bytes for digital signature as required
by DSS). We allocate 15 bits (m/s = 15) and use 7 hash

Fig. 5. The deployment region is divided into 20 sub-areas. Each accounts
for 5% of the deployment region. The central sub-area is numbered 0 and
the most external sub-area is numbered 19.

291

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 b

yt
es

Number of nodes

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(a) Average memory consumption per node.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
um

be
r

of
 b

yt
es

Number of nodes

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(b) Maximal memory consumption.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 0 2 4 6 8 10 12 14 16 18 20

N
um

be
r

of
 b

yt
es

Sub-area number

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(c) Average memory consumption per node in each
sub-area.

Fig. 6. Memory Overhead. (a) Our protocols significantly reduce the average memory consumption per sensor, when comparing with LSM. (b) The maximal
memory consumption is the largest memory usage incurred at any sensor during a protocol’s execution. When comparing with LSM, our protocols reduce the
maximal memory consumption by a wide margin. (c) The memory overhead is evenly distributed among all sub-areas in our protocols, whereas in LSM it is
concentrated in the central area.

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

 5500

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Number of nodes

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(a) Average energy consumption per node.

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 50000

 55000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
ax

im
al

 e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Number of nodes

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(b) Maximal energy consumption.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 2 4 6 8 10 12 14 16 18 20

A
ve

ra
ge

 e
ne

rg
y

co
ns

um
pt

io
n

(m
J)

Sub-area number

LSM
B-MEM

BC-MEM
C-MEM

CC-MEM

(c) Average energy consumption per node in each
sub-area.

Fig. 7. Energy Overhead. (a) CC-MEM has the least average energy consumption. (b) CC-MEM reduces the maximal energy consumption by up to 47%
when comparing with LSM. (c) C-MEM and CC-MEM balance the energy consumption across the whole network, whereas LSM, B-MEM, and BC-MEM
consume much more energy in the central sub-area.

functions (u = 7) to store an element in a Bloom filter. We
adjust the size of the Bloom filter according to the network
size.

Figure 6(a) shows the average memory consumption per
sensor node, which is the total memory usage of all sensors
divided by the number of sensors. As the network size
increases, the average memory consumption also increases
because each node needs to store information of more location
claims. Compared with LSM, B-MEM reduces the average
memory consumption by up to 77% due to the use of Bloom
filters. C-MEM reduces the average memory consumption by
up to 84% since fewer location claims are stored. Each location
claim is stored at 12 witness nodes in B-MEM, while it is
stored at two nodes in C-MEM. Both BC-MEM and CC-
MEM employ cell forwarding, in which location claims are
inserted in the Bloom filters at much fewer watcher nodes.
Consequently, the size of the Bloom filters can be reduced.
Hence, compared with LSM, BC-MEM and CC-MEM reduce
the average memory consumption by up to 87% and 91%,
respectively.

In LSM, due to the crowded center problem, some nodes
have to store much more location claims than others. We
define the maximal memory consumption to be the largest
memory usage incurred at any sensor during a protocol’s

execution. As shown in Figure 6(b), the maximal memory
consumption in LSM exceeds 10K bytes for all network sizes.
It even reaches 56K bytes in networks of 10,000 nodes,
whereas our protocols have much smaller maximal memory
consumption. Specifically, B-MEM, BC-MEM, C-MEM, and
CC-MEM reduce maximal memory consumption by up to
88%, 90%, 96%, and 97% respectively, when comparing with
LSM. It is interesting to note that although C-MEM has higher
average memory consumption than BC-MEM, it wins the
maximal memory consumption comparison because its cross
forwarding technique evenly distributes the memory overhead
among all nodes.

Next, we study the memory consumption distribution across
the whole network. As shown in Figure 5, we divide the
network into 20 equal sub-areas from the center to the edges.
Each sub-area accounts for 5% of the network. These sub-areas
are numbered from 0 to 19 starting from the central sub-area.
For networks of 5,000 nodes, we count the average memory
consumption per node in each sub-area. The results are plotted
in Figure 6(c). It is clear that LSM consumes much more
memory in the central sub-area than in the external sub-areas,
while our protocols distribute memory overhead much more
evenly across the network. The reason is that all nodes in the
line segments of LSM are witness nodes and they are crowded

292

in the center of a network, whereas the witness nodes in
our protocols are randomly distributed. Although the watcher
nodes in B-MEM and BC-MEM are located in the central sub-
area more frequently, their Bloom filters are compact and do
not incur too much overhead.

D. Energy Overhead

We measure the amount of energy that each sensor node
spends in sending and receiving messages. We use the energy
model in [16], where the total available energy of a node is
324,000 mJ, sending a bit costs 0.059 mJ, and receiving a bit
costs 0.028 mJ.

Figure 7(a) presents the average energy consumption per
sensor node, which is the total energy expenditure by all
sensors divided by the number of sensors. The figure shows
that three of our protocols, B-MEM, BC-MEM and C-MEM,
consume a little more energy (less than 3% on average) than
LSM, which should be acceptable considering their significant
memory reduction. Our best protocol, CC-MEM, reduces the
average energy consumption by up to 15% when comparing
with LSM. This is because CC-MEM uses fewer line segments
than LSM, thanks to cross forwarding. Although C-MEM
also employs cross forwarding, it consumes more energy
because its local multicast requires additional communication
overhead.

We define the maximal energy consumption as the largest
energy expenditure by any node during a protocol’s exe-
cution. In LSM, due to the crowded center problem, the
nodes residing in the central sub-area experience much higher
communication overhead than the nodes in the peripheral
sub-areas. As shown in Figure 7(b), by exploiting the cross
forwarding technique, C-MEM and CC-MEM significantly
reduce the maximal energy consumption. In particular, CC-
MEM reduces the maximal energy consumption by up to 47%
when comparing with LSM. In Figure 7(c), we adopt the
same sub-area approach as used in the previous subsection
to measure the energy consumption distribution. The figure
shows that the energy consumption in LSM increases when
we move from the border sub-area to the central sub-area,
while C-MEM and CC-MEM are able to balance the energy
consumption across the whole network among most sub-areas.

VI. CONCLUSION

Sensor networks are vulnerable to node replication attacks.
In this paper, we propose four distributed protocols for de-
tecting these malicious attacks. The new protocols improve
the state of the art by significantly reducing the amount
of memory space needed, by balancing the memory and
energy consumption across the network, and by improving the
detection probability to nearly 100%. The proposed protocols
also have a couple of limitations. They cannot detect the
replication attacks in a mobile sensor environment. They rely
on the relatively expensive public key cryptography. Our future
work is to design replication detection protocols that use the
secret key cryptography and work for both static and mobile
sensors.

VII. ACKNOWLEDGMENTS

This work was supported in part by the US National Science
Foundation under grant CPS-0931969. We thank our shepherd,
Dr. Sonia Fahmy, and the anonymous reviewers for their
constructive comments.

REFERENCES

[1] B. Parno, A. Perrig, and V. D. Gligor, “Distributed Detection of Node
Replication Attacks in Sensor Networks,” In Proc. of IEEE Symposium
on Security and Privacy (S&P), May 2005.

[2] “Sensor Node,” http://en.wikipedia.org/wiki/Sensor node.
[3] M. Conti, R. D. Pietro, and L. V. Mancini, “A Randomized, Efficient,

and Distributed Protocol for the Detection of Node Replication Attacks
in Wireless Sensor Networks,” In Proc. of ACM MobiHoc, September
2007.

[4] T. Eren, D. Goldenberg, W. Whitley, Y. Yang, S. Morse, B. Anderson,
and P. Belhumeur, “Rigidity, Computation, and Randomization of
Network Localization.” In Proc. of IEEE INFOCOM, March 2004.

[5] D. Goldenberg, A. Krishnamurthy, W. Maness, Y. R. Yang, A. Young,
A. S. Morse, A. Savvides, and B. Anderson, “Network Localization in
Partially Localizable Networks,” In Proc. of IEEE INFOCOM, March
2005.

[6] P. Bose, P. Morin, I. Stojmenovic, and J. Urrutia, “Routing with Guaran-
teed Delivery in Ad Hoc Wireless Networks,” In Proc. of International
Workshop on Discrete Algorithms and Methods for Mobile Computing
and Communications (DialM), August 1999.

[7] B. Karp and H. T. Kung, “GPSR: Greedy Perimeter Stateless Routing
for Wireless Networks,” In Proc. of ACM MobiCom, August 2000.

[8] D. Boneh and M. Franklin, “Identity-Based Encryption from the Weil
Pairing,” In Proc. of CRYPTO, August 2001.

[9] P. Barreto, H. Kim, B. Bynn, and M. Scott, “Efficient Algorithms for
Pairing-Based Cryptosystems,” In Proc. of CRYPTO, August 2002.

[10] C. Cocks, “An Identity Based Encryption Scheme based on Quadratic
Residues,” In Proc. of IMA International Conference on Cryptography
and Coding, pp. 360–363, 2001.

[11] A. Shamir, “Identity-Based Cryptosystems and Signature Schemes,” In
Proc. of CRYPTO, 1985.

[12] B. Zhu, V. G. K. Addada, S. Setia, S. Jajodia, and S. Roy, “Efficient
Distributed Detection of Node Replication Attacks in Sensor Networks,”
Annual Computer Security Applications Conference (ACSAC), December
2007.

[13] D. Malan, M. Welsh, and M. Smith, “A Public-Key Infrastructure for
Key Distribution in TinyOS based on Elliptic Curve Cryptography,” In
Proc. of IEEE Conference on Sensor and Ad Hoc Communications and
Networks (SECON), October 2004.

[14] “Digital Signature Standard,” FIPS PUB 186-3, March 2006.
[15] L. Popa, A. Rostamizadeh, R. Karp, C. Papadimitriou, and I. Stoica,

“Balancing Traffic Load in Wireless Networks with Curveball Routing,”
In Proc. of ACM MobiHoc, September 2007.

[16] A. Wander, N. Gura, H. Eberle, V. Gupta, and S. C. Shantz, “Energy
Analysis of Public-key Cryptography for Wireless Sensor Networks,” In
Proc. of Annual IEEE International Conference on Pervasive Computing
and Communications (PERCOM), March 2005.

[17] K. Xing, F. Liu, X. Cheng, and D. H. C. Du, “Real-Time Detection
of Clone Attacks in Wireless Sensor Networks,” The International
Conference on Distributed Computing Systems (ICDCS), June 2008.

[18] C. M. Yu, C. S. Lu, and S. Y. Kuo, “Mobile Sensor Network Resilient
Against Node Replication Attacks,” In Proc. of IEEE Conference on
Sensor, Mesh and Ad Hoc Communications and Networks (SECON),
June 2008.

[19] H. Choi, S. Zhu, and T. Laporta, “SET: Detecting Node Clones in Sensor
Networks,” International ICST Conference on Security and Privacy in
Communication Networks (SecureComm), September 2007.

[20] R. Brooks, P. Y. Govindaraju, M. Pirretti, N. Vijaykrishnan, and M. T.
Kandemir, “On the Detection of Clones in Sensor Networks Using
Random Key Predistribution,” IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Reviews, vol. 37, no. 6, pp.
1246–1258, November 2007.

[21] B. Bloom, “Space/Time Trade-Offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, July
1970.

[22] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: a Survey,” Internet Mathematics, vol. 1, no. 4, pp. 636–646,
June 2002.

293

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

