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Abstract—Radio-frequency identification (RFID) technologies
have been widely used in inventory management, object tracking
and supply chain management. One of the fundamental system
functions is called cardinality estimation, which is to estimate the
number of tags in a covered area. We extend the research of this
function in two directions. First, we perform joint cardinality
estimation among tags that appear at different geographical
locations and at different times. Moreover, we collect category-
level information, which is more significant in practical scenarios
where we need to monitor the tagged objects of many different
types. Second, we require anonymity in the process of information
gathering in order to preserve the privacy of the tagged objects.
These capabilities will enable new applications such as tracking
how products are moved in a large, distributed supply network.
We propose a novel protocol design to meet the requirements
of anonymous category-level joint estimation over multiple tag
sets. We formally analyze the performance of our estimator and
determine the optimal system parameters. Extensive simulations
show that the proposed protocol can efficiently obtain accurate
category-level estimation, while preserving tags’ anonymity.

I. INTRODUCTION

Recent research on RFID technologies has established new

system functions that support novel applications in inventory

management, logistics, product tracking, and supply chain

management [3], [5], [6], [9], where tags are attached to

objects in an area of surveillance, and an RFID reader is

deployed with one or multiple antennas placed at chosen

locations to monitor the set of tagged objects.

Cardinality Estimation: One of the fundamental system

functions is called cardinality estimation, which is to estimate

the number of tags in a surveillance area. This function has

wide applications in warehouse management such as detecting

management errors, theft, and vendor fraud [13]. It is also

useful for other applications (e.g., transferring commercial

goods at a port) that only require a reader to estimate the

number of tagged objects, without the need of accessing

the tag IDs for the purpose of keeping the anonymity of

customer products. Numerous solutions [5]–[7], [11], [18],

[20], [21] have been proposed, and they take much less time

than the traditional approach of identifying all tag IDs and

then counting the number. For warehouse applications, time

efficiency is important for minimizing disruptions to normal

operations in a busy environment [10]. One limitation of the

aforementioned work is that they only consider cardinality

estimation of a single tag set [5], [6], [10], [11], [18], [20].

Multiple Tag Sets: Consider a large, distributed supply-

chain network, where products are tagged and shipped through

the network from location to location. Clearly, the set of tags

at the storage facility of any location will change as products

are moved in and out over time. We consider each tag set as

a spatial-temporal function with respect to location and time,

representing the set of products at a given location and a given

time.

Suppose an RFID reader (possibly with multiple antennas)

is installed at every location to take a snapshot of the local tag

set periodically after each time interval (e.g., a day), where we

define snapshot as a data structure that anonymously encodes

the information of a tag set, without carrying any tag ID. It will

be very useful to develop a system function that performs joint

estimation over snapshots from different locations or from the

same location but at different times. For example, given a

snapshot from location A on date 1 and another snapshot

from location B on date 2, if the function can estimate the

number of common tags in the two tag sets, we will know

how many products are shipped from A to B between the

dates. By monitoring such pairs of snapshots on other dates,

we will gain a good picture about how products are moved

between these two locations over time. We can generalize

this function to three or more snapshots: Given an arbitrary

number of snapshots from different locations at chosen times,

the joint-estimation function estimates the number of common

tags that show up in all tag sets that the snapshots represent.

This function allows us to learn information about the volume

of products moving along a chain of locations during the times

under consideration. When we apply the function to different

location chains, we will gather a detailed picture about how

products are moved in the whole network.

There is recent work studying joint estimation of two tag

sets, i.e., estimating the cardinality of the intersection of the

two sets [15], [17]. Their solutions cannot be easily extended

to joint estimation over an arbitrary number of tag sets. This

more difficult problem is solved by [8], [16]. One practically

important limitation is that all the above work [8], [15]–[17]

can only tell us the total volume of all products moving from

location to location, but cannot tell how each type of products

flows through the network.

Multiple Categories: In the example of supply-chain net-

work, there may be numerous different types of products.
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Practically, it is much more useful to know how each type

of products flow through the network than the total number

of products shipped from one location to another. To support

product types, we put tags into categories, one category for

each product type, with all tags in the same category sharing a

common category ID. Given an arbitrary number of snapshots

from different locations at chosen times, the problem of joint

estimation at category level is to estimate the number of

common tags in each category, which show up in all the

snapshots; recall that each snapshot records a tag set. That

is, we want to anonymously estimate the cardinality of the

intersection over multiple tag sets for each category.

We mentioned earlier the protocols [8], [16] that estimate

the cardinality of the intersection of multiple tag sets. One may

suggest that we can apply them repetitively, one category at a

time, to obtain category-level information. This can be done by

the reader announcing one category ID each time so that only

tags with that category ID will respond. Such an approach

however breaks the anonymity of category IDs (which may

be more important than individual object IDs because they

reveal the product types). More importantly, the approach is

inefficient as we will demonstrate in this paper.

There is very limited prior work that supports tag categories.

Related is the work that classifies the categories in a single

tag set [10], [12]. The only work that performs category-level

joint estimation [4] can deal with only two tag sets, and its

analytical framework cannot be easily extended to more sets.

This paper proposes a new protocol for anonymous category-

level joint estimation over multiple tag sets. To keep the

anonymity of tags, we thoroughly mix the information from

tags of all categories in each snapshot, preventing unauthorized

readers to guess the tag/category IDs even if they are able to

eavesdrop on the communication. To perform joint estimation,

we combine the snapshots and remove the noise (due to

mixing) in the combination to obtain the cardinality of the

intersection of multiple tag sets for each category. There are

two kinds of noise: inter-set noise and inter-category noise.

We use statistical methods to estimate and then remove the

noises.

The main contributions of our protocol are summarized

as follows: First, we extend the traditional RFID estima-

tion problem to more practical scenarios for estimating the

category-level information over multiple tag sets at different

locations and/or different times. Not only is the problem more

challenging, but the proposed solution allows us to learn

the spatial-temporal dynamics among these tag sets and their

associated objects.

Second, we enforce anonymity in the proposed multi-set

category-level tag estimation protocol.

Third, we formally analyze the performance of our proto-

col. Through statistical analysis, we show that our estimator

for category-level information is asymptotically unbiased and

can be made to meet any preset requirement on estimation

accuracy. Our simulations show that the proposed protocol

can efficiently obtain accurate category-level estimation, while

preserving tags’ anonymity.

II. SYSTEM MODEL AND PROBLEM DEFINITION

A. System Model

Consider a distributed RFID system, where all the objects

are classified into m different categories with a set M of

category IDs, {cid1, cid2, ..., cidm}. Each object is attached

with a tag and can be uniquely identified by a tag ID id,

which contains a category ID cid and an object ID tid, with

the former specifying which category the object belongs to and

the latter being unique in the same category. The length of a

tag ID is typically 96 bits or 128 bits long. Using 16 bits for

category IDs can support 65,536 different categories, which

is sufficient for a large RFID-assisting supply-chain network

with tens of thousands of suppliers.

Tags are powered by the RF waves from the antennas of a

reader, and communicate with the reader by backscattering

and modulating the received signals, using a frame-slotted

ALOHA protocol. The reader initiates communication by

broadcasting a request and records a snapshot of the tag set

based on information sent back from the tags. We will define

the snapshot structure later.

Suppose unauthorized adversaries may plant readers at cho-

sen locations to eavesdrop on the communication between tags

and readers, from which they try to infer private information

such as tag IDs and category IDs about the products. We

assume that the adversaries do not have prior knowledge of

the tag IDs or category IDs in the system. We want to prevent

them from knowing the IDs.

B. Problem Definition

Consider k snapshots, denoted as B1, B2, ..., Bk, which are

captured at different locations or at the same location but

different times. The tag sets that they encode are T1, T2, ..., Tk,

respectively. Let Ccid
i be the subset of tags in Ti that belong to

a category cid ∈ M . Clearly, Ti = Ccid1

i ∪ Ccid2

i ... ∪ Ccidm

i .

We will study the joint property of the k tag sets for each

category in M .

Let Ccid
∗ = Ccid

1 ∩ Ccid
2 ... ∩ Ccid

k and ncid
∗ = |Ccid

∗ |,
where the subscript ∗ means the common tags among the k
subsets. Because all operations are applied to each category

independently and separately, in the sequel we will leave out

the superscript cid in operation description to simplify the

notations. We abbreviate Ccid
i , Ccid

∗ and ncid
∗ as Ci, C∗ and

n∗ respectively.

The problem of category-level joint estimation over multiple

tag sets is to estimate n∗ as n̂∗ for each category with the

following accuracy requirement:

Prob{|n̂∗ − n∗| ≤ e} ≥ α. (1)

where e is an absolute error bound and α is a probability,

which is referred as confidence level. For example, if α = 95%
and e = 50, the estimation requires that the probability for the

estimation error |n̂∗−n∗| to be bounded by 50 is at least 95%.

The prior work [5]–[7], [20], [21] on cardinality estimation

of a single tag set adopts a relative error model:

Prob{|n̂∗ − n∗| ≤ εn∗} ≥ α. (2)
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Fig. 1: An illustration of drawing bits randomly from a bitmap

Bi to construct virtual bitmaps V Bcid1

i and V Bcid2

i . The bit

in grey is shared by both virtual bitmaps.

where ε is the relative error requirement. However, for joint

estimation over multiple sets, the execution time is inversely

related to the Jaccard similarity, J = n∗

n
, where n∗ is the

number of common tags in the tag sets and n is the total

number of tags in all sets. For example, the time complexity

of [8] is Θ( 1
ε2J

ln 1
1−α

), under the relative error model. While

n is typically big for a large RFID system, the value of n∗

can be large or small, even down to zero, causing the term 1
J

to approach infinity. That is the reason why the more recent

work of [16] advocates the absolute error model (1), which

we adopt in this paper. For the prior work [5]–[7], [20], [21]

on a single set, their Jaccard similarity is one since n = n∗.

Therefore, the relative error model is fine.

C. Performance Metrics

We use three metrics for performance evaluation.

1) Execution Time: Since RFID systems operate in low-

rate communication channels, time efficiency is an important

performance metric, especially when the number of tags is

very large. Therefore, it is desirable to design a protocol that

can reduce execution time as much as possible.

2) Estimation Accuracy: The accuracy requirement is spec-

ified in (1).

3) Anonymity: We use two probability values to quantify the

preserved anonymity of tag IDs and category IDs respectively.

More specifically, pid (pcid) is the probability that any tag

(category) ID is not revealed by an adversary that eavesdrops

on all wireless communications. In practice, we want to make

pid and pcid as close to 1 as possible.

III. ANONYMOUS TEMPORAL-SPATIAL JOINT ESTIMATION

AT CATEGORY LEVEL OVER MULTIPLE TAG SETS

In this section, we present our new protocol for anonymous

temporal-spatial Joint Estimation at Category level over Mul-

tiple tag sets (JECM). The protocol consists of two phases:

an online encoding phase where snapshots are taken, each

encoding a tag set at a certain location and a certain time in the

system, and an offline analysis phase in which all snapshots are

brought to a server where joint-estimation queries are made.

We adopt an asymmetric design that pushes most complexity

to the central server, while keeping the tag operation simple.

The only thing that a tag needs to do is to make a single

transmission in response to a reader’s request during online

encoding.

A. Structure of Snapshot

Consider an arbitrary tag set Ti at a certain location and

a certain time in a large distributed RFID system. To take a

snaphot, the reader broadcasts a request, which is followed by

a slotted ALOHA frame. Upon receipt of the request, each tag

pseudo-randomly selects a slot in the frame and sends back a

signal response in the slot. The reader monitors the status of

each slot, which is referred to either as an empty slot where no

tag responds or as a busy slot where one or more tags respond.

The reader converts the time frame into a bitmap Bi, zero for

each empty slot and one for each busy slot. We use Bi as the

snapshot of Ti.

Encoding category-level information is tricky. Establishing

one bitmap for each category is problematic. As discussed

in the introduction, this requires the reader to broadcast one

request per category, carrying a category ID to ask only tags in

the category to respond, which breaks anonymity. Moreover,

this approach takes long execution time; see Section IV.

Our idea is to mix information from all categories in the

same bitmap to improve anonymity and time efficiency as no

category ID will be transmitted and it takes just one request-

response round to build the snapshot for all categories. To do

so, we must introduce additional structure to the snapshot Bi.

For each category cid, we pseudo-randomly select a certain

number l of bits from Bi to encode tags of that category.

Logically, these bits form a virtual bitmap V Bcid
i . Fig. 1

illustrates the idea of drawing bits from Bi to form two virtual

bitmaps, V Bcid1

i and V Bcid2

i , for two categories cid1 and

cid2, respectively. Different categories may share bits in Bi

due to random bit selection, which brings two benefits: First,

information from different categories is mixed, which is good

for anonymity. Second, it improves time efficiency. The value

of l has to be set reasonably large so that there are sufficient

bits to encode large categories. If separate bits were designated

for different categories, many bits for small categories may

be left unused. Thanks to random sharing, in our design, the

unused bits for small categories can be picked up by other

categoies, which reduces the total number of bits (time slots)

needed.

The challenge is how to take a snapshot with embedded cat-

egory structure and how to perform accurate joint estimation

when category level information is mixed.

B. Online Encoding

Denote the jth bit in the bitmap as Bi[j], 0 ≤ j ≤ f − 1.

Consider an arbitrary category cid, whose jth bit is denoted

as V Bcid
i [j], 0 ≤ j ≤ l − 1. Since our discussion is involved

only a single category ID, we will leave out the superscript

cid. The selection of V Bi[j] from Bi is formally defined as

V Bi[j] ≡ Bi[Hj(cid)]. (3)

where Hj() is a hash function. Instead of requiring l different

hash functions, we implement them based on a common

master hash function H(...) and l different random seeds,

r0, r1, ..., rl−1,

Hj(cid) = H(cid⊕ rj), 0 ≤ j ≤ l − 1. (4)

For online encoding, the reader broadcasts a request, in-

cluding the frame size f and l random seeds. The request is
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Fig. 2: An illustration of how to construct B12k
u and V B12k

u for subsets {B1, B2, Bk} and {V B1, V B2, V Bk}, respectively.

followed by a time frame of f slots. Consider an arbitrary

tag. Without losing generality, suppose the tag belongs to

category cid. It should be encoded by one of the bits in

the category’s virtual bitmap V Bi. The tag uses another hash

function h(tid) ∈ [0, l − 1] to choose a bit pseudo-randomly

from V Bi, where h() may also be implemented using the

master hash function with a pre-defined seed. By (3), the bit

V Bi[h(tid)] is actually the Hh(tid)(cid)th bit in Bi, which

corresponds to the Hh(tid)(cid)th slot in the time frame.

Hence, the tag will choose that time slot to transmit. Once

the reader finds the Hh(tid)(cid)th slot is busy, it sets

Bi[Hh(tid)(cid)] = 1. (5)

C. Offline Category-level joint estimation over multiple Tag

Sets

With online encoding, snapshots of different tag sets are sent

to a central server. Consider joint estimation over an arbitrary

set of k snapshots, {B1, B2, ..., Bk}. There are 2k −1 subsets

of {B1, B2, ..., Bk}, excluding the empty subset. Consider an

arbitrary subset {Bc1 , Bc2 , ..., Bci}, where 1 ≤ i ≤ k and

1 ≤ c1 < c2 < ... < ci ≤ k. The server combines the bitmaps

in the subset by bitwise OR. Namely, the combined bitmap

Bc1c2...ci
u is defined as

Bc1c2...ci
u = Bc1 ∨Bc2 ∨ ... ∨Bci . (6)

where ∨ is the bitwise-OR operation. As a result, the informa-

tion from tags in different bitmaps is combined. For example,

B12
u is the combined bitmap of B1 and B2. The combined

bitmaps will be used later in our estimation.

The server retrieves per-category information from the k tag

sets by reconstructing the bitmap V Bi (short for V Bcid
i ) as

follows:

V Bi[j] ≡ Bi[Hj(cid)], 1 ≤ i ≤ k, 0 ≤ j ≤ l − 1. (7)

Again, there are 2k − 1 subsets of {V B1, V B2, ..., V Bk},

excluding the empty subset. Consider an arbitrary subset

{V Bc1 , V Bc2 , ..., V Bci}, where 1 ≤ i ≤ k and 1 ≤ c1 <
c2 < ... < ci ≤ k. The server constructs the combined virtual

bitmap V Bc1c2...ci
u as

V Bc1c2...ci
u = V Bc1 ∨ V Bc2 ∨ ... ∨ V Bci . (8)

Fig. 2 shows an example of how to construct B12k
u and

V B12k
u for subsets {B1, B2, Bk} and {V B1, V B2, V Bk},

respectively.

For each snapshot, virtual bitmaps for all categories share

the bits in the same underlying bitmap Bi, 1 ≤ i ≤ k. A bit

‘1’ in V Bi may not be set by tags belonging to category cid,

but instead be set by tags of other categories, resulting inter-

category noise in virtual bitmaps. When bitmaps and virtual

bitmaps are combined, a bit in Bc1c2...ci
u or V Bc1c2...ci

u may

be set to one by tags from different sets, which introduces

inter-set noise. In deriving our estimation formula, we must

consider the inter-set and inter-category noises caused by bit

sharing.

Below we give the formula that the server uses to estimate

the number n∗ of common tags in all k tag sets for category

cid. The actual derivation comes next. Let n̂∗ be the estimator.

We have

n̂∗ =

k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

(lnVc1c2...ci − lnUc1c2...ci)]

ln(1− 1
l
)− ln(1− 1

f
)

.

(9)

where Vc1c2...ci is the fraction of bits in V Bc1c2...ci
u that are

zeros, and Uc1c2...ci is the fraction of bits in Bc1c2...ci
u that are

zeros.

D. Derivation of n̂∗

We use probabilistic methods to analyze the expected frac-

tion of zero bits in all the bitmaps and virtual bitmaps we

obtain and derive the estimator n̂∗ for n∗.

First, we want to prove the following theorem.

Theorem 1: For an arbitrary bit b in an f -bit bitmap, a tag

t has a probability 1
f

to set it as one.

Proof: Assume we have an f -bit bitmap B and an l-bit

virtual bitmap V B, which belongs to tags of category cid.

Let random variable X be the number of bits that are set by

the virtual bitmap V B in B. Since a tag sets a bit in B in a

uniformly random way, this problem can be cast into bins and
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balls problem. We have

P (X = x) =

(

f
x

)

× x!× S(l, x)

f l
. (10)

where S(l, x) is the stirling number [1] and S(l, x) =

1
x!

∑x
i=0(−1)i

(

x
i

)

(x− i)l. S(l, x) computes the number

of partitions to place a set of l tags into x bits in the

bitmap. For each bit b in the bitmap, it has a probability of

1 −

(

f − 1
x

)

/

(

f
x

)

to be one of these x bit. Besides,

each tag t has a probability 1
x

to be mapped to these x bits.

Thus, we obtain the probability for a bit b to be set by a tag

t as:

Pb =
l

∑

x=1

(

f
x

)

× x!× S(l, x)

f l
× (1−

(

f − 1
x

)

(

f
x

) )×
1

x

=
1

f l+1
×

l
∑

x=1

[

(

f
x

)

× x!× S(l, x)] =
1

f
.

(11)

Before we continue our derivation of n̂∗, we want to first

present the basis for our estimator. In set theory, the cardinality

of the intersection of k tag sets can be derived based on the

well-known principle of inclusion and exclusion:

|C1 ∩ C2... ∩ Ck| =
∑

1≤c1≤k

|Cc1 | −
∑

1≤c1<c2≤k

|Cc1 ∪ Cc2 |+ ...

+ (−1)i+1
∑

1≤c1...<ci≤k

|Cc1 ∪ Cc2 ... ∪ Cci |

+ (−1)k+1|C1 ∪ C2 ∪ ... ∪ Ck|.
(12)

where Cc1 ∪ Cc2 ... ∪ Cci is the union of i tag sets and

|C1 ∩ C2... ∩ Ck| is the category-level joint information of k
sets we want to estimate. From equation (12), we can observe

that in order to obtain the joint information of k tag sets, we

need to compute the cardinality of all 2k − 1 combined sets

first. JECM uses the 2k − 1 bitmaps obtained in Section III-C

to estimate the cardinality of each combined set and finally

obtains category-level joint information of k tag sets by using

the principle of inclusion and exclusion. Next we will show

how we derive the cardinality of each combined set.

Let us first start with estimating the cardinality of Ci in one

tag set Ti with bitmaps Bi and V Bi. In the sequel, we will

leave out index i for Bi, V Bi, Ti and Ci, since we now focus

on just one set. Remember we also leave out the superscript

cid in Ci as mentioned in Section II-B. We denote t as the

number of tags in T (all tags of all categories) and n as the

number of tags in C (tags belonging to category cid).

For a bitmap B, we denote U as the fraction of zero bits in

B. Let Aj be the event that the jth 0 ≤ j ≤ f − 1 bit in B

remains 0 after online encoding, and 1Aj
be the corresponding

indicator random variable, that is,

1Aj
=

{

1, if B[j] = 0,

0, if B[j] = 1.

Using Theorem 1, we have P (Aj) = (1− 1
f
)t. Moreover, U

is the fraction of zero bits in B and we have U =

f−1
∑

j=0

1Aj

f
.

Thus,

E(U) =
1

f

f−1
∑

j=0

E(1Aj
)

=
1

f

f−1
∑

j=0

[1× P (Aj) + 0× (1− P (Aj)]

= (1−
1

f
)t.

(13)

Now we will move on to investigate the properties of a

virtual bitmap V B. We denote V as the fraction of zero bits

in V B. Let Bj be the event that the jth 0 ≤ j ≤ l−1 bit in V B
remains 0 after online encoding, and 1Bj

be the corresponding

indicator random variable. Similarly,

1Bj
=

{

1, if V B[j] = 0,

0, if V B[j] = 1.

In this condition, in order to make a bit in V B remain 0,

neither the tags in category cid nor the tags belong to other

categories can set V B[j]. The probability for a tag in category

cid not to set V B[j] is (1− 1
l
)n and the probability for a tag

belonging to other categories not to set V B[j] is (1− 1
f
)t−n.

Thus, we have P (Bj) = (1− 1
l
)n(1− 1

f
)t−n and the expected

value of V can be derived as:

E(V ) =
1

l

l−1
∑

j=0

E(1Bj
)

=
1

l

l−1
∑

j=0

[1× P (Bj) + 0× (1− P (Bj)]

= (1−
1

l
)n(1−

1

f
)t−n.

(14)

Combining (13) with (14), we have

E(V ) = (1−
1

l
)n(1−

1

f
)−nE(U). (15)

Substituting E(U) and E(V ) with U and V respectively, and

taking a logarithm on both sides, we derive an estimator for

n as:

n̂ =
lnV − lnU

ln(1− 1
l
)− ln(1− 1

f
)
. (16)

Recall that we leave out the tag index i in all these formulas.

In this way, we can obtain the category-level cardinality

information in each tag set.

Now let us investigate the properties of combined bitmaps

Bc1c2...ci
u and V Bc1c2...ci

u , 1 ≤ i ≤ k.
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Let Cj be the event that jth bit in Bc1c2...ci
u remains

zero after online encoding and Uc1c2...ci be the fraction of

zeros in Bc1c2...ci
u . We denote 1Cj

as the indicator random

variable of Cj . Since Bc1c2...ci
u is the combination of i tag sets

c1, c2, ..., and ci, z will remain zero if and only if z is not

chosen by any tag in these i sets, that is,

P (Cj) = (1−
1

f
)tc1c2...ci . (17)

where tc1c2...ci is the number of tags in all these i tag sets and

tc1c2...ci = |Tc1 ∪ Tc2 ... ∪ Tci |. Therefore, the expected value

of Uc1c2...ci can be derived as:

E(Uc1c2...ci) =
1

f

f−1
∑

j=0

E(1Cj
)

=
1

f

f−1
∑

j=0

[1× P (Cj) + 0× (1− P (Cj)]

= (1−
1

f
)tc1c2...ci .

(18)

For a combined virtual bitmap V Bc1c2...ci
u , let Dj be the

event that the jth bit in V Bc1c2...ci
u , and 1Dj

be the corre-

sponding indicator random variable. In this situation, 1Dj
will

be true only if the following two conditions are satisfied:

1) The jth bit is not chosen by any tag in Cc1 ∪Cc2 ...∪Cci .

2) The jth bit is not chosen by any tag in (Tc1 ∪ Tc2 ... ∪
Tci)− (Cc1 ∪ Cc2 ... ∪ Cci).

For the first condition, the probability q1 for it to be satisfied

is

q1 = (1−
1

l
)nc1c2...ci . (19)

where nc1c2...ci is the number of tags belonging to category

cid in all k sets and nc1c2...ci = |Cc1 ∪Cc2 ...∪Cci |. Similarly,

the probability q2 for the second condition to be satisfied can

be calculated as

q2 = (1−
1

f
)tc1c2...ci

−nc1c2...ci . (20)

Combining (19) and (20), we have

P (Dj) = q1× q2

= (1−
1

l
)nc1c2...ci (1−

1

f
)tc1c2...ci

−nc1c2...ci .
(21)

Let Vc1c2...ci be the fraction of zeros in V Bc1c2...ci
u and the

expected value can be derived as

E(Vc1c2...ci) =
1

l

l−1
∑

j=0

E(1Dj
)

= (1−
1

l
)nc1c2...ci (1−

1

f
)tc1c2...ci

−nc1c2...ci .

(22)

Apply (18) to (22)

E(Vc1c2...ci) = (1−
1

l
)nc1c2...ci (1−

1

f
)−nc1c2...ciE(Uc1c2...ci).

(23)

Substitute E(Uc1c2...ci), E(Vc1c2...ci) with the observed value

Uc1c2...ci , Vc1c2...ci respectively, take a logarithm on both

sides, and the estimator for nc1c2...ci can be derived as:

n̂c1c2...ci =
lnVc1c2...ci − lnUc1c2...ci

ln(1− 1
l
)− ln(1− 1

f
)

. (24)

Combining (12), (16) and (24), we have our estimator n̂∗ as

n̂∗ =

k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

(lnVc1c2...ci − lnUc1c2...ci)]

ln(1− 1
l
)− ln(1− 1

f
)

.

(25)

E. Mean and variance of n̂∗

Now, we analyze the statistical properties, mean and vari-

ance of n̂∗.

In order to derive the mean and variance of n̂∗, we need

to first derive the mean and variance of − lnUc1c2...ci and

− lnVc1c2...ci . Let ûc1c2...ci = − lnUc1c2...ci and v̂c1c2...ci =
− lnVc1c2...ci .

In [14], K. Whang et al. use Taylor expansion to estimate

the fraction of zeros in a bitmap and obtain the following

results:

E(ûc1c2...ci) =
1

f
(tc1c2...ci +

eω − ω − 1

2
), (26)

V ar(ûc1c2...ci) =
1

f
(eω − ω − 1). (27)

where tc1c2...ci is the number of tags in all these i tag

sets and ω =
tc1c2...ci

f
. Usually the frame size f is chosen

such that ω is very small and (eω − ω − 1) is negligi-

ble when compared to tc1c2...ci . In this case, we will have

E(ûc1c2...ci) �
tc1c2...ci

f
and the standard derivation, which is

the root of V ar(ûc1c2...ci) will also be insignificant compared

to the mean.

Next we derive the mean and variance of v̂c1c2...ci . In [19],

M. Yoon et al. use Taylor expansion and statistical methods

to estimate the fraction of zeros in a virtual bitmap and gives

the results as follows:

E(v̂c1c2...ci) = α+
eα − ω′ − 1

2l
, (28)

V ar(v̂c1c2...ci) =
1

l
(eα − ω′ − 1). (29)

where α =
tc1c2...ci

−nc1c2...ci

f
+

nc1c2...ci

l
, ω′ =

nc1c2...ci

l
,

and nc1c2...ci is the number of tags belonging to category cid
in all k sets. Similarly, if l is large enough, we can obtain

E(v̂c1c2...ci) � α.

Combining (26) and (28), we have:

E(lnVc1c2...ci − lnUc1c2...ci) = E(ûc1c2...ci)− E(v̂c1c2...ci)

�
tc1c2...ci

f
− α

=
nc1c2...ci

f
−

nc1c2...ci

l
.

(30)
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Thus, the mean of n̂∗ can be derived as:

E(n̂∗) =

k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

E(lnVc1...ci − lnUc1...ci)]

ln(1− 1
l
)− ln(1− 1

f
)

�

k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

E(lnVc1...ci − lnUc1...ci)]

1
f
− 1

l

�

k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

nc1c2...ci ]

= n∗.
(31)

Similarly, the variance of n̂∗ can be calculated as:

V ar(n̂∗) =

V ar
k
∑

i=1

[(−1)i+1
∑

1≤c1<...<ci≤k

(ûc1...ci − v̂c1...ci)]

r2
.

(32)

where r is a constant and r = ln(1− 1
l
)− ln(1− 1

f
).

In order to derive V ar(n̂∗), we need to calculate

V ar(ûc1c2...ci), V ar(v̂c1c2...ci) and the covariance of ûc1c2...ci

and v̂c1c2...ci . The covariance can also be derived using Taylor

expansion, which is similar to the process in [14], [19]. As [19]

shows, the covariance of û1 and û12 can be approximated as:

Cov(û1, û12) = E(û1û12)− E(û1)E(û12)

= −E(û1)E(û12)− lnE(û1) lnE(û12)

+ lnE(U1)E(û12) + E(û1) lnE(U12).

(33)

Substituting the formula of E(U1), E(U12), E(û1) and

E(û12), which we have obtained already, we can obtain the

covariance. With the covariance of ûc1c2...ci and v̂c1c2...ci ,
V ar(ûc1c2...ci) and V ar(v̂c1c2...ci), we can calculate the

V ar(n̂∗) by expanding (32).

F. Analysis of Anonymity

In this section, we analyze the preserved anonymity of a tag

while executing our protocol. Let lid and lcid be the length of

tag IDs and category IDs (in binary), respectively. Since the

unauthorized adversary does not have any prior knowledge

of the tag IDs or category IDs in our system, it can only

infer one tag ID or category ID for each slot it eavesdrops on.

Therefore, the anonymity of our protocol can be characterized

by the probability that the adversary identifies the correct tag

ID or category ID.
1) Anonymity of Category IDs: For an lcid-bit category ID,

there are 2lcid possible category IDs. Each category is assigned

into an l-bit virtual bitmap drawn from an f -bit bitmap. As

a result, each bit in the bitmap will correspond to an average

of l·2lcid
f

categories. Since an adversary does not have any

prior information about any categories that are mapped to

the same slot, the probability for the adversary to infer the

correct category ID of a tag is 1
l·2

lcid
f

= f

l·2lcid
. Therefore,

the anonymity of a category ID for JECM, namely pcid, is

pcid = 1− f

l·2lcid
.

Protocol pcid pid

CCF 0 1−
f

2
lid−lcid

MJREP 0 1−
f

2
lid−lcid

JECM 1−
f

l·2lcid
1−

f

2
lid

TABLE I: Preserved anonymity of different protocols.

2) Anonymity of Tag IDs: For an lid-bit long tag ID, the

bits that are available for an object ID tid are (lid − lcid)-
long. As a result, there are 2(lid−lcid) possible object IDs per

category. Meanwhile, each tag belonging to the same category

is randomly assigned to a slot in an l-bit virtual bitmap. Hence,

the average number of tags that are mapped to one slot in the

same virtual bitmap is 2lid−lcid

l
. According to Section III-F1,

the adversary has a probability of f

l·2lcid
to infer the correct

category id of a tag. Thus, the probability for the adversary

to infer the correct tag ID is f

l·2lcid
× l

2lid−lcid
= f

2lid
. As a

result, the anonymity of a tag ID is given as pid = 1− f

2lid
.

Table I shows the preserved anonymity of different protocols

when performing category-level joint estimation of multiple

tag sets. We can observe that only our JECM protocol can

preserve both category and tag ID anonymity, while CCF and

MJREP cannot preserve category ID anonymity. In terms of

tag ID anonymity, JECM is the highest among three protocols

when frame sizes are the same among them.

G. Parameter Setting

In order to reduce the execution time of our protocol, we

optimize the parameters f and l in JECM protocol under

the accuracy constraints given in (1). In Section III-D, we

prove that n̂∗ is asymptotically unbiased and they approxi-

mate Gaussian distributions. For a Gaussian distribution with

E(n̂∗) � n̂∗, equation (1) can be translated to

V ar(n̂∗) ≤ (e/Zδ)
2. (34)

where Zδ is 1− δ
2 percentile for standard Gaussian distribution

and δ = 1 − α. Therefore, we first set f and l such that

(34) is satisfied. Then we will decrease f and l empirically to

minimize the execution time. The process is terminated until

(34) is not satisfied and we pick the last pair (f, l) as the

optimal value.

IV. SIMULATION RESULTS

A. Simulation Settings

We evaluate the performance of JECM by simulations.

There is no prior work on estimating category-level joint

information over an arbitrary number of tag sets. The most

related work to our problem is CCF [8] and MJREP [16], but

their protocols were designed to perform joint estimations at

set (not category) level. As discussed earlier, we can adapt

CCF and MJREP to perform estimation on one category at a

time: The reader chooses a category ID cid to broadcast in a

request. Only if a tag’s category ID matches cid, the tag will

participate in the execution of CCF (or MJREP). In this way,

we can repeat the protocol to estimate one category at a time.

We use the performance metrics in Section II-C for eval-

uation. We will first compare the execution times of JECM,
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Fig. 3: Execution time comparison with respect to number

of tag sets, subject to the same accuracy requirement with

α = 95% and e = 50.

CCF and MJREP, subject to the same accuracy requirement.

Execution time is measured as the number of time slots each

protocol needs to perform category-level joint estimation. We

will then evaluate how well the proposed JECM can achieve

a given accuracy requirement. Finally, we will investigate

anonymity of JECM, CCF and MJREP.

The system model is a distributed RFID system of k loca-

tions, with an accuracy requirement of e = 50 and α = 95%.

At each location, a reader periodically takes a snapshot of the

local tag set. We set the number m of categories in each set to

be 500 and the number of tags in each category to be 1000. We

let the number n∗ of common tags follow a zipf distribution

[2] in [10, 1000] and vary k from 3 to 7. We set lcid = 16 out

of lid = 96.

We set the parameters for JECM based on Section III-G,

and we set those of CCF and MJREP by exactly following [8],

[16]. Specifically, for CCF, the length value is �log(k ∗1000)

and the number of synopses is Θ( 1

ε2J
ln 1

1−α
); for MJREP, f

is optimized as is described in [16].

B. Execution Time

The first set of simulations evaluate the average protocol

execution time. We apply the same accuracy requirement to

CCF, MJREP and the proposed JECM, with e = 50 and

α = 95%. Fig. 3 compares their execution times. The x-axis

is the number k of tag sets, and the y-axis is the average

number of slots needed per category by each protocol. When

k = 3, MJREP and JECM have comparable time costs, while

CCF takes longer. As k increases, the execution time of JECM

decreases, while those of CCF and MJREP increase. For

JECM, a larger number of tag sets provide more opportunity

to filter out non-common tags during the inclusion/exclusion

set joint process, which means a smaller time frame can

be used to meet a certain accuracy requirement, resulting in

smaller execution time. For CCF and MJREP, by doing one

category at a time, the small number of common tags will

take a larger time frame to separate them out from other tags,

which is not a problem for JECM that records all categories

together, ensuring a larger number of common tags. The curve

of MJREP takes the non-smooth shape because the time frame

k 3 4 5 6 7

pcid 98.90% 98.28% 98.99% 98.72% 99.02%

TABLE II: Preserved cid anonymity of JECM under given

simulation settings.

for each category is set to a power of 2, with a large discrete

jump between different settings. For a specific comparison, for

joint estimation over 5 tag sets, JECM needs 2,902 slots per

category, while CCF and MJREP need 11,983 and 8,192 slots

respectively.

C. Estimation Accuracy

The second set of simulations evaluate the accuracy of

JECM. We vary the number k of tag sets from 3 to 5 and

set the system parameters based on Section IV-A. Fig. 4

shows the results from joint estimation over 500 categories.

Each point in the plot represents one category, where the

x coordinate is the number n∗ of common tags and the y
coordinate is the estimated value n̂∗. The equality line, y = x,

is drawn for reference: the closer a point is to the equality line,

the more accurate the estimation result is. We can observe

from the figure that most estimation results are clustered

around the equality line, demonstrating good accuracy of our

protocol under different numbers of tag sets. Fig. 5 shows the

cumulative distribution function (CDF) of estimation errors.

The x coordinate is the estimation error and the y coordinate

is the probability for the estimation error to fall below this

range. The red dotted line is the preset error bound e. For k =

3, 4 and 5, the probabilities for estimation error being bounded

by 50 are 0.954, 0.952 and 0.964 respectively, which confirms

that our parameter setting in Section IV-A can indeed meet

the pre-defined accuracy requirement of e = 50 and α = 95%
in all simulation cases.

D. Anonymity

The third set of simulations study anonymity of the three

protocols. Recall that in Table I, pid ≈ 1 for all these three

protocols when lid = 96 and lcid = 16. So we only study the

pcid of these three protocols.

Table II shows the preserved anonymity of JECM when the

number k of tag sets varies from 3 to 7. The first row shows

the value of k and the second row presents the corresponding

preserved anonymity of category ID cid, namely pcid. The

table shows that the pcid values are close to 1 in all simulations

of JECM, which means the probability for an unauthorized

adversary to reveal any category ID is very low. (The slight

variance among the pcid values is due to the randomness

in simulations.) For CCM and MJREP, since the reader

will broadcast category IDs one at a time, an unauthorized

adversary can easily acquire these IDs by eavesdropping the

communication channel, making pcid = 0 for both protocols.

V. CONCLUSION

This paper studies a new problem of anonymous category-

level joint estimation over multiple tag sets in RFID systems:

for any category in a large RFID system, we want to anony-

mously estimate the cardinality of the intersection among
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Fig. 4: Estimation results for k = 3, 4, 5 sets with 500 categories.
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Fig. 5: CDF of estimation errors for k = 3, 4, 5 sets with 500 categories.

multiple tag sets. We design a protocol called JECM based on

temporal or spatial snapshots. We derive an estimator, perform

statistical analysis on it, and provide formulas for optimizing

system parameters. Through extensive simulations, we evalu-

ate the performance of our protocol and demonstrate that our

protocol outperforms the prior art in time cost reduction and

anonymity preservation.
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