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Abstract—Traditional systems for monitoring and diagnosing
patients’ health conditions often require either dedicated medical
devices or complicated system deployment, which incurs high
cost. The networking research community has recently taken
a different technical approach of building health-monitoring
systems at relatively low cost based on wireless signals. However,
the RF signals carry various types of noise and have time-
varying properties that often defy the existing methods in more
demanding conditions with other body movements, which makes
it difficult to model and analyze the signals mathematically. In
this paper, we design a novel wireless system using commercial
off-the-shelf RFID readers and tags to provide a general and
effective means of measuring bodily oscillation rates, such as
the hand tremor rate of a patient with Parkinson’s disease.
Our system includes a series of noise-removal steps, targeting at
noise from different sources. More importantly, it introduces two
sliding window-based methods to deal with time-varying signal
properties from channel dynamics and irregular body movement.
The proposed system can measure bodily oscillation rates of
multiple persons simultaneously, even when the individuals are
moving. Extensive experiments show that our system can produce
accurate measurement results with errors less than 0.3 oscilla-
tions per second when it is applied to monitor hand tremor.

I. INTRODUCTION

Health-monitoring systems are now widely used in monitor-

ing and diagnosing various health issues. For example, sensing

the respiration rate can help monitor sleep apnea and chronic

obstructive pulmonary disease; measuring the hand tremor rate

can help monitor the conditions of a patient with Parkinson’s

Disease (PD). Traditional health-monitoring systems [1]–[3]

require either dedicated medical devices or complicated system

deployment, which incurs high cost. The networking research

community recently takes a different design path to utilize

wireless signals for building health-monitoring systems at low

cost.

Radio frequency (RF) based technologies for monitoring

human activities [4]–[8] have drawn much attention from

the research community recently. For example, Patwari et

al. [4] extract the coarse-grained Received Signal Strength

(RSS) from the wireless sensor nodes to estimate the hu-

man respiration rate. This approach requires deployment of

multiple (more than 12) dedicated sensor nodes, which is

cumbersome and resource costly. UbiBreathe [7] estimates the

human respiration rate by measuring the RSS of WiFi signals.

It can produce more accurate measurement results than the

above sensor-based system. However, it requires a user to

lay down and place a mobile device on the chest, which is

much inconvenient; otherwise, if the device is placed by the

side of the person, the accuracy of the measurement results

significantly degrades. The system designed by Liu et al. [5]

provides a device-free solution for tracking vital signs during

sleep. It extracts the fine-grained Channel State Information

(CSI) [9] using WiFi devices to track the breathing rate and the

heart-beat rate of a person in bed. Again, the person has to stay

still in order to avoid introducing disturbance to WiFi signals.

Therefore, the system cannot support continuous monitoring

in day time when the person may move around, which is a

condition assumed in this paper as hand tremor can come and

go, and may happen at any time. Another limitation is that it

can simultaneously monitor two persons at most. The designs

of the above systems are mostly geared towards measuring

respiration rates under static, restrained settings, not for tremor

rates, which are much faster at multiple ticks per second and

are measured under dynamic settings allowing free movement.

To address the limitation of the prior systems, we propose

and build an RFID-based easily deployable wireless system

for measuring hand tremor rate in dynamic settings where

wireless signals are not perfectly periodic. RFID technologies

have gained popularity in recent years. Numerous applications

have been developed, including inventory control, supply chain

management, product tracking, and indoor localization [10]–

[16]. A typical RFID system consists of a reader and many

tags, forming a simple reader-tag wireless network. Tags are

very cheap and convenient to deploy, which helps promote

their widespread usage. With this advantage, the proposed

system is unique with its capability of accurately measuring

hand tremor rates of multiple persons, even when they are

moving around. While this paper focuses on hand tremor rate,

the signal processing techniques in our paper are generic and

our system can be extended measure other bodily oscillation

rate as well by attaching an RFID tag to body part under

measurement or the immediate clothing to that body part.

Because an RFID reader can easily distinguish the backscatter

signals from multiple tags, our system is able of simultane-

ously measuring the oscillation rates of different tags attached

to multiple persons or different places on the same person.

Using only commercial off-the-shelf RFID readers/tags, the

system is designed to work in either hospital/clinic settings

where multiple patients can be monitored simultaneously or

home settings where patients may borrow mobile readers from

hospitals to perform continuous monitoring with the comfort

at home. Tags cost as little as a dime a piece. They can be

tossed away after being used, which is desirable in medical
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context.

Our system measures the phase values of RF signals in tag-

reader communication and estimates oscillation rate based on

the periods in phase change. An RFID reader can measure two

important properties of the RF signals: RSS values and phase

values. The RSS values of weak RFID signals do not work

well for our purpose due to the following reasons: On the one

hand, oscillation on human body is a small movement, which

produces very small changes in RSS. On the other hand, the

measurement of RSS by a commercial reader is noisy and

coarse, with a resolution of 0.5 dB [17], so that the small

bodily movement will not even affect the reported RSS values.

In contrast, the phase resolution by a commercial reader is

high, reaching 0.0015 rad [17], which translates to a spatial

resolution of 0.04 centimeters. Such a fine spatial resolution

enables us to catch slight oscillations such as hand tremor.

There are several technical challenges in the design of our

system: First, the phase values measured by a reader are not

well-shaped due to environmental noise, device imperfection,

and measurement errors. Second and more importantly, unlike

machine-produced vibrations, human’s bodily oscillation is

time-variant. The irregularity in oscillation makes it difficult

to model precisely or analyze mathematically. Third, when

monitoring is performed at a relaxed setting where patients

can move around, it introduces unpredictable changes in the

measured phase values. We develop a series of methods to

handle the above challenges by removing noises from various

sources and by introducing two sliding window-based methods

to process time-varying phase data, from which we reveal the

oscillation pattern and derive the oscillation rate accurately.

We have built a prototype system for performance evalu-

ation, which shows that the proposed system can accurately

estimate hand tremor rate under a variety of settings: when

measuring the hand tremor rate of a single person who sits,

the average error is 0.11 tick per second (tps); when simulta-

neously measuring the hand tremor rates of four persons who

sit, the average error is just 0.14 tps; when simultaneously

measuring the hand tremor rates of four moving persons, the

average error is 0.26 tps.

II. RELATED WORK

Research in patient activity monitoring can be classified

into three categories: dedicated sensor based, smart phone and

wearable device based, and RF signal based.

Traditional methods for activity monitoring use dedicated

sensors. For example, Patel, et al. [2] leverage wearable

sensors to monitor Parkinson’s disease (PD) with the collected

data relayed to a remote clinical site via a web-based applica-

tion. Albani et al. [3] use Electromyography (EMG) to study

tremor in PD, detect basic body postures, and study gait in PD

patients. Polysomnography (PSG) [1] attaches multiple sensors

to a patient to monitor human health conditions including

respiration rate, heart beat rate, eye movements and muscle

activity. This kind of technique requires specialized devices,

which can make people uncomfortable in use. Besides, ad-

ditional network infrastructure is needed for collecting and

processing the data.

Recent research exploits embedded functions of smart

phones and wearable devices such as accelerometers and GPS

to monitor patient activities [18], [19]. For example, Hao et

al. [18] use the microphone of a smart phone to measure sleep

quality, with detection of sleep events such as body movement,

couch and snore. But it cannot quantitatively measure the

bodily oscillation rate of human bodies such as hand tremor

rate. PERFORM [19] proposes an intelligent close-loop system

which integrates four wearable sensors to monitor activities

of the PD patients. These sensors are more costly and less

comfortable to wear than RFID tags, which are small, thin,

flexible and easily attachable to body or cloth.

Most related to our work is the RF signal based approach

for human activity monitoring. Some systems use Doppler

radars [20], ultra-wideband (UWB) radars [21], or frequency

modulated carrier waves (FMCW) radars [6]; others rely on

measurement of received signal strength (RSS) [4], [7], chan-

nel state information (CSI) [5], [8], or phase values [12], [22].

Specifically, the systems [4], [6], [21] that require specialized

devices such as Doppler radars, UWB radars or wireless

sensors incur high cost, and they require trained personnel

to deploy. While UbiBreathe [7] improves accuracy over [4]

in estimating respiration rate based on RSS measurements,

it achieves its best accuracy with an error smaller than 1

breath per minute (bpm) when it places a mobile device on

a patient’s chest. Under the device-free mode, it has an error

greater than 1.5 bpm, and this mode imposes that the patient

being monitored has to stay in the line of sight between a

wireless transmitter and a receiver. Liu et al. [5] propose a

system utilizing fine-grained CSI for measuring a patient’s

breathing rate and heart rate. Their method is device-free but

relies on relative positions of the patient and WiFi devices

used. In addition, the system cannot be applied to more than

two persons simultaneously. Wang et al. [8] propose another

WiFi-based breathe monitoring system that improves over [5],

[7]. This system uses WiFi Fresnel Zone to monitor human

respiration. It can accurately measure human respiration rate

under arbitrary body orientation and posture. It also can only

monitor two persons at once. TagBreathe [12] uses the phase

values of RFID tags to monitor respiration rate and can support

multiple users. Like [5], [8], it does not consider dynamic

settings that allow patients to move around for continuously

monitoring in daily-life activities. The design of the above sys-

tems heavily relies on positioning of devices and patients. Also

related is Tagbeat [22], which measures the rotation period of

a centrifuge machine. Its method is applicable to measuring

wind speed, monitoring centrifugation, and troubleshooting

engine [22]. It requires static and steady conditions where

the mechanical vibration of an object produces near-perfect

periodic cures in wireless signals, which are time-invariant in

the spectrum domain. This is a condition that does not hold for

oscillations in human body such as hand tremor that carries

inherent irregularity in both frequency and magnitude.
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Fig. 1: Our system architecture.

III. SYSTEM OVERVIEW

The goal of our system is to measure the bodily oscil-

lation rate, using hand tremor as a study case. The system

deployment is simple: an RFID tag is attached to the hand

(or other body part) under monitoring. An RFID reader is

deployed in the room to continuously measure the phase values

of the wireless signals backscattered from the tag. The patient

is allowed to move within the coverage area of the reader.

Multiple tagged patients can be monitored simultaneously.

The basic idea behind our approach is that when a hand at-

tached with an RFID tag shakes, this oscillation will introduce

a periodic component in the reported phase values. Therefore,

we can analyze the collected phase values and extract this

periodic pattern. Once the oscillation pattern is captured, the

hand tremor rate can be estimated.

Our system in Fig. 1 consists of six modules: Data Col-

lection, Data Classification, Data Calibration, Noise Removal,

Time-varying DC Removal and Time-varying Rate Measure-

ment. All these modules can be implemented on a laptop

connected to an RFID reader. Assume we have n people

to be monitored, each of which is attached with a tag on

his hand. Our system first collects the phase values of the

tags by an RFID reader. The collected data is then processed

by the Data Classification module, which classifies the data

into different groups based on the reported tag IDs. After

Data Classification, the data of each group will be processed

separately by the Data Calibration module, the Noise Removal

module, the Time-varying DC Removal module, and the

Time-varying Rate Measurement module, which outputs the

oscillation rate. The details of these modules will be elaborated

in Section IV.

IV. SYSTEM DESIGN

In this section, we present the functional details of our

system on how the phase values are processed step by step

to produce an estimated oscillation rate. In the sequel, we

use the terms, “tremor” and “tremble”, exclusively for hands,

and the terms, “static”, “moving”, and “movement”, for other

larger bodily movement such as moving an arm or walking.

Fig. 2: Hand tremor model.

For example, when we say “hand tremor rate of one static

person”, the word “static” means that the person does not

have any other bodily movement except that one of his hands

trembles. With “hand tremor rate of one moving person”, we

mean that the person may be waving his arm or walking when

one of his hands trembles. For the cases of measuring hand

tremor rates of multiple persons, we allow the individuals to

move as they wish.

A. Time-varying Properties

Before we elaborate the design of our system, we first

mathematically analyze the time-varying properties of a tag’s

phase values when it is attached to a trembling hand. We begin

by examining the ideal motion in [12] where a tag oscillates

in perfect harmonic motion along the direction of the double

arrow in Fig. 2. The middle point of the double arrow is called

the base location of oscillation. Let d be the distance between

the base location and the reader’s antenna, φ the acute angle

between the line of oscillation and the line from the reader to

the base location, r the rate of oscillation, and g the magnitude

of oscillation.

Consider harmonic motion in which the distance from the

tag to the base location can be modeled as g sin(2πrt). From

the figure, it is easy to see that the tag-reader distance R(t) is

R(t) =
√

(d− g sin(2πrt) cosφ)2 + (g sin(2πrt) sinφ)2,
(1)

which has a period of 1
r

. As the tag-reader distance changes

over time, it creates a phase shift in the backscattered signal

received by the reader. Today’s reader can typically produce

around 40 phase samples at random times based on an

arbitration protocol that resolves collision when multiple tags

are present [23]. Each sample includes the tag ID, the time

when the sample is taken, and the phase. For an oscillation

characterized by (1), the phase θ(t) can be modeled as

θ(t) = θ0 + 2π
2R(t)

λ
mod 2π (2)

where an offset θ0 is introduced by the hardware, λ is the

wavelength of the RF waves, and the total distance travelled

by the waves from the reader to the tag and back to the reader

is 2R(t).
Clearly, θ(t) is a periodic curve, with a period of 1

r
. It

has been shown in [22] that a periodic phase curve can

be approximately recovered from discrete random samples

(produced by the reader) using the method of compressive

sensing. The assumption is that the curve has nearly perfect
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Fig. 3: Phase samples when four people move with their hands

trembling.

periods where the phase repeats the same values in each

period, as is the case of machine-induced vibrations studied in

[22] and also is the case in the ideal model of (1)-(2) above.

However, this paper studies the oscillations produced by

human body, which have time-varying properties that break the

above assumption. For example, consider that a tagged hand

trembles. The oscillation rate r may change over time. The

tremor magnitude g may also change over time. The person

may walk around, and therefore d and φ change over time. In

this situation, θ(t) is no longer a periodic curve in the math-

ematical sense. It can be a complex, non-repeating curve that

shows oscillation but defies the use of compressive sensing and

other methods that assume mathematically periodic curves. To

reflect the time-varying properties, the model of (1)-(2) has to

be rewritten as

R(t) =
√

(d(t)− g(t) sin(2πr(t)t) cosφ(t))2

+(g(t) sin(2πr(t)t) sinφ(t))2

θ(t) = θ0 + 2π
2R(t)

λ
+ ε mod 2π

(3)

where ε is an error caused by environmental noise. Such

a model is hard to analyze using the traditional methods.

Therefore, new ways must be invented to find the oscillation

rate not based on model analysis but based directly on the

time-varying phase samples. Before explaining the details of

our approaches, we first describe how we collect data from

users.

B. Data Collection and Classification

Suppose we have n users, each of which is attached with

an RFID tag to a finger and each tag has a unique ID. The

reader continuously interrogates the tags, which respond by

backscattering the RF signals from the reader. The reader

performs a collision-resolving arbitration protocol [23] that

allows it to communicate with the tags in turn, collecting

the individual tag IDs and the associated physical-layer signal

properties such as phase shift and received signal strength.

Fig. 3 shows an example of the collected phase values from

four moving people when their hands (tags) are trembling.

In this figure, each point represents a phase sample we have

collected. Since the four tags’ phase values are randomly

sampled and mixed together in the data, we cannot observe any

periodic pattern. Fortunately, the phase samples are collected

together with tag IDs, which allows us to easily separate the
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(a) phase samples when a person stays still without hand
tremor.
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(b) phase samples when a person has one hand trembling.
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(c) phase samples after data calibration.

Fig. 4: Phase samples produced by a reader for a tagged

person.

data into four groups, one for each tag. We can then process

each group of data at a time to obtain the hand tremor rate of

one person. In the following, we will focus on the data from

one person.

C. Data Calibration and Noise Removal

Consider the set of phase samples produced by an RFID

reader for a specific tag. These samples are inherently noisy

due to environment interference and product properties [17].

Fig. 4a shows the phase samples recorded by the reader from

one tagged person whose hand stays still; refer to Section V for

details of the testbed. Note that we connect the adjacent phase

values in the figure to show a phase curve with spikes whose

tips are where the phase samples locate. The phase curve stays

largely a constant with small random noise fluctuations.

Fig. 4b shows the phase samples when the person emulates

hand tremor by shaking one hand while sitting by a desk

without other bodily movement. The curve in the figure is

noisy. The time-varying noise is caused by various factors,

including device properties and fluctuations in the distance

between the reader and the base location of the tag, in the
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Fig. 5: Phase values from a single static person after spikes

are removed.

oscillation rate, and in the oscillation magnitude. Simply

applying a low pass filter will not work well. Although it

can remove high-frequency noise (such as white noise from

the environment), as we will show, much of the noise in our

measurement is not of high frequency, which makes the low

pass filter ineffective.

Our first observation is that, when the tag moves to a

location where the true phase value is close to a multiple of

2π’s, as the noise pushes it back and forth around this multiple,

the modulo operation in (2) may cause 2π jumps up or down

in the reported phase samples. Such large errors are evident

in Fig. 4b between 8 sec to 10 sec. To calibrate the phase

samples, we enforce continuity in phase changes. If there is

a sudden change of about 2π between two consecutive phase

values, we know that it is caused by the modulo operation.

In this case, we need to remove the sudden 2π change to

ensure the continuity between the two phase values. After data

calibration, the phase curve becomes Fig. 4c.

Second, not all noise in the phase curve is caused by

modulo operation. Tags are very cheap hardware, and there is

device imperfection [17], with isolated π shift in some reported

phase values, as we have observed in our experiments using

different tags. For example, in Fig. 4c, as the basic shape of

the phase curve fluctuates between 0 and π, there are spikes of

magnitude π into the range of [π, 2π). In this experiment, the

operating frequency is 920 MHz, which means a wavelength of

about 32.6 cm. The sampling rate for phase values is around 40

samples per second. The magnitude of hand tremor is smaller

than half of a wavelength, which means it is not possible

for two consecutive phase-value samples to be apart by π.

Therefore, as another noise removal operation, whenever we

see a phase jump of more than π between two consecutive

phase values, we will reduce the second value by π. After

noise removal, the phase curve becomes Fig. 5.

Third, after removing the noise caused by modulo operation

and device imperfection, we observe that there is still unde-

sired noise in the data. The remaining noise comes from the

environmental interference and can degrade the performance

of our method for measuring the oscillation rate based on the

number of peaks (or valleys) in the phase curve. As we zoom

in to see the details in Fig. 5, there are some small unexpected

peaks (called false peaks) in the curve that will interfere with

our measurement.

Thus we adapt a wavelet based denoising algorithm [24] in
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(a) phase samples when a person moves without hand
tremor.
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(b) phase samples when a person moves with one hand
trembling.
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(c) phase samples after noise is removed.
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(d) phase samples after time-varying DC is removed.

Fig. 6: Sliding window-based approach for removal of time-

varying DC.

our context to remove noise in the phase curve. Traditional

methods that use a low (or band) pass filter with cut-off

frequency cannot effectively deal with this problem, because

the noise may be in the band of the signals, for example, when

it is created due to the tagged person’s other movement (such

as waving arms).

Finally, we reconstruct the signal without noise. We denote

the set of phase samples after the above noise removal as Θ∗.
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D. Time-varying DC Removal

There exists a time-varying Direct Current (DC) component

in the curve, which is partially resulted from the instability of

hand when it trembles: Suppose trembling is a cyclic motion

around the base location of a hand. Even for a static person

without large bodily movement of walking or arm waving, the

base location of the hand may still shift slightly over time.

If the person actually moves around, the time-varying DC

component will be more significant. Fig. 6a shows the phase

samples measured in an experiment where a person walks. As

the person moves without his hand trembling, the phase value

changes steadily, in addition to small high-frequency fluctu-

ations due to environmental noise. When the curve reaches

2π, it will drop to zero due to the modulo operation. Fig.6b

shows the phase samples taken when the person moves with

his hand trembling. The phase shift is caused by a combination

of hand tremor and the person’s moving. In addition, when

closing to the boundary of 2π or zero, any instability in

measurement will cause 2π swings in the module operation,

which is evident between 2 to 4 seconds in the plot. Fig. 6c

shows the phase values after data calibration (spike removal)

and noise removal. Comparing this plot with Fig. 4b, we can

see that a person’s movement introduces a much greater, time-

varying DC component in the phase curve. More significantly,

alongside the DC component, there are false peaks (between

2 to 4 seconds) that are not eliminated by the noise removal

module, possibly because this noise’s frequency is too close

to the rate under measurement. Fortunately, we find that by

removing the time-vary DC component, we can also remove

this noise.

We model the phase sample θ(t) ∈ Θ∗ after noise removal

as

θ(t) = a+M(t) + θ̂(t), (4)

where a is a constant DC component which is dependent on

the initial distance between the tag and the reader’s antenna,

as well as hardware properties, M(t) is a time-varying DC

component due to the shift of the hand’s base location, and

θ̂(t) is the oscillating component caused by the hand trembling

around the base location. We want to approximately remove

a+M(t) from the samples θ(t) to find the values of θ̂(t). If

trembling is steady as a harmonic motion, θ̂(t) can be modeled

by (3). But in real life, a hand may tremble with time-varying

magnitude and rate.

A naive approach of removing DC is to subtract θ(t) by

the global mean of the phase samples. However, this approach

does not work well since it will only transpose the phase curve

along the vertical axis. We propose a sliding window-based

approach that computes a local mean within a sliding window

for DC removal. The local mean l(t) at time t within window

[t− W
2 , t+ W

2 ) is defined as

l(t) =
1

W

∫ t+W

2

t−W

2

θ(t′)dt′ =
1

W

∫ t+W

2

t−W

2

[a+M(t′) + θ̂(t′)]dt′,

(5)

where W is the size of the window. Within a small time

window, we assume M(t′) is approximately a linear function

and θ(t′) is approximately a periodic function. For example,

consider a patient walks around indoor with a hand trembling.

Within a time frame of a few seconds, the patient is likely to

be moving along a line. Even though the patient will make

turns, as long as the assumption is roughly satisfied for most

such time windows, our approach will work well overall. With

the above approximations, we have

l(t) ≈ a+M(t) +
1

W

∫ t+W

2

t−W

2

θ̂(t′)dt′, (6)

Note that M(t) is the mean of M(t′) in the window t′ ∈
[t − W

2 , t + W
2 ). By definition, θ̂(t′) is the oscillating curve

after the DC component is removed. Hence, its integral over

each period is zero. When W is much larger than the period

length, the value of 1
W

∫ t+W

2

t−W

2

θ̂(t′)dt′ becomes insignificant

when comparing with the magnitude of the θ̂(t′) curve. Hence,

we have

l(t) ≈ a+M(t), (7)

which is exactly what we want to remove as the time-varying

DC component. We can approximately compute the value of

l(t) — thus the value of a+M(t) — from (5) based on the

phase samples taken in the time window [t− W
2 , t+ W

2 ). Let

S(t) ⊂ Θ∗ be the subset of phase samples in this window.

For each sample θ(t′) taken at a specific time t′, let ∆(t′)
be the time interval from this sample to the next sample.

We approximate the integral in (5) with discrete samples as

follows:

l(t) =
1

W

∑

θ(t′)∈S(t)

θ(t′)×∆(t′), (8)

where S(t) and ∆(t′), ∀θ(t′) ∈ S(t), can be easily found from

the full set Θ∗ of phase samples.

The exact value of W should be determined based on the

application context. It should be small enough such that M(t)
is likely to be linear within a time window, and it should

be significantly larger than the oscillation period. To measure

the hand trembling rate of a patient indoor, a few seconds

should be appropriate. After the local mean l(t) is computed,

we subtract it from θ(t) as follows

ˆθ(t) = θ(t)− l(t), ∀θ(t) ∈ Θ∗. (9)

The set of resulting phase values is denoted as Θ̂. For

mathematical rigor, we point out that additional phase samples

should be taken during a period of
max{W,Ŵ}

2 preceding the

first sample in Θ∗ and a period of the same length after the

last sample in Θ∗, where Ŵ is the width of another sliding

window introduced later.

By applying a sliding window step by step over the whole

curve, we are able to remove the time-varying DC, as shown

in Fig. 6d, which characterizes the phase shift due to hand

tremor alone. Most false peaks between 2 and 4 seconds in

Fig. 6c are also removed.
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(a) reader and antenna (b) RFID tag

Fig. 7: Experiment setup.

E. Time-varying Oscillation Rate

Once the phase curve of pure hand tremor is produced,

we proceed with tremor period identification and oscillation

rate measurement. Based on the periodic pattern (demonstrated

by Fig. 6d), we identify the peaks (or valleys) on the phase

curve, and use the inter-peak distances to estimate the expected

tremor period and then compute the oscillation rate. A simple

algorithm for identifying peaks is to compare each phase value

with its predecessor and the successor on the curve. (Note that

even though the phase curve is shown as a continuous curve, it

is in fact constructed by connecting the sample phase values.)

If a phase value is greater than both the predecessor and the

successor, we treat it as a peak.

After we identify all the peaks on the phase curve, we obtain

an estimation p of the expected tremor period by taking an

average. We denote the n measured peak-to-peak intervals as

{t1, t2, ..., ti, ..., tn}. The estimation is given as follows:

p =

∑n−1
i=0 ti
n

. (10)

With the value of p estimated from the above formula, the

oscillation rate of hand tremor can be computed as 1/p tps.

V. IMPLEMENTATION

We have implemented a prototype of our system as shown

in Fig. 7. The system setup is given as follows.

RFID Reader: We use one commercial ImpinJ Speedway R420

reader [17] without any modifications on hardware or software.

The reader operates within a frequency range 920 ∼ 925 MHz,

as specified by the EPC C1G2 standard [23]. It provides four

RP-TNC ports and thus can support up to four antennas. A

GPIO Adapter [17] can be exploited to extend the number

of connected antennas to 32, which significantly expands the

coverage area of the reader. In our experiments, one Laird

S9028PCLJ circular polarized antenna [25] as shown in Fig.

7a is sufficient to cover our office area, where the experiments

are performed.

RFID Tags: We adopt widely-used Alien Squiggle UHF RFID

tags [26] whose dimensions are 1.752′′×0.409′′. They have an

operation range up to 11 meters. Those passive tags harvest

energy from the RF signals emitted from the antenna. A tag

is attached to the proper place on a human body to measure

the oscillation rate of that part. Fig. 7b shows a tag attached

to a finger.

Computer: We use a Dell XPS8500 desktop with Intel Core

i7 CPU of 3.4 GHz to process phase values collected by the

reader.

VI. EVALUATION

We conduct experiments to evaluate the performance of our

system. The experiments are carried out in an office with a

dimension of 166×102 feet2. The office environment contains

furniture including desks, chairs, paper boxes, desktop and

small appliances. We invite four volunteers to emulate hand

tremor in our experiments. The volunteers tremble their hands

at different rates in the range of 2 tps to 6 tps. Each volunteer

attaches one tag to one of his/her fingers for hand tremor

rate measurement. Experiments are performed under different

static/moving settings with a varying number of participants.

Each experiment is repeated for 80 times to produce average

results. The true oscillation rates are counted visually during

measurement by another person. The estimated rates are com-

pared with the true rates for error measurement. No previous

health-monitoring systems are designed for measuring the

hand tremor rate using RF signals.

A. Hand Tremor Rate of One Static Person

Our first set of experiments use our system to measure the

hand tremor rate of a single person who sits still in the office.

The measurement results are given in Fig 8.

Fig. 8a compares the measured tremor rate and the true

tremor rate. Each point in the plot represents one experimental

measurement, where the x coordinate is the true tremor rate

and the y coordinate is the measured tremor rate. The equality

line, y = x, is presented for reference: A point closer to

the equality line is more accurate. We can see that most

points are clustered around the equality line, demonstrating

a good measurement accuracy of our system. Fig. 8b depicts

the standard deviation of the measurement results when the

hand tremor rate varies from 2 to 6 tps. All the points in Fig.

8a are placed in four bins, [2, 3), ..., [5, 6]. We compute the

average bias in each bin, which is represented by the distance

between the center bar in each bin and the equality line. The

distance between the top (bottom) bar and the center bar is the

standard deviation. Overall, the average measurement error our

system is about 0.11 tps, which is accurate enough for most

practical applications. Fig. 8c shows the cumulative density

function (CDF) of the measurement error of hand tremor rate.

For example, the 90 percentile of the measurement error is

less than 0.3 tps. In conclusion, our system can yield very

accurate measurement results of hand tremor rate for a single

static person.

B. Hand Tremor Rate of One Moving Person

The second set of experiments use our system to measure

the hand tremor rate when the person under monitoring is

moving around in the office. Fig. 9a presents the experimen-

tal results of measuring the hand tremor rate of a moving
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Fig. 8: Measurement accuracy of hand tremor rate of a single static person.
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Fig. 9: Measurement accuracy of hand tremor rate of a single moving person.

number of people average error standard deviation

2 0.129 0.103

3 0.127 0.105

4 0.142 0.116

TABLE I: Measurement accuracy of hand tremor rates (in tps)

of multiple static persons

number of people average error standard deviation

2 0.208 0.322

3 0.232 0.374

4 0.259 0.420

TABLE II: Measurement accuracy of hand tremor rates (in

tps) of multiple moving persons

person. Again, most points cluster close to the equality line,

demonstrating good performance. The measurement accuracy

in terms of mean and standard deviation is presented in Fig.

9b. The average measurement error is 0.12 tps, which is

slightly larger than that of the static-person case in Section

VI-A. Besides, the CDF of the estimation error is presented

in Fig. 9c, where the 90 percentile of the error is less than

0.3 tps. These results demonstrate that the proposed system

can accurately measure the hand tremor rate under the more

challenging scenario where the person is moving.
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Fig. 10: Multiple static persons.

C. Hand Tremor Rates of Multiple Static Persons

The third set of experiments use our system to measure

the hand tremor rates of multiple static persons. We conduct

experiments with 2, 3, and 4 volunteers, respectively, each

with a tag attached to a finger.

Table I presents the mean errors and the standard deviations.

In the second column, the mean measurement errors are 0.129,

0.127 and 0.142 tps for two, three and four persons, respec-

tively. It shows that the mean error is not very sensitive to the

number of persons under monitoring. In the third column, the
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Fig. 11: Multiple moving persons.

standard deviations are 0.103, 0.105 and 0.116, respectively;

they are not very sensitive to the number of persons, either. The

reason is that the collision-resolving arbitration protocol allows

the reader to interrogate each tag individually and record its

phase values based on its ID. Consequently, our system can

measure the oscillation rate on each tag without interference.

Fig. 10 presents the CDF of the measurement error. For

example, the 90 percentile of measurement error is less than

0.3 tps when four people are monitored simultaneously.

D. Hand Tremor Rates of Multiple Moving Persons

The fourth set of experiments evaluate the performance

of our system for measuring hand tremor rates of 2, 3, or

4 moving persons simultaneously. The results are shown in

Table II, where the mean measurement errors are 0.208, 0.232

and 0.259 tps (in the second column) for 2, 3 and 4 persons,

respectively. They are only slightly larger than the results in

Table I for the static case. The standard deviations of the error

are presented in the third column; they are all small. Fig. 11

shows the CDF of the measurement error. The 90 percentile

of measurement error is about 0.4 tps when four people are

monitored simultaneously.

VII. CONCLUSION

In this paper, we design a novel wireless health-monitoring

system using RFID tags. It provides a general and effective

way of measuring oscillation rates. More specifically, the

system uses the fine-grained phase values reported by an

off-the-shelf RFID reader to estimate the oscillation rate of

a human body with great accuracy. The design supports

the measurement of hand tremor rate of one person or the

measurement of multiple persons simultaneously, even when

the individuals move around, which represents a significant

improvement over the previous systems. We have implemented

a prototype and performed extensive experiments. Our exper-

imental results demonstrate the effectiveness of our system

in providing accurate rate measurements under challenging

settings.
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