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Abstract—Traffic volume measurement is one of the most basic
functions of road planning and management. In this paper, we
investigate an important problem of privacy preserving “point-
to-point” traffic volume measurement. We formalize “point-
to-point” traffic as an origin-destination (O-D) flow, which
represents the set of vehicles traveling from one geographical
location (origin) to another location (destination). We take
advantage of vehicular cyber-physical systems (VCPS) to exploit
the potential for a fundamental shift in the way how O-D data are
collected. The challenge is to allow the collection of statistical O-D
flow information, yet protect identities of individual vehicles. To
address that, we design two novel schemes which utilize both the
latest technological advance in VCPS and the nice properties of
a family of commutative one-way hash functions. Furthermore,
we adopt statistical methodology and use sampling to achieve
far better efficiency with graceful degradation in measurement
accuracy. We perform simulations to demonstrate the feasibility
and scalability of our schemes.

I. INTRODUCTION

Traffic volume measurement is one of the most basic
functions of road planning and management. Today the
widely used traffic statistic is annual average daily traffic
(AADT) [1], which describes the number of vehicles traversing
a specific point in the road system annually. Although
AADT is very useful, it is only “point” information. To
gain better understanding of road usage, we need “point-
to-point” statistics that measure traffic volumes between
distinct locations. Prior research has made steady advance in
estimation of “point” statistics like AADT (e.g. [2], [3], [4],
[5]). While point-to-point statistics may be inferred from point
data [6], little work has been done on direct measurement
of “point-to-point” traffic volume particularly when drivers’
location privacy is of concern.

In this paper, we investigate the problem of privacy
preserving point-to-point traffic volume measurement. We
formalize point-to-point traffic as an origin-destination (O-D)
flow, whose size is the number of vehicles traveling from
one geographical location (origin) to another (destination).
Like AADT, O-D flow data is an essential input to a variety
of studies including estimation of transportation link flow
distribution as part of investment planning, calculation of road
exposure rates as part of safety analysis, and characterization
of turning movements at intersections for signal timing
determination, etc. However, very few techniques have been
developed to directly measure O-D data, not to mention
preserving traveler’s privacy at the same time.

Vehicular cyber-physical systems (VCPS) utilize the latest
technologies in wireless communications, on-board computer
processing, sensors, GPS navigation, etc., to improve safety,
efficiency, and resiliency of transportation systems [7] [8].
For example, IntelliDrive [9] from USDOT [10] envisions a
nationwide system where vehicles communicate with roadside
equipments (RSE) in real time via dedicated short range
communications (DSRC). VCPS provides the potential for
a fundamental shift in how O-D data are collected: When
a vehicle passes by an RSE, it can report its unique ID
(e.g., vehicle identification number or VIN). The O-D flow
between two RSEs is simply the set of common IDs stored in
them. However, this straightforward approach leads to serious
privacy breaching as it also tracks the entire moving history of
vehicles, which is against the “anonymity by design” principle
for privacy protection required by IntelliDrive. Hence, the
challenge is to allow the collection of statistical O-D flow
data, yet protect information about individual vehicle.

The objective of our work is to allow transportation
authorities to collect aggregate O-D flow data from VCPS
without learning information about individual vehicles. Since
globally unique IDs like VINs and other permanent or
temporary numbers that are transmitted repeatedly by a vehicle
can be exploited for the tracking purpose, IDs (or other
fixed numbers) should be preprocessed and protected by keys
before transmission. In other words, RSEs will only be able
to collect Keyed signatures of vehicles’ IDs (referred to as
KIDs). To measure O-D flow sizes, we introduce a family of
commutative one-way hash functions, and propose two novel
O-D measurement schemes, which can protect the identities of
vehicles. The first scheme is more efficient, but it is vulnerable
to an identical-key attack. The second scheme prevents this
attack at the cost of increased computation overhead. To make
it practical, we adopt statistical methods with sampling to
construct a maximum likelihood estimation formula for the O-
D flow size. The sampling can gracefully control the tradeoff
between computation efficiency and measurement accuracy.
We perform simulations, and the results demonstrate the
feasibility and scalability of our schemes.

II. PRELIMINARIES
A. System Model

We consider a vehicular cyber-physical system (VCPS)
model involving three entities: vehicles, roadside equipments
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(RSE), and a central server. Each vehicle has a unique ID, e.g.,
its VIN or other number chosen permanently or temporarily.
We assume that each vehicle randomly picks its ID (from
a large space) at the beginning of a day. The set of RSEs
is denoted as S = {s1, s2, ..., sN}. Both vehicles and RSEs
are equipped with computing and communication capabilities,
such as on-board computer chips and communication modules.
Vehicles communicate with RSEs in real time via dedicated
short range communications (DSRC) [10]. RSEs are connected
to the central server through wired or wireless means. They
collect information from vehicles and transfer it at the end of
each measurement period (such as a day) to the central server
for further processing.

B. Problem Statement

We define an origin-destination (O-D) flow as the set of
vehicles traveling between one RSE-equipped location (origin)
and another RSE-equipped location (destination) during a
measurement period. 1 The O-D flow size is the number of
vehicles in the set. The problem is to design a privacy-assured
scheme that measures the sizes of O-D flows in a road system
between all pairs of origin/destination locations where RSEs
are installed. To protect the identities of vehicles, we need a
solution in which a vehicle never transmits its ID or any fixed
number. Ideally, the information transmitted by a vehicle to
any RSE is different each time and looks totally random.

An alternative approach is having the RSEs broadcast their
IDs. Each vehicle will record the IDs of the RSEs that it has
passed by, and transmit them to every RSE that it passes in
the future. But this is not a good solution, because the vehicle
is giving its trajectory (i.e., the driver’s entire moving history).

We assume that a special MAC protocol is used to support
privacy preservation such that the MAC address of a vehicle
is not fixed. For instance, when responding to an RSE, the
vehicle may pick an MAC address randomly from a large
space for one-time use. Since the number of vehicles in the
vicinity of the RSE is limited, the probability for two vehicles
to choose the same MAC address can be made negligibly small
when the address space is sufficiently large.

C. Threat Model

We use a semi-trust model for the RSEs. We assume that
all RSEs are from trustworthy authorities. This assumption can
be enforced by authentication based on PKI. Each vehicle is
pre-installed with the public keys of the trusted third parties.
Each RSE must have a public-key certificate from them. It
broadcasts the certificate in each query that it sends out. When
receiving a query, the vehicle verifies the certificate, and then
uses the RSE’s public key to authenticate it. We also assume
that the authorities may exploit the information collected by

1Our proposed solutions can handle both directional O-D flows (from
a location x to a location y) and undirectional O-D flows (including two
directional flows from x to y and from y to x). For an O-D flow between
location x and location y, our definition includes all vehicles that pass
both locations, comparing with a narrower definition often used in the
transportation literature that includes only vehicles starting their trips from
x and ending their trips at y.

RSEs to track individual vehicles when they need to do so. For
instance, if a vehicle transmits any fixed number upon each
query, that number can be exploited for tracking purpose.

It is important to note that there are many other ways to
track a vehicle, for example, tailgating the vehicle, or setting
cameras near RSEs to take photos and using image processing
to recognize it. These methods are beyond the scope of this
paper. We focus on preventing automatic real-time tracking
caused by vehicle identity leakage via RSEs.

D. Design Goals

To enable privacy preserving O-D flow measurement under
the aforementioned model, our scheme should achieve the
following design goals.

1) Correctness: the scheme should correctly measure the
O-D flow size for arbitrary pair of RSEs, or with a
measurement error that is probabilistically bounded.

2) Privacy guarantee: the proposed scheme should be able
to protect the identity information of vehicles from
unauthorized leakage and inference.

3) Efficiency: the scheme should have means to control its
overhead for scaling to a large road system.

III. SOLUTION USING COMMUTATIVE ONE-WAY
HASH FUNCTIONS

In this section, we propose a solution for privacy preserving
O-D flow measurement based on a family of commutative one-
way hash functions (COHF). A common COHF is deployed to
all RSEs and vehicles, and vehicles apply the hash function to
produce Keyed signatures of their IDs (referred to as KIDs)
using the keys obtained from RSEs that they pass by. The
KIDs, instead of real IDs, are reported to RSEs for O-D
flow measurement. Before describing the full solution, we first
introduce the family of commutative one-way hash functions.

A. Commutative One-Way Hash Functions

Consider a hash function h : A × B → C, where the two
arguments are a hash input and a hash key, respectively. A
commutative one-way hash function, as its name suggests,
satisfies both one-wayness and commutativity. The definitions
of the properties below are collated from [11] and [12].

Definition 1: A family of one-way hash functions (OHF)
is a set of functions hn : Vn ×Kn → Zn, which satisfy the
following three properties:

• Ease of computation: there exists a polynomial P such
that for each integer n, hn(v, k) is computable in time
P (n, |v|, |k|) for all v ∈ Vn and all k ∈ Kn.

• Preimage resistance: there is no polynomial P such
that, given n, k ∈ Kn, and z ∈ Zn, there exists a
probabilistic polynomial time algorithm which can find
v ∈ Vn satisfying hn(v, k) = z with probability greater
than 1/P (n) for sufficiently large n, when k is chosen
uniformly from Kn and z is chosen uniformly from Zn.

• 2nd-preimage resistance: there is no polynomial P such
that, given n, (v, k) ∈ Vn×Kn, and k′ ∈ Kn, there exists
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a probabilistic polynomial time algorithm which can find
v′ ∈ Vn satisfying hn(v, k) = hn(v

′, k′) with probability
greater than 1/P (n) for sufficiently large n, when (v, k)
is chosen uniformly among all elements of Vn ×Kn and
k′ is chosen uniformly from Kn.

In this case, hn is said to have the one-wayness property.

In Definition 1, the first property requires that OHF is
relatively easy to compute (in polynomial time). The second
property requires that it is computationally infeasible to find
an input which can be hashed to an arbitrarily pre-specified
output. The third property requires that it is computationally
infeasible to find a second input that can be hashed to the
same output as arbitrarily pre-specified input and key.

Definition 2: A commutative hash function (CHF) is a
hash function hn : Vn × Kn → Vn, which satisfies the
commutativity property: for all v ∈ Vn and for all k, k′ ∈ Kn,
hn(hn(v, k), k

′) = hn(hn(v, k
′), k).

One can see that commutativity lies in the hash keys: given
any input and two keys, commutativity tells that changing the
order in which the two keys are applied to the input won’t
change the hash result. Further observed, if the range of hn

equals the domain of its first argument, we can exploit a new
family of commutative one-way hash functions which shall
satisfy both one-wayness and commutativity.

Definition 3: Commutative one-way hash functions
(COHF) are a family of hash functions which have both
one-wayness property and commutativity property.

We will see shortly one crucial benefit of utilizing this hash
function family: Vehicles can transmit their KIDs by hashing
their IDs under totally different keys, and be sure that no one
will be able to get their IDs, even knowing the keys used
by the vehicles (one-wayness). Yet the KIDs allow O-D flow
measurement as demanded (through commutativity).

B. The Proposed Scheme

Using the COHFs, we propose the following scheme for
privacy preserving O-D flow measurement. Each measurement
period consists of three phases: initialization, online reporting,
and offline measurement. Before describing the three
measurement phases, we first construct the COHFs.

1) Construction of Commutative One-Way Hash Functions:
According to Definition 3, a COHF is a hash function that
satisfies both one-wayness and commutativity. There can be
different constructions of COHFs given different types of
hash functions, and the one that we adopt is based on the
exponentiation modulo n function, hn(v, k) = vk mod n. We
claim that hn is a COHF with some restrictions on n.

Definition 4: A prime p is defined to be safe if p = 2p′+1
where p′ is an odd prime. A number n is defined to be a rigid
integer if n = pq where p and q are distinct large safe primes.

Theorem 1: The function hn(v, k) = vk mod n is a
commutative one-way hash function if n is a rigid integer.

Proof: Because of space limitations, here we only give
the proof skeleton. Clearly, hn is commutative. As to one-
wayness, hn satisfies ease-of-computation since there are
efficient methods to perform exponentiation of a base to
an exponent in polynomial time (e.g., [13]). Note that the
selection of n and hn follows the RSA cryptosystem [14].
Therefore, the preimage resistance of hn also follows the
cryptographic security of RSA [15]. The third property, 2nd-
preimage resistance, is rooted in the characteristics of rigid
integers. It is demonstrated in [12] that if n is a rigid integer,
finding collisions with specific constraints (i.e., 2nd-preimage)
cannot done in polynomial time. This completes the proof. �

2) Initialization: A common commutative one-way hash
function hn must be pre-distributed to all vehicles and RSEs.
The hash function is determined by a large rigid integer n.
There is a practical method to construct it, and the basic idea
is that for n = pq to be a rigid integer, each of p, q, (p−1)

2 and
(q−1)

2 must be primes congruent to 5 modulo 6. Therefore, the
process is to first select a “random” integer p′ that is congruent
to 5 modulo 6 until one is found such that p′ and 2p′ + 1 are
both prime, and then choose a suitable q′ similarly. After that,
n can be easily constructed by n = pq = (2p′ + 1)(2q′ + 1).

All RSEs and vehicles are pre-configured with a suitable
value of n, and clocks of RSEs are loosely synchronized as
they are all connected to the central server through wired or
wireless means. Every RSE generates a random number as its
hash key for the current measurement period. With the server’s
assistance, all hash keys are unique: Let kx be the hash key
generated by RSE sx. We require that, for any two RSEs sx
and sy , their keys kx and ky be different. If the server finds two
hash keys reported from RSEs are the same, it will inform one
of them to regenerate a key. The key uniqueness requirement
serves an important purpose, which will be explained later.

3) Online Reporting: The online reporting phase securely
collects information for O-D flow measurement. The RSEs
broadcast queries in pre-set intervals (e.g., once a second),
ensuring that each passing vehicle receives at least one query
and meanwhile giving enough time for the vehicle to reply.
Collisions can be resolved through well-established CSMA
or TDMA protocols, which are not the focus of this paper.
Every query that an RSE sends out includes the RSE’s ID,
public-key certificate, as well as its current hash key. When
a vehicle, whose ID is v, receives a query from an RSE sx,
it first verifies the certificate, and then uses the RSE’s public
key to authenticate the RSE. After verifying that sx is from
the trustworthy authority, the vehicle generates a KID based
on its ID v and the RSE’s key kx by computing a hash c =
hn(v, kx) = vkx mod n. After that, it reports the KID c to the
RSE, which then stores c in its local storage.

4) Offline Measurement: At the end of each measurement
period, the O-D flow sizes between pairs of RSEs are
computed based on the KIDs collected by RSEs during the
online reporting phase. Specifically, every RSE will send its
key as well as the collected KID set to the central server, which
will be in charge of the offline O-D flow size computation.
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Thanks to the commutativity property of hn, given two
sets of KIDs, Hx = {hn(·, kx)} and Hy = {hn(·, ky)},
collected by two RSEs sx and sy respectively, and the two
corresponding keys, kx and ky , it is easy for the central
server to determine the O-D flow size between sx and sy . In
principle, changing the order in which two keys are applied
to the same vehicle ID using COHFs won’t change the final
hash result. Therefore, the central server simply further hashes
each RSE’s KID set by the other RSE’s key to obtain two
double-hashed sets Hx,y = {hn(hn(·, kx), ky)} and Hy,x =
{hn(hn(·, ky), kx)}, and the O-D flow size between sx and sy
simply equals the number of common elements in Hy,x and
Hx,y according to Theorem 2 in the following. 2

Theorem 2: Given a commutative one-way hash function
hn(v, k) = vk mod n, for arbitrary vehicle IDs v and v′, and
arbitrary keys k and k′, hn(hn(v, k), k

′) = hn(hn(v
′, k′), k)

holds if and only if v = v′ holds.

Proof: The sufficiency is clearly established given the
commutativity of hn. The necessity is granted through two
facts. First, hn is commutative. Second, since the number
of vehicles in the vicinity of two RSEs is limited, and the
hash space is sufficiently large, the probability for two distinct
vehicle IDs to be hashed under the same key to the same value
is negligibly small. This completes the proof. �

C. Scheme Analysis

The proposed scheme preserves vehicles’ privacy. As
vehicles only transmit their KIDs to RSEs, no one can obtain
their real IDs thanks to the one-wayness of the COHF hn.
Vehicles are further protected from being tracked since no
fixed information of them is transmitted because of the key
uniqueness requirement. The scheme is also efficient. Each
vehicle only needs to compute one hash for each passing RSE,
so the time overhead for each vehicle is bounded by O(N),
where N is the number of RSEs. As for the central server,
to compute an O-D flow size between two RSEs, it needs to
perform a hash for each KID value from the two KID sets, so
the number of hash operations is bounded by O(M), where
M is total number of vehicles. Further, to find the common
double-hashed values, it needs to sort the two double-hashed
sets, which takes O(M logM) comparison operations.

D. Identical-key Attack

The above analysis assumes the transportation authority
(who owns RSEs and the central server) is trustworthy. But
this assumption also allows the transportation authority an easy
way of tracking vehicles. It may simply set all or a portion
of RSEs with the same key. When a vehicle passes these
RSEs, its KID stays the same and therefore may be exploited
for tracking purpose. To avoid transmitting the same number
(KID), a vehicle may keep record of the RSE keys that it has

2Note that if we take the timestamps of the KIDs into consideration, we can
easily determine the size of a directional O-D flow for vehicles that appear
at sx first and then appear at sy at a later time.

seen before, and will not respond to an RSE if the key from
that RSE is already in the vehicle’s record.

This solution however causes an under-measurement
problem. Suppose during a measurement period (e.g., a day),
a vehicle passes by an RSE for two or more times. This is not
uncommon in reality. For example, people driving to work
are likely to follow the same route back home. While the
vehicle contributes twice to traffic volume between home and
workplace, it is counted only once (since the vehicle does not
respond to the same key). To fully address this concern, we
need to make a shift in who is responsible for key generation.
We shall move that responsibility from RSEs to the vehicles
in order to ensure that the key uniqueness requirement is met.

IV. ENHANCED SCHEME FOR PRIVACY
PRESERVING O-D FLOW MEASUREMENT

Instead of using the keys generated by RSEs, our second
scheme lets vehicles choose their own keys to protect their IDs.
Still, vehicles and RSEs are pre-configured with a common
commutative one-way hash function hn. RSEs will collect
KIDs from vehicles, and a central server will compute O-D
flow sizes based on the collected KID sets. The difference is
that, RSEs will not just record the KIDs. Instead, it will store
a set of 〈key, KID〉 pairs obtained from passing vehicles for
measurement purpose. The enhanced scheme has two phases:
online reporting and offline measurement.

A. The Enhanced Scheme

1) Online Reporting: During the online reporting phase,
〈key, KID〉 pairs are securely collected by RSEs from the
passing vehicles. More specifically, when a vehicle v passes
by an RSE sx, the vehicle will first verify that the RSE comes
from trusted authorities based on the public-key certificate
received from the RSE’s periodic broadcast. Then the vehicle
will randomly choose a hash key k, and compute a hash
c = hn(v, k) = vk mod n, which serves as a KID of v.
After that, the vehicle reports the KID c and the key k to sx,
which stores this 〈key, KID〉 pair in its local storage.

2) Offline Measurement: At the end of each measurement
period, all RSEs will send their collected data to the central
server. Given two sets of 〈key, KID〉 pairs collected by two
RSEs sx and sy , the central server can compute the size of
the corresponding O-D flow based on the hash function hn’s
commutativity. The process is to go through these two sets, and
for each pair 〈kx, cx〉 collected by sx, check if there is a pair
〈ky, cy〉 collected by sy such that hn(cy, kx) = hn(cx, ky);
we say the two pairs share a common double-hashed value in
this case. If so, a vehicle is found to pass both RSEs. One can
easily verify its correctness through Theorem 2.

3) Scheme Analysis: The enhanced scheme eliminates
the under-measurement problem that is encountered by the
previous scheme. Even if a vehicle may pass an RSE for
several times, each time it uses a different key to produce
a new KID, which will be recorded and counted towards the
final measurement result. Therefore, the measured O-D flow
sizes should always be equal to the real ones. Observe that the
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enhanced scheme improves the measurement accuracy at the
cost of increased computation overhead. In order to compute
the O-D flow size between two RSEs, sx and sy , the central
server needs to perform a re-hash for each pair collected by
sx under every key from sy , and do the same thing for sy .
Suppose the two RSEs have collected nx and ny pairs of 〈key,
KID〉, respectively. The time complexity for the central server
to compute the corresponding O-D flow size will be O(nx·ny).

B. Sampling

To address the efficiency problem, we propose to use
sampling to estimate the O-D flow sizes. Given two sets
of 〈key, KID〉 pairs collected by two RSEs sx and sy ,
Dx = {〈kix, cix〉}nx

i=1, Dy = {〈kiy, ciy〉}ny

i=1, it takes
O(nx · ny) time to calculate the O-D flow size. To reduce
computation overhead, we randomly select n′

x elements from
Dx and n′

y elements from Dy , denoting them as D′
x and D′

y ,
respectively. It only takes O(n′

x · n′
y) time to compute the

O-D flow size n′
xy from such a sample. Based on n′

xy and
the sampling probabilities, we can construct the maximum
likelihood estimate (MLE) of nxy as

n̂xy = n′
xy ×

nx

n′
x

× ny

n′
y

, (1)

which is derived as follows: The idea is that if two pairs from
Dx and Dy share a common double-hashed value, we treat
them as a common element in these two sets. So our problem
is equivalent to the set-intersection estimation problem: Let X
and Y be two sets with |X| = a, |Y | = b, |X ∩ Y | = c. We
randomly choose two subsets of elements, X ′ and Y ′, with
cardinalities a′ and b′, from X and Y . We find the number of
common elements in X ′ and Y ′, denoted by c′. The problem
is to construct the MLE of c based on c′, a, b, a′, and b′.

For a randomly selected e ∈ X ′, the probability for e ∈
X ∩ Y is c

a . Under this condition e ∈ X ∩ Y , the probability
for e ∈ Y ′ is b′

b . Combining them, we have P (e ∈ Y ′|e ∈
X ′) = cb′

ab . There are a′ elements in X ′, so the likelihood
function for observing c′ common elements in X ′ and Y ′ is

L = (
cb′

ab
)c

′
(1− cb′

ab
)a

′−c′ . (2)

We want to find the MLE of c, denoted as ĉ, which maximizes
L. To find ĉ, we take logarithm on both sides of (2):

lnL = c′ × ln(
cb′

ab
) + (a′ − c′) ln(1− cb′

ab
) (3)

Take the first order derivative of (3) and let it be zero. We have
ĉ = c′ × a

a′ × b
b′ . By changing the notations to those for our

problem, we have n̂xy = n′
xy × nx

n′
x
× ny

n′
y

, which is the MLE
of nxy . By adopting the sampling method, the computation
overhead is reduced from O(nx · ny) to O(n′

x · n′
y).

V. SIMULATION RESULTS

We evaluate the performance of our two schemes through
simulations. The programs are written in Matlab, and the
experimental platform is a PC featured with an Intel Core 2
E8400 CPU and 4GB RAM, running Windows XP. However,
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Fig. 1. Mean and standard deviation of error ratios for O-D flow measurement

we expect the central server in practice to be much more
powerful. The offline measurement may also be outsourced
to cloud servers and benefit from parallel work. The datasets
used in the simulations are generated such that each vehicle
ID or key is a 32-bit number, and two RSEs, sx and sy , each
store 3,000 vehicle records. There are 500 vehicles that pass
both sx and sy , i.e., the actual O-D flow size nxy is 500.

In the simulations, we consider two performance metrics.
One is measurement accuracy, represented by error ratio r:

r =
|n̂xy − nxy|

nxy
× 100%, (4)

where n̂xy is the measured O-D flow size. Clearly, smaller
r represents more accurate measurement result, and vice
versa. The other is computation overhead, measured by time
consumed for the central server to obtain n̂xy .

Our first scheme has an error ratio of 0% unless it does
not respond to the keys that it has seen before (for privacy
purpose as we have discussed in Section III-D). Hence, we
only measure its time cost. The enhanced scheme addresses
the identical-key attack at the cost of higher computation
overhead. It has an error ratio of 0% only when the sampling
probability p is 1. In our simulations, we vary p from 0.1 to
1, with a step size of 0.1. For each p, we randomly draw a
fraction p of all records from sx and do the same for sy . The
offline measurement is performed over the sampled subsets
and the O-D flow size are estimated by (1). The time cost
is measured and the error ratio is computed from (4). The
process is repeated 10 times to show the statistic effect.

Table 1 and Figures 1-2 present our simulation results. Table
1 shows the computation overhead of the first scheme and
the second scheme under varied sampling probabilities p. The
two figures are drawn from the simulation results of the second
scheme. Figure 1 shows the mean and standard deviation of the
error ratio r under varied p. The length of each error bar is two
times the standard deviation of r, whose mean is at the center
of the bar. We see that both mean and standard deviation of r
decrease with the increment of p. Intuitively, when we increase
the sample size, the measurement result is likely to be more
accurate. When p equals 1, the error ratio is 0% (the rightmost
of the figure), which agrees with our theoretical prediction.
Figure 2 shows the average time taken by the central server to
measure the O-D flow size under each sampling probability. It
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TABLE I
AVERAGE COMPUTATION OVERHEAD FOR THE TWO PROPOSED SCHEMES.

First Scheme Second Scheme with Different Sampling Probabilities
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

time (×103secs) 0.001125 0.0173 0.0692 0.1555 0.2755 0.4303 0.6196 0.8464 1.1016 1.3938 1.7204
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Fig. 2. Average time overhead for offline measurement.

is clear that the computation overhead increases quadratically
with p, which is also consistent to our analysis in Section IV-B.
We stress that this is offline computation.

VI. RELATED WORK
A. Traffic Volume Measurement

Various prediction models have been proposed using data
recorded by automatic traffic recorders (ATR) installed at
road sections. For example, the multiple linear regression
model in [2] addresses the scarce of APRs for county roads,
and the artificial neural network in [3] addresses traffic in
cities. Other predication approaches include spatial regression
[4] and support vector machines [5], etc. These solutions,
though elegant, are not appropriate for “point-to-point” traffic
volume measurement. While some “point-to-point” statistics
may be inferred from “point” data [6], we prefer a more
accurate direct-measurement approach that should also address
the privacy concern. Although Google recently announced to
provide real-time traffic data service in Google maps [16],
their approach cannot assure vehicle’s privacy since it uses
GPS and Wi-Fi in phones to track locations [17].

B. Privacy Preserving Data Mining

Another branch of research that relates to (but is also
significantly different from) ours is privacy preserving data
mining (PPDM). Solutions can be summarized into two
categories. One is to “randomly” perturb the data by adding
“noise” before mining, and mitigate their impact afterwards
[18] [19]. The other is to use cryptographic techniques [20]
[21]. Though they are motivated by the same need to both
protect privileged information and enable its use, directly
applying PPDM methods to O-D flow measurement can still
be problematic. In PPDM tasks, schemes can be quite efficient
since they assume “untouched” data are gathered and shared
among only a few data collectors. However, in our context,
no one should know real vehicle ID (“untouched” data) except
itself, which demands privacy preservation from the beginning
and incurs much higher computation overhead, motivating us
to seek statistical methods to improve its efficiency.

VII. CONCLUSIONS

In this paper, we focus on privacy-assured “point-to-point”
traffic volume monitoring. Two novel schemes are proposed,
utilizing VCPS and the nice properties of COHFs. Sampling
is applied to improve efficiency. Simulations are performed to
evaluate the feasibility and scalability of our schemes.
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