
J. Parallel Distrib. Comput. 72 (2012) 1741–1752
Contents lists available at SciVerse ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

An efficient incentive scheme with a distributed authority
infrastructure in peer-to-peer networks
Zhan Zhang a, Shigang Chen b,∗, Zhen Mo b, MyungKeun Yoon c

a Juniper Networks, Sunnyvale, CA 94089, USA
b Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL 32611, USA
c Department of Computer Engineering, Kookmin University, Seoul, 136-702, Republic of Korea

a r t i c l e i n f o

Article history:
Received 1 September 2011
Received in revised form
1 August 2012
Accepted 9 August 2012
Available online 17 August 2012

Keywords:
Peer-to-peer networks
Incentive scheme
Threshold cryptography

a b s t r a c t

Today’s peer-to-peer networks are designed based on the assumption that the participating nodes are
cooperative, which does not hold in reality. Incentive mechanisms that promote cooperation must be
introduced. However, the existing incentive schemes (using either reputation or virtual currency) suffer
from various attacks based on false reports. Even worse, a colluding group of malicious nodes in a
peer-to-peer network can manipulate the history information of its own members, and the damaging
power increases dramatically with the group size. Such malicious nodes/collusions are difficult to detect,
especially in a large network without a centralized authority. In this paper, we propose a new distributed
incentive scheme, in which the amount that a node can benefit from the network is proportional to its
contribution, malicious nodes can only attack others at the cost of their own interests, and a colluding
group cannot gain advantage by cooperation regardless of its size. Consequently, the damaging power of
colluding groups is strictly limited. The proposed scheme includes threemajor components: a distributed
authority infrastructure, a key sharing protocol, and a contract verification protocol.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

A node in a peer-to-peer network is allowed to consume
resources from other nodes, and is also expected to share its
resources with the community. However, today’s peer-to-peer
networks suffer from the problem of free-riders, who consume
resources in the network without contributing anything in return.
Originally it was hoped that users would be altruistic, ‘‘from
each according to his abilities, to each according to his needs’’.
In practice, however, altruism breaks down as networks grow
larger and include more diverse users. This leads to a ‘‘tragedy of
the commons’’, where individual players’ self interest causes the
system to collapse.

To reduce free-riders, the systems have to incorporate incentive
schemes to encourage cooperative behavior [27]. Some recent
works [15,28,1,19,7,14] propose reputation based trust systems,
in which each node is associated with a reputation established
based on the feedbacks from others that it has made transactions
with. The reputation information helps users to identify and
avoid malicious nodes. An alternative is virtual currency schemes

∗ Corresponding author.
E-mail addresses: zhanz@juniper.net (Z. Zhang), sgchen@cise.ufl.edu (S. Chen),

zmo@cise.ufl.edu (Z. Mo), mkyoon@kookmin.ac.kr (M. Yoon).

0743-7315/$ – see front matter© 2012 Elsevier Inc. All rights reserved.
doi:10.1016/j.jpdc.2012.08.003
[24,10,22,26], in which each node is associated with a certain
amount of money. Money is deducted from the consumers of a
service, and transferred to the providers of the service after each
transaction.

Both types of schemes rely on authentic measurement of
service quality and unforgeable reputation/money information.
Otherwise, selfish/malicious nodes may gain an advantage based
on false reports. For example, a consumer may falsely claim
to have not received service in order to pay less or defame
others. More seriously, malicious nodes may collude in cheating
in order to manipulate their information. Several algorithms
are proposed to address these problems. They either analyze
statistical characteristics of the nodes’ behavior patterns and other
nodes’ feedbacks [19,13], or remove the underlying incentive
for cheating [2]. However, in order to apply these algorithms,
the nodes’ history information must be managed by a central
authority, which is not available in typical peer-to-peer networks.

Some other works [12,9] find circular service patterns based on
the history information shared among trusted nodes. Each node in
a service circle has chance to be both a provider and a consumer.
However, the communication overhead for discovering service
circles is very high, which makes these schemes not scalable. In
addition, nodes belonging to different interest groups have little
chance to cooperate because service circles are unlike to form
among them.

http://dx.doi.org/10.1016/j.jpdc.2012.08.003
http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.jpdc.2012.08.003&domain=pdf
mailto:zhanz@juniper.net
mailto:sgchen@cise.ufl.edu
mailto:zmo@cise.ufl.edu
mailto:mkyoon@kookmin.ac.kr
http://dx.doi.org/10.1016/j.jpdc.2012.08.003


1742 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
Also related is the research on sybil attacks [8]. The notion
of sybilproofness is formalized in [4], which further proves
that there is no symmetric sybilproof reputation function and
provides the conditions for sybilproofness. A sybilproof transitive
trust protocol is proposed in [16] to enable the interaction
indirectly through a chain of credit or ‘‘trust’’ links. It assumes the
common knowledge of all participants and each user maintains
a trust account for every other user. This generic protocol is not
specifically designed to address the free-ride problem in peer-
to-peer networks. The sybilproof indirect reciprocity mechanism
in [11] forms a contribution graph among nodes through links
of contribution (e.g., one peer has served another). It models the
contribution transitivity as a routing problem. Through transitive
paths, it allows a node to contribute to a set of peers and transfer
these contributions through cycles in the graph, such that it can be
served by other peers. In this paper, we use a more generic model
where any past contribution by a consumer can be applied to the
service of any provider without the need of transitive paths.

We focus on how to design an effective incentive scheme suit-
able for P2P systems, which have no central authority to maintain
individual nodes’ history information. The major contributions are
listed below.

(1) We propose a new distributed incentive scheme, which
combines reputation and virtual money. It is able to strictly
limit the damage caused by malicious nodes and their
colluding groups. The following features distinguish our
scheme from others.
• The benefit that a node can get from the system is limited by its

contribution to the system.
• The members in a colluding group cannot increase their total

money or aggregate reputation by cooperation, regardless of the
group size.

• Malicious nodes can only attack others at the cost of their own
interest.

(2) We design a distributed authority infrastructure to manage
the nodes’ history information with low overhead and high
security.

(3) We design a key sharing protocol and a contract verification
protocol based on the threshold cryptography to implement
the proposed distributed incentive scheme.

The rest of the paper is organized as follows. Section 2 provides
the motivation for our work. Section 3 defines the system model.
Section 4 proposes a distributed authority infrastructure. Section 5
presents our distributed incentive scheme. Section 6 studies the
properties of the proposed scheme. Section 7 discusses several
important issues. Section 8 evaluates the scheme by simulations.
Section 9 draws the conclusion.

2. Motivation

2.1. Limitation of prior work

Any node in a peer-to-peer network is both a service provider
and a service consumer. It contributes to the system by working as
a provider, and benefits from the system as a consumer. A transac-
tion is the process of a provider offering a service to a consumer,
such as supplying a video file. The purpose of an incentive scheme
is to encourage the nodes to take the role of providers. How-
ever, neither reputation systems [15,28,1,19,7,14] nor virtual cur-
rency systems [24,10,22] can effectively prevent malicious nodes,
especially those in collusion, from manipulating their history in-
formation by using false service reports. Specifically, the existing
schemes have the following problems.
Reputation inflation: In the reputation schemes, malicious nodes
can work together to inflate each other’s reputation or to defame
innocent nodes, bywhich colluding nodes protect themselves from
the complaints by innocent nodes as these complaints may be
treated as noise by the systems.
Money depletion: In the virtual currency schemes, malicious nodes
may launch attacks to deplete other nodes’money andparalyze the
whole system.Without authentic reputation information, innocent
nodes are not able to proactively select benign partners and avoid
malicious ones.
Frequent complainer: In many incentive schemes, nodes will be
punished if they complain frequently, which prevents malicious
nodes from constantly defaming others at no cost. However, it also
discourages innocent nodes from reporting frequentmalicious acts
because otherwise they would become frequent complainers.
Punishment scale: In most existing schemes, the scale of punish-
ment is related to the service history of the transaction partici-
pants. Consequently, an innocent node may be subject to negative
discrimination attacks [5] launched by nodes with excellent
history.

2.2. Motivation

Punishing malicious nodes and limiting the damage caused by
a colluding group are indispensable requirements of an incentive
scheme that is able to deter bad behavior. There are two major
kinds of bad behavior. First, a provider may deceive a consumer
by providing less-than-promised service. Second, a consumer may
defame a provider by falsely claiming the service is poor.

Consider how these problems are dealt with in real life. Before a
transaction happens, the provider would want to know if the con-
sumer has enough money to pay for the service, and the consumer
would want to know the reputation of the provider. With such in-
formation, they can control the risk and decide whether to carry
out the transaction or not. After the transaction, if the provider
deceives, it will be sued by the consumer. Consequently, the ma-
licious provider will build up a bad reputation, which prevents it
from deceiving more consumers. Now consider when a consumer
intentionally defames a provider. It does so only after it can show
the evidence of a transaction, which requires it to pay money first.
Consequently, defaming comes with a cost. The ability of the ma-
licious consumer to defame others is limited by the amount of
money it has.

Inspired by the observation above, we propose a new incentive
scheme:MARCH, which is a combination of Money And Reputation
sCHemes.

The basic idea behind the scheme is simple: each node is
associated with two parameters: money and reputation. The
providers earn money (and also reputation) by serving others. The
consumers paymoney for the service. If a consumer does not think
the received service worth the money it has paid, it reports to
an authority, specifying the amount of money it believes it has
overpaid. If the authority can determine who is lying, the liar
is punished. Otherwise, the authority freezes the money claimed
to have been overpaid. The money will not be available to the
provider and will not be returned to the consumer either, which
eliminates any reason for the consumer to lie. If the provider is
guilty, the consumer has the revenge and the provider’s reputation
suffers. If the provider is innocent, the consumer does it at a
cost because after all it has paid the price of the transaction. In
addition, the falsely-penalized provider will not serve it any more.
The technical challenges are (1) how to establish a distributed
authority for managing the money and reputation, (2) how to
design the protocol of transaction that ensures authentic exchange
of money/reputation information and allows the unsatisfied
consumers to sue the providers, (3) how to analyze the properties
of such a system, and (4) how to evaluate the system.



Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752 1743
3. Systemmodel

The nodes in a P2P network fall in three categories: honest,
selfish, and malicious. Honest nodes follow the protocol exactly,
and they both provide and receive services. Selfish nodeswill break
the protocol only if they can benefit. Malicious nodes are willing
to compromise the system by breaking the protocol even when
they benefit nothing andmay be punished. Selfish/malicious nodes
may form colluding groups. There may exist a significant number
of selfish nodes, but the malicious nodes are likely to account for
a relatively small percentage of the whole network. At a certain
time, all self/malcious nodes that break the protocol are called
dishonest nodes. A node is said to be rejected from the system if
it has too little money and too poor a reputation such that no
honest providers/consumers will perform a transaction with it.
We study the incentive scheme in the context of DHT-based P2P
networks, e.g., [20,17,18,25]. We assume the routing protocol is
robust, ensuring the reliable delivery of messages in the network
[3]. We also assume the networks have the following properties.

• Random, non-selectable identifier: A node can not select its
identifier, which should be arbitrarily assigned by the system.
This requirement is essential to defending the Sybil attack [8].
One common approach is to hash a node’s IP address to derive
a random identifier for the node [20].

• Public/private key pair: Each node A in the network has a
public/private key pair, denoted as PA and SA respectively. A
trusted third party such as PKI is needed to issue public-key
certificates. The trusted third party is used off-line once per
node for certificate issuance, and it is not involved in any
transaction.

4. Authority infrastructure

4.1. Delegation

Who will keep track of the money/reputation information in
a P2P network? In the absence of a central authority for this
task, we design a distributed authority infrastructure. Each node
A is assigned a delegation, denoted as DA, which consists of k
nodes picked pseudo-randomly. For example, we can apply k hash
functions, i.e., {h1, h2, . . . , hk}, on the identifier of node A to derive
the identifiers of nodes inDA. If a derived identifier does not belong
to any node currently in the network, the ‘‘closest’’ node is selected.
For example, in [20], it will be the node clockwise after the derived
identifier on the ring. The j-th element in DA is denoted as DA(j).

DA keeps track of A’s money/reputation. Any anomaly in the
information stored at the delegation members may indicate an
attempt to forge data. The information is legitimate only if the
majority of the delegation members agree on it. Therefore, as
long as the majority of the delegation members are honest, the
information about node A cannot be forged. Such a delegation is
said to be trustworthy. On the other hand, if at least half of the
members are dishonest, then the delegation is untrustworthy.

The delegation members are appointed pseudo-randomly by
the system. A node cannot select its delegation members, but can
easily determine who are the members in its or any other node’s
delegation. To compromise a delegation, the malicious/selfish
nodes from a colluding group must constitute the majority of the
delegation. Unless the colluding group is very large, the probability
for this to happen is small because the identifiers of the colluding
nodes are randomly assigned by the system and the identifiers of
the delegation are also randomly assigned. Let m be the size of a
colluding group and n be the total number of nodes in the system.
The probability for t out of k nodes to be in the colluding group is

P

t, k,

m
n


=


k
t

m
n

t 
1 −

m
n

k−t
Fig. 1. When m∗
= 3000, the trustworthy probability for a delegation and 5-pair

delegation set are 99.975% and 99.815% respectively. Even if a delegation/k-pair
delegation set is not trustworthy, it may not be compromised because very unlikely
a single colluding group can control the majority of them.

where P

t, k, m

n


denotes the probability of t successes in k

trials in a Binomial distribution with the probability of success
in any trial being m

n . Let m∗ be the total number of distinct
nodes in all colluding groups, also including all malicious nodes.
The probability of a delegation being trustworthy is at least

k
2


t=0 P


t, k, m∗

n


. We plot the trustworthy probability with

respect to m∗ when k = 5 in Fig. 1 (the upper curve). In order to
control the overhead, we shall keep the value of k small.

4.2. k-pair trustworthy set

A transaction involves two delegations, one for the provider and
the other for the consumer. They have to cooperate in maintaining
the money and reputation information, and avoiding any fraud.
To facilitate the cooperation, we introduce a new structure, called
k-pair delegation set, consisting of k pairs of delegation members.
Suppose node A is the provider and node B is the consumer. The ith
pair is (DA(i),DB(i)), ∀i ∈ [1 . . . k], and the whole set is

{(DA(1),DB(1)), (DA(2),DB(2)), . . . , (DA(k),DB(k))}.

If both DA(i) and DB(i) are honest, the pair (DA(i),DB(i)) is
trustworthy. If the majority of the k pairs are trustworthy, the
whole set is trustworthy. It can be easily verified that the
probability for the whole set to be trustworthy is

k
2


t=0

P


t, k, 2

m∗

n
−


m∗

n

2


.

We plot the trustworthy probability for the whole set with respect
to m∗ in Fig. 1 (the lower curve).

5. MARCH: a distributed incentive scheme

5.1. Money and reputation

With the distributed authority designed in the previous section,
the following information about a node A is maintained by a
delegation of k nodes.
Total money (TMA): It is the total amount of money paid by others
to node A minus the total amount of money paid to others by A in
all previous transactions. The universal refilledmoney (Section 7.2)
will also be added to this variable.
Overpaidmoney (OMA): It is the total amount ofmoney overpaid by
consumers. A consumer pays money to node A before a service. If



1744 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
the service contract is not fulfilled by the transaction, the consumer
may file a complaint, specifying the amount of money that it has
overpaid. This amount cannot be greater than what the consumer
has paid.

When a new node joins the network, its total money and
overpaid money are initialized to zero. From TMA and OMA, we
define the following two quantities.
Available money (mA): It is the amount of money that node A can
use to buy services from others.

mA = TMA − OMA. (1)

Reputation (rA): It evaluates the quality of service (with respect to
the service contracts) that node A has provided.

rA =

TMA − OMA

TMA
if TMA ≠ 0

1 if TMA = 0.
(2)

For example, if TMA = 500 and OMA = 10, then A’s available
money is 490, i.e., mA = 490, and its reputation is 0.98, i.e., rA =

0.98.
To track every node’s available money and reputation, we

propose a set of protocols. Consider a transaction, in which Alice
(A) is the provider and Bob (B) is the consumer. The transaction
consists of five sequential phases.

• Phase one: contract negotiation.Alice and Bob negotiate a service
contract.

• Phase two: contract verification. Through the help of their
delegations, Alice and Bob verify the authenticity of the
information claimed in the contract.

• Phase three: money transfer. The amount of money specified in
the contract is transferred from Bob’s account in DB to Alice’s
account in DA.

• Phase four: contract execution. Alice offers the service to Bob
based on the contract specification.

• Phase five: prosecution. After the service, Bob provides feedback
reflecting the quality of service offered by Alice.

5.2. Phase one: contract negotiation

Suppose Bob has received a list of providers through the lookup
routine of the P2P network. Each provider specifies its reputation
and its price for the service. Bob wants to minimize his risk when
deciding which service provider he is going to use.

Let LA be the price specified by Alice and GB be the fair price
estimated by Bob himself. According to the definition, rA can
roughly be used as a lower bound on the probability of Alice being
honest. Intuitively, the probability for Bob to receive the service is
at least rA, and the probability for Bob to waste its money LA is at
most (1 − rA). We define the benefit for Bob to have a transaction
with Alice as GB × rA − LA × (1 − rA). We further normalize it as

R = rA −
LA
GB

(1 − rA). (3)

To avoid excessive risk, Bob takes Alice as a potential provider if R
is greater than a threshold value T . The use of threshold helps the
system reject dishonest providers with poor reputation. Among all
potential providers, Bob picks the onewith the highest normalized
benefit.

Both the value of LA and the value of rA are given by the provider
A. If LA is set too high, Rwill be small and the provider runs the risk
of not being picked by Bob. Providers with a poor reputation can
improve their R values by setting their prices low. In this way, they
can recover their reputation by selling services at lower prices. If
Alice lies about its rA, she will be caught in the next phase and be
punished.
Now suppose Bob chooses Alice as the best service provider.
They have to negotiate a service contract, denoted as c , in the
following format.

⟨A, B, S,Q , L, SeqA, SeqB, rA,mB⟩

where A, B, S,Q , and L specify the provider, the consumer, the
service type, the service quality, and the service price respectively.
SeqA and SeqB are the contract sequence numbers of Alice and Bob,
respectively. After the transaction, Alice and Bob each increase
their sequence numbers by 1. The values of rA and mB in the
contract will be verified by the delegations in the next phase.

As an example, if S = Storage,Q = 200G, and L = 5, the
contract means that Alice offers storage with size 200G to Bob, and
as return, the amount of money Bob must pay is 5.

Note that the Eq. (3) is a heuristic method recommended to end
user, and does not need to be system-wide. Each peer can modify
it based on its own experiences and expectation, and it does not
have impact on other nodes in the system.

5.3. Phase two: contract verification

After negotiating a contract, Alice and Bob should exchange
an authenticatable contract proof, so that Alice is able to activate
the money transfer procedure and Bob is granted the prosecution
rights. In addition, the information in the contract, e.g., rA and mB,
should be verified by the delegations of Alice and Bob.

We use the notation [x]y for the digital signature signed on
message x with key y and {x}y for the cipher text of message x
encrypted with key y. After Phase two, if the contract is verified
by the delegations, Alice should have the following contract proof

cA = [c]SB .

cA should not be produced by Bob, who may lie about mB. Instead,
Alice must receive cA from Bob’s delegation after the members
confirm the value of mB. Bob has k delegation members. Each of
them will produce a ‘‘piece’’ of cA and send it to Alice, who will
combine the ‘‘pieces’’ into a valid contract proof. Similarly, Bob
must receive the following contract proof from Alice’s delegation

cB = [c]SA .

The contract proofs will be used by Alice for money transfer and by
Bob for prosecution.

It is important to ensure that either both Alice and Bob, or none
of them, receive the contract proofs. Otherwise, dishonest nodes
may take advantage of it. It can be shown that ensuring both or
neither one receives her/his contract proof is impossible without
using a third party (the delegation of Alice or Bob in this case).

Key sharing protocol

A k-member delegation is not a centralized third party. One
possible approach for producing a contract proof by a delegation is
to use threshold cryptography [6]. A (k, t) threshold cryptography
scheme allows kmembers to share the responsibility of performing
a cryptographic operation, so that any subgroup of t members
can perform this operation successfully, whereas any subgroup
of less than t members can not. For digital signature, k shares of
the private key are distributed to the k members. Each member
generates a partial signature by using its share of the key. After a
combiner receives at least t partial signatures, it is able to compute
the signature, which is verifiable by the public key. An important
property is that less than t compromisedmembers cannot produce
a verifiable signature on a false message.

In our case, the problem is to produce cB (or cA) by the
k-member delegation of Alice (or Bob). We employ a


k,
 k

2


+ 1


threshold cryptography scheme to produce the contract proof.



Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752 1745
Alice distributes shares SA(i) of her private key SA to her delegation
members DA(i), which will produce partial signatures [c]SA(i) and
forward them to Bob for combination. As long as the delegation
of Alice is trustworthy, Bob will receive enough correct partial
signatures to compute a verifiable contract proof, while the
false partial signatures generated by the compromised delegation
members will not yield any verifiable proof.

When applying threshold cryptography, we have to defend
against dishonest nodes, which may intentionally distribute
incorrect secret shares. The incorrect partial signatures cannot
yield a valid signature. We propose a protocol for distributing the
key shares. Take Alice as an example. The protocol guarantees that
either all delegation members receive the correct shares, or they
all detect that Alice is dishonest.
Step 1: Alice sends a key share SA(i) to each delegation member
DA(i), encrypted by the member’s public key PDA(i). The messages
are shown below.

MSG1 Alice → DA(i) : [{SA(i)}PDA(i) ]SA , ∀DA(i) ∈ DA.

Step 2: After all members receive their key shares, they ne-
gotiate a common random number s (possibly by multi-party
Diffie–Hellman exchange with authentication). Each member
sends the number s as a challenge to Alice, signed by themember’s
private key and then encrypted by Alice’s public key.

MSG2 DA(i) → Alice : {[s]SDA(i)}PA , ∀DA(i) ∈ DA.

Step 3: Alice signs s with SA(i) and then with SA before sending it
back to DA(i).

MSG3 Alice → DA(i) : [[s]SA(i)]SA , ∀DA(i) ∈ DA.

Step 4: After authentication, if the received [s]SA(i) value matches
the locally computed one, DA(i) forwards the message to all other
members in DA.1

MSG4 DA(i) → DA(j) : [[s]SA(i)]SA , ∀DA(j) ∈ DA.

Otherwise, DA(i) files a certified complaint to other members.

MSG5 DA(i) → DA(j) : [‘‘SA(i) is invalid’’]SDA(i) , ∀DA(j) ∈ DA.

Step 5: DA(i) needs to collect [s]SA(j), ∀DA(j) ∈ DA, which are the
partial signatures on s. If it receives MSG4 [[s]SA(j)]SA from DA(j),
the value of [s]SA(j) is in the message. If it receives MSG5 from
DA(j), there are two possibilities: either Alice or DA(j) is dishonest.
To resolve this situation, DA(i) forwards the certified complaint
to Alice. If Alice challenges the complaint, she must disclose the
correct value of SA(j) to DA(i) in the following message (then DA(j)
can learn SA(j) from DA(i)).

MSG6 Alice → DA(i) : [{SA(j)}PDA(i) ]SA .

Learning SA(j) from this message, DA(i) can compute [s]SA(j).
After DA(i) has all k partial signatures on s, it can determine that
Alice is honest if any

 k
2


+ 1


partial signatures produce the

same signature [s]SA , which can be verified by Alice’s public key.
Otherwise, Alice must be dishonest.

Since the value of k is typically set small (e.g. 5) and the key
distribution is performed once per node, the overhead of the above
protocol is not significant.

A delegation member DA(i) can acquire another delegation
member DA(j)’s key share only when DA(j) dishonestly complains
about Alice and in response, Alice discloses DA(j)’s key share in an
effort to prove that she is honest whereasDA(j) lies. Note thatDA(i)
cannot deceive Alice to expose the private share of DA(j) because

1 Note that DA(i) knows s and learns SA(i) fromMSG1.
only DA(j) itself can generate its certified complaint. Thus, the total
number of distinct shares exposed by Alice is no larger than the
number of dishonest members. Our security model ensures the
validity ofMARCHonlywhenamajority of the delegationmembers
are honest. On the other hand, if Alice detects that her delegation
set is no longer trustworthy, she can request the trusted third
party for rekeying and identification reassignment to change her
delegation.

Theorem 1. The key sharing protocol ensures that all delegation
members will either obtain the correct shares of Alice’s private key or
detect Alice’s fraud.

Proof. First of all, any node cannot deny the messages it has sent
to others or falsely declare it has received some messages from
others, because all messages in the protocol are signed by the
corresponding nodes with their private keys.

Consider the first case that Alice is honest. All delegation
members can obtain the correct shares in Step 1. In the meantime,
only if a complaint is signed by a delegation member, Alice
will disclose the corresponding share to challenge the complaint.
If Alice is honest, only dishonest members may issue certified
complaints. Thus, the total number of distinct shares exposed by
Alice is no larger than the number of dishonest members.

Next consider the second case that Alice is dishonest. Alice may
try to deceive the delegation in two possible ways. One way is
that Alice does not send shares to some delegationmembers DA(i),
which can be easily detected by DA(i) when it receives MSG3 from
Alice orMSG4 fromother delegationmembers. Subsequently,DA(i)
will file a certified complaint (MSG6). If Alice discloses the correct
share (MSG7) to challenge the complaint,DA(i) can obtain its share
from other members; otherwise, honest members are certain that
Alice is dishonest, and will punish her.

The other possible way for Alice to deceive is to distribute
incorrect shares to some members DA(i) in MSG1. There are three
possible outcomes when MSG3 is processed by DA(i). (1) The
partial signature in MSG3 matches the locally computed one.
Subsequently, MSG3 is forwarded to all other members by DA(i).
Then all honest members can detect Alice’s fraud in Step 5
because, in addition to [s]SA(i), there are

⌊k⌋
2 other partial signatures

that cannot be used to compute the signature [s]SA . (2) The
partial signature in MSG3 does not match the locally computed
one. DA(i) will detect Alice’s fraud in Step 4 because of the
inconsistency between MSG1 and MSG3. It will forward two
inconsistent messages from Alice to all other members in MSG5.
Consequently, all members learn the inconsistency and punish
Alice. (3) Alice does not send MSG3 to DA(i) at all. This can be
handled in a way similar to the previous case that DA(i) does not
receiveMSG1 from Alice. �

Contract verification protocol
Both Alice and Bobmust register the contract with their delega-

tions so that the money transfer and the optional prosecution can
be performed through the delegations at later times. The delega-
tions must verify the information claimed by Alice and Bob in the
contract and generate the contract proofs that Alice and Bob need
in order to continue their transaction. We design a contract verifi-
cation protocol to implement the above requirements. The proto-
col consists of four steps, depicted in Fig. 2 (the left portion), and
the number of messages is O(k) for normal cases.

A procedure call is denoted as x.y(z), which means to invoke
procedure y at node x with parameter(s) z. If x is a remote node, a
signed message carrying z must be sent to x first.
Step 1: Alice sends the contract c and a digital signature c ′ to the
delegation DA for validation. c ′ may be a signature of the contract
concatenating the identifier of the receiver, i.e., c ′

= [c|DA(i)]SA .
Bob does the same thing.



1746 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
Fig. 2. Protocols for contract verification and exchange (left), money transfer (middle), and prosecution (right).
Alice.SendContract(Contract c)
1. for i = 1 to k do
2. compute Signature c ′

3. DA(i).ComputePartialProof(c , c ′)

In addition, we have an extra similar procedure as follows,
which is used by Alice’s delegation members to actively request
a contract with a specific sequence number s.

Alice.RetrieveContract(Seq s, Delegation d)
1. if exists c with c.SeqA = s
2. compute Signature c ′ for d
3. DA(i).ComputePartialProof(c , c ′)
4. else send error to d

Step 2: Then the delegation member DA(i) verifies the reputation
claimed by Alice in the contract (denoted as c.rA), save the contract
history inContractList and computes a partial signature (denoted as
psi) on the contract with its key share established by the previous
protocol.

DA(i).ComputePartialProof(Contract c , Signature c ′)
1. if rA ≥ c.rA then
2. insert(ContractList, c, c ′)
3. psi = [c]SA(i)
4. DB(i).DeliverPartialProof(c, psi)
5. else punish(A)

Line 1 verifies whether c.rA is over-claimed or not. Please
note that in order to avoid the punishment due to discrepancy
between rA (that Alice declared) and the value maintained by the
delegations, Alice should declare its rA conservatively. The insert
operation of Line 2 saves the contract c as well as c ′ in ContractList
for later use in Step 3. The signature c ′ will be used in a procedure
detect(). Line 3 produces a partial signature on the contract by
using SA(i). Line 4 sends the partial signature to the ith member
of DB. If c.rA is over-claimed, Alice will be punished at Line 5.

The delegation members in DB execute a similar procedure
except that the condition in Line 1 should bemB ≥ c.mB.
Step 3:WhenDB(i) receives the contract c and the partial signature
spi from DA(i), it executes the following procedure.

DB(i).DeliverPartialProof(Contract c , PartialSignature psi)
1. if not lookup(ContractList, c) then
2. Bob.RetrieveContract(c.SeqB, selfid)
3. if lookup(ContractList, c) then
4. Bob.ProcessPartialProof(psi)
5. else
6. detect()

If DB(i) cannot find c in its ContractList (Line 1), it actively
queries Bob to retrieve the contract c (Line 2). ThenDB(i) looks up c
in its ContractList again (Line 3). Note that in Bob.RetrieveContract
(c.SeqB, selfid), Bob may send a different contract from c with the
same sequence number SeqB, and in this case DB(i) will not be
able to find c in its ContractList. If c exists, Bob has announced
the exact same contract as Alice does, and DB(i) forwards the
partial signature psi to Bob. Otherwise, DB(i) believes either Alice
or Bob is dishonest, and it will will invoke the detect() procedure
to detect the special case of a malicious Bob forging the contract.
Once Bob is detected to be dishonest, the delegation can regard
him as a liar, and omit the detection procedure in the future
suspicious transactions, indicating the detection procedure needs
to be invoked only once for each dishonest node.

In the following, we will present the design details of the
detect() procedure, and then provide the correctness proof. The
delegation member DB(i), which has received two different
contracts from Bob and DA(i), must handle two possible cases. One
case is thatDB(i) has received a contractwith the sequence number
c.SeqB from Bob, and the other is thatDB(i) has never received such
a contract from Bob. In the former case, DB(i) stops the verification
procedure immediately. Then it tries to detect whether Bob is
lying or not by sending Bob’s signature c ′ to all other delegation
members in DB. If a member finds that c ′ is different from Bob’s
signature that it receives directly from Bob, it sends its version
of Bob’s signature to all other members. Otherwise, the member
discards the signature from DB(i). In the latter case, DB(i) sends
a special request, denoted REQ , with the sequence number c.SeqB
to all other members in DB. If a member has already received the
contract from Bob with the specified sequence number, it sends
the corresponding signature c ′ to all othermembers after receiving
REQ . Otherwise, the member discards the request REQ . In both
cases, any member that has received two different versions of
Bob’s signature c ′ punishes Bob and refuses to participate in the
rest of transaction for the contract. In addition, for the latter case,
DB(i) refuses to proceed with the verification if no replies are
received from other members, or punishes Bob but still continues
the verification procedure using the the contract retrieved from
other members if all of the signatures received are the same.

We show that, having received conflicted contracts, if a
delegation member simply stops the verification procedure
without invoking the detect() routine, Bobwill be able to break the
protocol. Suppose k is equal to 3, DB(1) is a friend of Bob, and both
DB(2) and DB(3) are honest. Bob can break the protocol by sending
DB(2) a correct contract while sending DB(3) a forged contract
(for instance, with lower price c.L) or not sending the contract
to DB(3) at all. Because DB(1) is Bob’s friend, it may forward
the partial signature psA(1) from DA(1) to Bob, but not send the
partial signature psB(1) to DA(1). Then, Bob can collect two partial
signatures psA(1) and psA(2) because DB(2) cannot detect Bob’s
fraud and will forward the partial signature psA(2) to Bob, while
Alice can only get one signature psB(2) from DA(2). Therefore, Bob
can compute the contract proof signed by Alice, while Alice cannot
compute the proof signed by Bob. In our protocol, this problem is
addressed by DB(3) invoking the detect() routine after receiving
the contract fromDA(3). The detect() routine guarantees that either
DB(2) detects Bob’s fraud orDB(1) forwards the partial signature of
the contract retrieved from DB(2).
Step 4: After Alice (Bob) receives t or more correct partial
signatures, she (he) can compute the contract proof cA(cB), which
can be verified by using Bob’s (Alice’s) public key.



Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752 1747
Theorem 2. If k-pair delegation set of Alice and Bob is trustworthy,
the contract verification protocol ensures that both Alice and Bob will
receive the correct proofs, or neither one can receive a valid contract
proof and the transaction is aborted.

Proof. First, we prove that neither Alice nor Bob can deceive
the authority. This is a symmetric protocol, so without losing
generality we only consider Bob. Below we analyze the four
possible ways that Bob may use to deceive the authority.

1. Bob over-claims its available money mB. In this case, all honest
members in DB can detect Bob’s fraud in Step 1, and punish
Bob. In the meantime, these members will neither forward the
partial signature [c]SB(i) to DA(i) nor deliver [c]SA(i) to Bob, and
consequently the transaction will be aborted.

2. Bob modifies the contract specification, for example, by
lowering the transaction price c.L in order to pay less for the
transaction. He sends the same modified contract to DB. In Step
3, all members in DB learn that the contract presented by Bob is
different from that presented by Alice, and they will invoke the
detect() procedure. In this case, all honest delegation members
will stop contract verification immediately, but they will not
punish Bob, because there is only one contract signature from
Bob and either Alice or Bob may be lying.

3. Bob sends different modified contracts to the delegation
members. Multiple delegation members will detect that the
contracts from Bob and Alice are different, and they will invoke
the detect() routine. At the end of the detection procedure, all
members will learn that there are different contract signatures
coming from Bob. Consequently, they will all punish Bob and
abort the transaction.

4. Bob does not send the contracts to some (or all) delegation
members. In this case, a member DB(i) that does not receive
the contract from Bob will send the request REQ to all other
members. If no other member receives the contract from Bob,
DB(i) will receive no reply back. It will refuse to continue the
verification process, but will not punish Bob because either
Alice or Bob can be lying. Similarly, all other members will also
stop the verification. Now if some othermembers have received
the contracts fromBob,DB(i)will receive Bob’s signatures in the
replies from them, and it will continue the verification process
using the contracts retrieved from other members. Therefore,
no one stops the verification process.

In summary, we can see that all members in the trustworthy
set will take the same action (continuing or stopping the contract
verification process) in all four possible cases.

Next, we prove that dishonest members cannot deceive honest
members in the trustworthy sets to stop the verification process
if both Alice and Bob are honest. As we have discussed above,
only in two cases will an honest delegation member, DA(i) or
DB(i) stop the contract verification. One case is that the contract
signatures (both Alice’s and Bob’s) received by the member in
the detect() routine are not identical. The other case is that the
member receives different contracts from Alice and Bob in Step 3.
The former case happens only when Alice/Bob sign and distribute
different contracts to delegation members dishonestly, while the
latter case happens when both DA(i) and DB(i) are untrustworthy
or when either Alice or Bob is dishonest. Therefore, if both Alice
and Bob are honest, dishonest members cannot interrupt the
verification process executed by othermembers in the trustworthy
sets.

By Theorem 1 and the discussions above, if Alice and Bob
are honest, both of them are able to collect no less than ⌊k⌋+1

2
correct partial signatures, and compute the valid contract proofs.
Otherwise, if either Alice or Bob is dishonest, the transaction is
aborted. �
5.4. Phases three and four: money transfer and contract execution

Before providing the service, Alice requests its delegation to
transfer money, which is shown in the middle portion of Fig. 2.
Upon receiving amoney transfer request fromAlice, the delegation
member DA(i) invokes the following procedure.

DA(i).TransferMoneyProvider(Contracts c , ContractProof cA)
1. if valid(c , cA) and DB(i).TransferMoneyConsumer(c, cA)
2. TMA = TMA + c.L
3. else verify()

In Line 1, both DA(i) and DB(i) need to validate the contract
by using Bob’s public key, which can be queried from Bob if it is
not locally available. After validation,DA(i) increases Alice’s earned
money in Line 2.

Note that DB(i) may be malicious. If DA(i) cannot get a positive
answer from DB(i), it must verify the validity of the contract
further (Line 3), which can be designed as follows. DA(i) asks other
members in DA. If the majority of DA have received a positive
answer from DB, the contract is considered to be valid (DB(i) is
malicious). Otherwise, the contract is considered to be invalid and
Alice is punished.

When DB(i) receives a money transfer request from DA(i), it
performs the following operations.

DB(i).TransferMoneyConsumer(Contract c , ContractProof cA)
1. if valid(c, cA) then
2. if mB > c.L then
3. TMB = TMB − c.L
4. return true;
5. else
6. punish(B)
7. return false;
8. else return false;

First, if the contract is valid (Line 1) and Bob has enoughmoney
to pay the service (Line 2), then Bob’s spentmoney is increased and
a positive answer is returned to DA(i) (Lines 3 and 4). Second, it is
possible that the contract is valid but Bob does not have enough
money. This happens when Alice and Bob are colluding nodes and
Alice gets the contract proof cA directly from Bob instead through
her delegation. In such a case, Bob is punished and a negative
answer is returned (Lines 6 and 7). Third, if the contract is invalid,
a negative answer is returned (Line 8).

DA(i) andDB(i), ∀i ∈ [1 . . . k], perform amoney transfer atmost
once for each contract. They keep track of the sequence numbers
(SeqA and SeqB) of the last contract for which the money has been
transferred. All new contracts have larger sequence numbers.

5.5. Phase five: prosecution

After Bob receives the service fromAlice, if the quality of service
specified in the contract is not met, Bob may issue a prosecution
request to Alice’s delegation, as illustrated in the right portion of
Fig. 2. The request specifies the amount of money f that Bob thinks
he has overpaid.

Upon receiving a prosecution request from Bob, if DA cannot
evaluate the service quality, it punishes both Alice and Bob by
freezing the money overpaid by Bob. The procedure is given as
follows.

DA(i).Prosecution(Contract c , ContractProof cB, Overpaid f )
1. if valid(c, cB) and f ≤ c.L then
2. OMA = OMA + f
3. notify(A)



1748 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
First DA(i) validates the prosecution request by checking if the
contract proof is authentic (Line 1). If the contract is valid, it
increases Alice’s overpaid money by f (Line 2). Finally, it notifies
Alice so that Alice is able to determine whether to sell service to
Bob in the future.

Before wrapping up this section, we want to discuss how
Alice/Bob should be punished if (s)he is detected to be malicious
during the five phases in the transaction. The general rule
of thumb is that if a delegation member finds Alice/Bob is
malicious, it should punish Alice/Bob more severely than the
case Alice/Bob is prosecuted against, e.g., deducting the double
amount of the money specified in the contract, which in turn
results in less available money and worse reputation. Note
that a honest delegation member will only punish malicious
nodes. Although there may exist dishonest delegation members,
the wrong punishment intentionally performed by them cannot
impact the real history of Alice/Bob as long as the majority of the
delegation set are honest.

6. System properties and defense against various attacks

6.1. System properties

We study the properties of MARCH, which solves or alleviates
the problems in the previous approaches.

First, according to themoney transfer procedures in Section 5.4,
transactions among members in the same colluding group cannot
increase the total amount of availablemoney of the group.Wehave
the following property, which indicates that the malicious nodes
cannot benefit by cooperation.

Property 1. Regardless of its size, a colluding group cannot increase
its members’ money or reputation by cooperation without decreasing
other members’ money and/or reputation.

Second, unlike some other schemes [5,19,23,21], MARCH does
not maintain the history of any consumer’s complaints, and does
not punish frequent complainers. Thus, we have the following
property.

Property 2. If a consumer is deceived, it is not restricted by the system
in any way from seeking prosecution against the malicious providers.

Third, the overpaid money is not returned to the complaining
consumer, which eliminates any reason for the consumer to lie
if the consumer is not malicious. If the consumer is malicious
and intends to defame the providers, it has to pay the price for
the transactions before committing any harm, which serves as
an automatic punishment. Consequently, its ability of defaming is
limited by the money it has, which cannot be increased artificially
by collusion, according to Property 1.

In addition, by Property 2, a deceived consumer can seek
revenge with no restriction, which means a malicious provider
cannot benefit from its action. We have the following properties.

Property 3. A malicious provider cannot benefit by deceiving the
consumers, and a malicious consumer will be automatically punished
for defaming the providers.

Property 4. The maximum amount of loss for an innocent provider
or consumer in a transaction with a malicious node is limited by the
price specified in the contract.

Property 3 removes financial incentives to cheat. A provider
can make money only by serving others; a consumer will not be
refunded for cheating. Property 4makes sure that an innocent node
will not be subject to negative discrimination attacks [5], in which
nodes with excellent reputation can severely damage other nodes.

In summary, the malicious nodes cannot increase their power
(in terms of available money) by cooperation, and they can
only attack others at the cost of their own interests, i.e., money
and/or reputation. Consequently, the total damage caused by the
malicious nodes is strictly limited. They will eventually be rejected
from the system due to poor reputation or be enforced to serve
others for better reputation in order to stay in the system.

6.2. Defending against various attacks

In the following, we consider four different types of attacks
launched by a colluding group [5].
Unfairly high ratings: The members of a colluding group cooperate
to artificially inflate each other’s reputation by false reports, so
that they can attack innocent nodes more effectively. In MARCH,
a colluding group can inflate the reputation of some members
only by moving the available money from other members to them.
According to Property 1, the total money in the group cannot be
inflated through cooperation. Therefore, although some members’
reputation can be made better, other members’ reputation will
become worse, making them ineffective in attacks.
Unfairly low ratings: Providers collude with consumers to ‘‘bad-
mouth’’ other providers that they want to drive out of the market.
Because MARCH requires all consumers to pay money for their
transactions before they can defame the providers, the malicious
consumers lose their money (and reputation) for ‘‘bad-mouthing’’,
which in turn makes it harder for them to stay in the system.
Negative discrimination: A provider only discriminates a few
specific consumers by offering services with much lowered
quality than what the contract specifies. It hopes to earn some
‘‘extra’’ money without damaging its reputation since it serves
most consumers honestly. In MARCH, a provider cannot make
such ‘‘extra’’ money because of the prosecution mechanism and
Properties 2 and 3.
Positive discrimination: A provider gives an exceptionally good
service to a few consumers with high reputation and an average
service to the remaining consumers. The strategy will work in
an incentive scheme where a consumer’s ability of affecting a
provider’s reputation is highly related to the consumer’s own
reputation, and vice versa. MARCH does not have this problem. The
provider’s reputation changes after a transaction is determined by
how much money it receives for the service, not by the reputation
of the consumer.

7. Discussion

In this section, we discuss other important issues on imple-
menting MARCH.

7.1. Rewarding delegation members

The system should offer incentive for the delegation members
to perform their tasks. A simple approach is for the provider and
the consumer of a transaction to reward their delegationmembers
with a certain amount of money, which should be less than the
price of the transaction. More specifically, after the transaction,
the provider A signs an incentive payment certificate and sends
the certificate to every delegation member DA(i), which reduces
TMA by a certain amount and then forwards the certificate to its
delegationmembers,where the certificate is authenticated and the
money is deposited. The consumer pays its delegation members in
a similar way. If a delegation member in DA refuses to serve, node
A can increase k to bring new members into DA.



Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752 1749
7.2. Money refilling

Because the overpaid money will be frozen forever, the total
amount of availablemoney in thewhole systemmay decrease over
the time. As a result, the system may enter into deflation and lack
sufficient money for the providers and the consumers to engage in
transactions. This problem can be addressed bymoney refilling. The
delegationmembers of a node Awill replenish the totalmoney TMA
of the node at a slow, steady rate. In this way, a minimal amount
of service is provided to all consumers, even the free-riders, at all
time,whichwebelieve is reasonable as this is the commonpractice
of today’s peer-to-peer systems such as BitTorrent. For additional
service, a consumer has to contribute to the P2P network by also
serving as a provider. At first sight, money refilling seems to allow
a botnet to take advantage of the scheme by funneling immense
amounts ofmoney into a given peer and extract resources from the
system. On the one hand, the overall resource that the botnet can
extract is still restricted by it’s ownmembers’ total money, and the
botnet cannot exaggerate its power by cooperation to defect the
system by Property 1. On the other hand, eventually a few nodes
in the botnet have to harvest the very small money from each bot
member in a relatively short time. Note that all transactions are
performed through delegations, and the delegations of those few
nodes will observe the dramatic increment of available money and
reputation through a large number of transactions in a very short
period. Such anomaly can be exposed to other nodes and taken into
account during the contract negotiation phase to avoid potential
attacks.

7.3. System dynamics and overhead

In a P2P network, nodesmay join/leave the network at any time.
When a node X leaves the network, its DHT tablewill be taken over
by the closest neighbor X ′. In MARCH, suppose X is a delegation
member of A. After X leaves the network, X ′ will become a new
member in A’s delegation. In order to deal with abrupt departure,
X ′ should cache the information kept at X , or it can learn the
information from other delegation members after X leaves.

MARCH is designed generally for all DHTnetworks. The specifics
of a particular DHT network may present opportunity to improve
the approach for selecting the delegation members in Section 4.1.
Take Chord [20] as an example. We can select a subset of the
log n neighbors of node A as the delegation DA. In this way, the
maintenance of the delegation is free as Chord already maintains
the neighbor set.

The communication overhead of a transaction (excluding the
actual service) consists of O(k) control messages, which are sent
from the provider (consumer) via k pairs of delegation members
to the consumer (provider) throughput direct TCP connections.
This overhead is quite small comparing to the typical services such
as downloading video files of many gigabytes or sharing storage
for months. More importantly, the overhead does not increase
with the network size, which makes MARCH a scalable solution,
comparing with other schemes [12,9] whose overhead increases
with the network size.

7.4. Key compromise and revocation

MARCH can rely on a trusted third party to handle key
revocation/compromise issues. We stress that the trusted third
party is only responsible for producing key certificates. It is not
involved in the MARCH operations, which are fully decentralized.
When the trusted third party issues a certificate to a node,
e.g., Alice, it includes an expiration time determined by Alice.
The key expiration and compromise are handled by Alice
herself. When Alice finds that her key is expiring or potentially
compromised, she actively requests the trusted third party for
rekeying (or additionally, identification reassignment to change
her delegation). Specifically, Alice initiates the process by sending
the request to the trusted third party for a new key certificate in
a secure channel protected by a separate key. After verification,
the trusted third party requests all history information fromAlice’s
delegation, and calculates TMA and OMA based on the majority
rule if there are discrepancies. All the information will be included
in Alice’s new certificate, so that the new delegation of Alice can
reconstruct Alice’s history information. If an attacker compromises
Alice’s key, but stays silent and does not misbehave in any way,
Alice may never be able to detect such a compromise. However,
after rekeying, Alice will use a new key, and even a new delegation.

7.5. Light-weighed MARCH

We have discussed how to implement the trustworthy delega-
tion to support the proposed incentive scheme assuming that there
is no trustful nodes except for the trusted third party and the par-
ticipants involved in a transaction do not trust each other. In re-
ality, the restriction can be relaxed and the process can be further
simplified. For example, if Alice and Bob aremutually trusted,most
phases in a transaction can be skipped. In this case, Alice and Bob
exchange the contract signatures directly, and the delegation set
will only be involved in the money transfer phase. Over the long
term, we can expect that nodes will have more and more trusted
friends, and thus the transactions among themwill take much less
overhead.

We also want to point out that MARCH does not have any
overhead on free service provided by altruistic members. In other
words,whetherMARCHshould be applied to a transactiondepends
on the participants involved.

8. Simulation

In our simulations, the dishonest nodes fall into three categories
with equal probability.
Category one: These nodes never offer services to others after
receiving money, and always defame the providers after receiving
services.
Category two: When these nodes find that they may be rejected
from the system, they behave honestly. Otherwise, they behave in
the same way as the nodes in category one.
Category three: When these nodes find that they may be rejected
from the system, they behave honestly. Otherwise, they cheat
their transaction partners with a probability taken from [0.5, 1]
uniformly at random.

If not explicitly specified otherwise, the system parameters are
set as follows. The number of nodes is 100,000 and k is 5. The
average number of dishonest nodes is 1000. Initially, the total
money for a node is 500, and the overpaid money is 0. The service
price G estimated by the consumers is 10. The threshold T is 0.9.
To satisfy the threshold requirement, the maximum selling price
for a provider is denoted as max (max is the maximum value of
L that keeps R above the threshold, calculated based on Eq. (3).
If max is negative, then the node can no longer be a provider.
If a dishonest node in Category two or three finds that its max
value may become negative after additional malicious acts, it will
behave honestly). The actual selling price is a random number
taken uniformly from (0,max]. If a node can neither be a provider
(due to poor reputation), nor be a consumer (due to little money),
it is said to be rejected from the system.



1750 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
Fig. 3. Trustworthiness of delegation.

Fig. 4. Trustworthiness of k-pair delegation set.

If one participant in a transaction tries to deceive the other
one, the transaction is called a failed transaction. We define ‘‘failed
transaction ratio’’ as the number of failed transactions divided by
the total number of transactions, and ‘‘overpaid money ratio’’ as
the total amount of overpaid money divided by the total amount
of money paid in the transactions. These metrics are used to assess
the overall damage caused by dishonest nodes.

8.1. Effectiveness of authority

In the first set of simulations, we study the trustworthiness
of the delegations and the k-pair delegation sets. Fig. 3 shows
the number of untrustworthy delegations with respect to the
number of dishonest nodes for k = 3, 5, and 7. Recall that a
delegation is untrustworthy if at least half of its members are
dishonest. Out of 100,000 delegations, only a few number of
them are untrustworthy. For k = 5, the number of nodes with
untrustworthy delegations is just 23 even when there are 3000
dishonest nodes. Fig. 4 shows the probability for an arbitrary k-pair
delegation set to be untrustworthy (Section 4.2). The 5-pair
delegation set is trustworthy with a probability larger than 99.8%
even when there are 3000 dishonest nodes. Note that when a
delegation is untrustworthy, the dishonest members may not
belong to the same colluding group. Without cooperation, the
damage they can cause will be smaller.

8.2. Effectiveness of MARCH

The second set of simulations study the effectiveness of our
incentive scheme. Fig. 5 presents how the number of rejected
nodes changeswith the average number of transactions performed
Fig. 5. Most of malicious nodes are rejected within the first 50 transactions.

Fig. 6. The failed transaction ratio and the overpaid money ratio drop quickly to
small percentages within the first 100 transactions.

per node, which can be used as the logical time as the simulation
progresses. Recall that the default number of dishonest nodes is
1000. The figure shows that most dishonest nodes are rejected
from the system within 50 transactions per node. Because of
money refilling, some rejected nodes will recover after enough
money is refilled, but they will be rejected again after performing
malicious transactions. No honest nodes are rejected from the
system during the simulation.

Fig. 6 shows that the failed transaction ratio drops quickly
from 1.4% to 0.3% within the first 100 transactions per node, and
the overpaid money ratio drops from 1.4% to 0.2% in the same
period. As the time progresses, these ratios become even more
insignificant. Note that the overpaid money ratio is smaller than
the failed transaction ratio. This is because the dishonest providers
have to lower their prices in order to compete with honest
providers, which in turn lowers their ability to cause significant
damage. Ironically, if a dishonest node with poor reputation wants
to stay in the system, not only does it have to behave honestly to
gain reputation, but also it has to do so with lower price in order to
get consumers, which ‘‘repairs’’ the damage it does to the system
previously.

Next, we study how the number of dishonest nodes affects
the system performance. Fig. 7 shows the overpaid money ratio
after 250 transactions per node. We find that the ratio increases
linearly with the number of dishonest nodes. However, even when
there are 3000 dishonest nodes, the overpaid money ratio remains
very small, just 0.15%. Fig. 8 shows that the more the number of
dishonest nodes, the more they are rejected.

Last, we study the impact of the threshold on the system
performance. The threshold is used by a consumer to select the
potential providers (Section 5.2). Fig. 9 shows that the overpaid



Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752 1751
Fig. 7. The overpaid money ratio (measured after 250 transactions) increases
linearly with the number of dishonest nodes.

Fig. 8. The number of rejected dishonest nodes (measured after 250 transactions)
increases linearly to the number of dishonest nodes.

Fig. 9. The overpaid money ratio with respect to the threshold.

money ratio decreases linearly with the threshold value, which
means the system performs better with a larger threshold. Fig. 10
shows that the number of rejected dishonest nodes is largely
insensitive to the threshold value. However, when the threshold
is too low, some honest nodes may be rejected by the system
because a smaller threshold allows the dishonest nodes to domore
damage on the honest nodes, which may even cause some honest
nodes to be rejected from the system due to defamed reputation.
The numbers in the above two figures are measured after 250
transactions per node.

9. Conclusion

We propose a distributed incentive scheme (called MARCH)
for P2P networks. The scheme uses a distributed authority
Fig. 10. The number of rejected nodes with respect to the threshold.

infrastructure with delegations, instead of a centralized server,
to maintain the money/reputation information of the nodes.
We use a five-phase transaction framework to incorporate both
virtual money and reputation into our scheme, which solves
a number of problems that the previous schemes have. We
also present a key sharing protocol and a contract verification
protocol to produce the contract proofs that are authorized by the
delegations of the provider and the consumer of a transaction. We
analyze the system properties and use simulations to evaluate the
system performance. The results demonstrate that MARCH has the
potential to solve the free-riders problem in today’s P2P networks.

References

[1] T. Bocek, M. Shann, D. Hausheer, B. Stiller, Game theoretical analysis of
incentives for large-scale, fully decentralized collaboration networks, in: Proc.
of IEEE IPDPS, April 2008.

[2] L. Buttyn, Removing the financial incentive to cheat inmicropayment schemes,
IEE Electronics Letters 36 (2) (2002) 132–133.

[3] M. Castro, P. Drushel, A. Ganesh, A. Rowstron, D. Wallach, Secure routing for
structured peer-to-peer overlay networks, in: Proc. of OSDI’02, 2002.

[4] A. Cheng, E. Friedman, Sybilproof reputation mechanisms, in: Proc of the ACM
SIGCOMM workshop on Economics of peer-to-peer systems, P2PECON ’05,
2005.

[5] C. Dellarocas, Immunizing online reputation reporting systems against unfair
ratings and discriminatory behavior, in: Proc. of EC’00: the 2nd ACM
conference on Electronic commerce, 2000.

[6] Y.G. Desmedt, Y. Frankel, Threshold cryptosystems, in: Proc. of CRYPTO’89,
1989, pp. 307–315.

[7] P. Dewan, P. Dasgupta, Securing reputation data in peer-to-peer networks, in:
Proc. of Parallel and Distributed Computing and Systems, 2004.

[8] J.R. Douceur, The sybil attack, in: Proc. of IPTPS’01: Revised Papers from the
First International Workshop on Peer-to-Peer Systems, 2002, pp. 251–260.

[9] M. Feldman, K. Lai, I. Stoica, J. Chuang, Robust incentive techniques for peer-
to-peer networks, in: ACM Electronic Commerce, 2004.

[10] M. Jakobsson, J. Hubaux, L. Buttyan, A micropayment scheme encouraging
collaboration in multi-hop cellular networks, in: Proc. of Financial Crypto’03,
2003.

[11] R. Landa, D. Griffin, R. Clegg, E. Mykoniati, M. Rio, A sybilproof indirect
reciprocity mechanism for peer-to-peer networks, in: Proc. of INFOCOM’09,
2009.

[12] S. Lee, R. Sherwood, B. Bhattacharjee, Cooperative peer groups in nice, in: Proc.
of INFOCOM’03, Apr 2003.

[13] J.C.L.T.B. Ma, Sam C.M. Lee, D.K. Yau, A game theoretic approach to provide
incentive and service differentiation in p2p networks, in: Proc. of ACM
SIGMETRICS/PERFORMANCE, June 2004.

[14] S. Marti, H. Garcia-Molina, Identity crisis: anonymity vs. reputation in p2p
systems, in: Third IEEE International Conference on Peer-to-Peer Computing,
2003.

[15] M.Meulpolder, J. Pouwelse, D. Epema, H. Sips, Limitations on the effectiveness
of decentralized incentive mechanisms, in: Proc. of IEEE ICC, June 2011.

[16] R.S. Paul Resnick, Sybilproof transitive trust protocols, in: ACM Conference on
Electronic Commerce, 2009.

[17] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content
addressable network, in: Proc. of ACM SIGCOMM’01, August 2001.

[18] A. Rowstron, P. Druschel, Pastry: scalable, decentralized object location, and
routing for large-scale peer-to-peer systems, in: Proc. of Middleware’01,
November 2001.



1752 Z. Zhang et al. / J. Parallel Distrib. Comput. 72 (2012) 1741–1752
[19] M. Srivatsa, L. Xiong, L. Liu, Trustguard: countering vulnerabilities in
reputation management for decentralized networks, in: Proc. of WWW’05,
May 2005.

[20] I. Stoica, R. Morris, D. Karger, F. Kaashoek, H. Balakrishnan, Chord: a scalable
peer-to-peer lookup service for internet applications, in: Proc. of ACM
SIGCOMM’01, August 2001, pp. 149–160.

[21] M. Venkatraman, B. Yu, M.P. Singh, Trust and reputation management in a
small-world network, in: Proc. of ICMAS’00, 2000.

[22] V. Vishnumurthy, S. Chandrakumar, E.G. Sirer, Karma: a secure economic
framework for p2p resource sharing, in: Proc. of the Workshop on the
Economics of Peer-to-Peer Systems, June 2003.

[23] Y. Wang, J. Vassileva, Bayesian network trust model in peer-to-peer networks,
in: Proc. of AP2PC’03, 2003.

[24] C. Wang, H. Wang, Y. Lin, S. Chen, A lightweight currency-based p2p vod
incentive mechanism, in: Proc. of IEEE International Joint Conference on
Computational Science and Optimization, CSO, 2010.

[25] Z. Zhang, S. Chen, Y. Ling, R. Chow, Capacity-aware multicast algorithms
on heterogeneous overlay networks, IEEE Transactions on Parallel and
Distributed Systems 17 (2) (2006) 135–147. Special issue on algorithm design
and scheduling techniques (realistic platform models).

[26] Y. Zhang, W. Lou, Y. Fang, Sip: a secure incentive protocol against selfishness
in mobile ad hoc networks, in: Proc. of WCNC’04, March 2004.

[27] B.Q. Zhao, J.C.S. Lui, D.-M. Chiu, A mathematical framework for analyzing
adaptive incentive protocols in p2p networks, IEEE/ACM Transactions on
Networking 20 (2) (2012) 367–380.

[28] H. Zhao, X. Yang, X. Li, Wim: A wage-based incentive mechanism for
reinforcing truthful feedbacks in reputation systems, in: Proc. of IEEE
Globecom, December 2010.

Zhan Zhang is software engineer in Juniper Networks. He
received his M.S. degree in computer science from Fudan
University of China in 2003, and Ph.D degree in Computer
& Information Science & Engineering from University of
Florida in 2007. His research interests include overlay
networks, wireless sensor networks and network security.
Shigang Chen is an associate professor in the Department
of Computer and Information Science and Engineering
at University of Florida. He received his B.S. degree
in computer science from University of Science and
Technology of China in 1993. He received M.S. and Ph.D.
degrees in computer science from University of Illinois at
Urbana-Champaign in 1996 and 1999, respectively. After
graduation, he had worked with Cisco Systems for three
years before joining University of Florida in 2002. His
research interests include network security and wireless
networks. He received the IEEE Communications Society

Best Tutorial Paper Award in 1999 and NSF CAREER Award in 2007. He was a guest
editor for ACM/Baltzer Journal ofWireless Networks (WINET) and IEEE Transactions
on Vehicle Technologies. He served as a TPC co-chair for the Computer and Network
Security Symposiumof IEEE IWCCC 2006, a vice TPC chair for IEEEMASS 2005, a vice
general chair for QShine 2005, a TPC co-chair for QShine 2004, and a TPC member
for many conferences including IEEE ICNP, IEEE INFOCOM, IEEE ICC, IEEE Globecom,
etc.

Zhen Mo is a current Ph.D. student in the Department
of Computer and Information Science Engineering at
University of Florida. He received his B.E degree in
Information Security Engineering from Shanghai Jiao Tong
University in 2007. Then he received his M.E degree in
Theory and New Technology of Electrical Engineering
from Shanghai Jiao Tong University in 2010. His research
interests include network security and cloud computing
security.

MyungKeun Yoon is an assistant professor in the De-
partment of Computer Engineering at KookminUniversity,
Korea. He received the B.S. and M.S. degrees in Computer
Science from Yonsei University, Korea, in 1996 and 1998,
respectively. He received the Ph.D. degree in computer
engineering from the University of Florida in 2008. He
worked for the Korea Financial Telecommunications and
Clearings Institute from 1998 to 2010. His research inter-
ests include computer & network security, network algo-
rithm, and mobile networks.


	An efficient incentive scheme with a distributed authority infrastructure in peer-to-peer networks
	Introduction
	Motivation
	Limitation of prior work
	Motivation

	System model
	Authority infrastructure
	Delegation
	 k -pair trustworthy set

	MARCH: a distributed incentive scheme
	Money and reputation
	Phase one: contract negotiation
	Phase two: contract verification
	Phases three and four: money transfer and contract execution
	Phase five: prosecution

	System properties and defense against various attacks
	System properties
	Defending against various attacks

	Discussion
	Rewarding delegation members
	Money refilling
	System dynamics and overhead
	Key compromise and revocation
	Light-weighed MARCH

	Simulation
	Effectiveness of authority
	Effectiveness of MARCH

	Conclusion
	References


