
Capacity-Aware Multicast Algorithms on
Heterogeneous Overlay Networks

Zhan Zhang, Shigang Chen, Yibei Ling, Member, IEEE, and Randy Chow, Member, IEEE

Abstract—The global deployment of IP multicast has been slow due to the difficulties related to heterogeneity, scalability,

manageability, and lack of a robust interdomain multicast routing protocol. Application-level multicast becomes a promising alternative.

Many overlay multicast systems have been proposed in recent years. However, they are insufficient in supporting applications that

require any-source multicast with varied host capacities and dynamic membership. In this paper, we propose two capacity-aware

multicast systems that focus on host heterogeneity, any source multicast, dynamic membership, and scalability. We extend Chord and

Koorde to be capacity-aware. We then embed implicit degree-varying multicast trees on top of the overlay network and develop

multicast routines that automatically follow the trees to disseminate multicast messages. The implicit trees are well balanced with the

workload evenly spread across the network. We rigorously analyze the expected performance of multisource capacity-aware

multicasting, which was not thoroughly addressed in any previous work. We also perform extensive simulations to evaluate the

proposed multicast systems.

Index Terms—Multicast, network communication.

�

1 INTRODUCTION

MULTICAST is an important network function for group
communication among a distributed, dynamic set of

heterogeneous nodes. Many research papers (e.g., [1], [2],
[3], [4]) pointed out the disadvantages of implementing
multicast at the IP level [5], [6], and argued for an
application-level overlay multicast service. More recent
work (e.g., [7], [8], [9], [10], [11], [12], [13]) studied overlay
multicast from different aspects. In this paper, we consider
four design issues in an overlay multicast system.

. Capacity awareness: Member hosts may vary widely
in their capacities in terms of network bandwidth,
memory, and CPU power. Some are able to
support a large number of direct children, but
others support few.

. Any source multicast: The system should allow any
member to send data to other members. A multicast
tree that is optimal for one source may be bad for
another source. On the other hand, one tree per
member is too costly.

. Dynamic membership: Members may join and leave at
any time. The system must be able to efficiently
maintain the multicast trees for a dynamic group.

. Scalability: The system must be able to scale to a large
Internet group. It should be fully distributed without
a single point of failure.

Our goal is to study capacity-aware overlay systems that
support distributed applications requiring multiple-source
multicast with dynamic membership. To be surveyed
below, none of the existing systems meet all these
requirements.

To handle dynamic groups and ensure scalability,
novel proposals were made to implement multicast on
top of P2P overlay networks. For example, Bayeux [14]
and Borg [15] were implemented on top of Tapestry [16]
and Pastry [17], respectively, and CAN-based Multicast
[18] was implemented based on CAN [19]. El-Ansary et al.
studied efficient broadcast in a Chord network, and their
approach can be adapted for the purpose of multicast [20].
Castro et al. compares the performance of tree-based and
flooding-based multicast in CAN-style versus Pastry-style
overlay networks [21].

However, the above systems assume each node has the
same number of children. Host heterogeneity is not
addressed. Even though overlay multicast can be imple-
mented on top of overlay unicast, they have very different
requirements. In overlay unicast, low-capacity nodes only
affect traffic passing through them and, therefore, they
create bottlenecks of limited impact. In overlay multicast, all
traffic will pass all nodes in the group, and the multicast
throughput is decided by the node with the smallest
throughput, particularly in the case of reliable delivery.
The strategy of assigning an equal number of children to
each intermediate node is far from optimal. If the number of
children is set too big, the low-capacity nodes will be
overloaded, which slows down the entire session. If the
number of children is set too small, the high-capacity nodes
will be underutilized. To support efficient multicast, we
should allow nodes in a P2P network to have different
numbers of neighbors.

Shi et al. proved that constructing a minimum-diameter
degree-limited spanning tree is NP-hard [22]. Note that the

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006 135

. Z. Zhang is with the University of Florida, E438 CSE Building,
Gainesville, FL 32611-6120. E-mail: zzhan@cise.ufl.edu.

. S. Chen is with the University of Florida, E460 CSE Building, PO Box
116120, Gainesville, FL 32611-6120. E-mail: sgchen@cise.ufl.edu.

. Y. Ling is with the Applied Research Lab, Telcordia Technologies, NJ
08854-4157. E-mail: lingy@research.telcordia.com.

. R. Chow is with the University of Florida, E348 CSE Building, Gainesville,
FL 32611-6120. E-mail: chow@cise.ufl.edu.

Manuscript received 15 Jan. 2005; revised 28 May 2005; accepted 14 July
2005; published online 28 Dec. 2005.
For information on obtaining reprints of this article, please send e-mail to:
tpds@computer.org, and reference IEEECS Log Number TPDSSI-0029-0105.

1045-9219/06/$20.00 � 2006 IEEE Published by the IEEE Computer Society

terms “degree” and “capacity” are interchangeable in the
context of this paper. Centralized heuristic algorithms were
proposed to balance multicast traffic among multicast
service nodes (MSNs) and to maintain low end-to-end
latency [22], [23]. The algorithms do not address the
dynamic membership problem, i.e., MSN join/departure.

There has been a flourish of capacity-aware multicast
systems which excel in optimizing single-source multicast
trees but are not suitable for multisource applications such
as distributed games, teleconferencing, and virtual class-
rooms, which are the target applications of this paper.
Bullet [24] is designed to improve the throughput of data
dissemination from one source to a group of receivers. An
overlay tree rooted at the source must be established.
Disjoint data objects are disseminated from the source via
the tree to different receivers. The receivers then commu-
nicate amongst themselves to retrieve the missing objects;
these dynamic communication links, together with the tree,
form a mesh, which offers better bandwidth than the tree
alone. Overlay Multicast Network Infrastructure (OMNI)
[25] dynamically adapts its degree-constrained multicast
tree to minimize the latencies to the entire client set. Riabov
et al. proposed a centralized constant-factor approximation
algorithm for the problem of constructing a single-source
degree-constrained minimum-delay multicast tree [26].
Yamaguchi et al. described a distributed algorithm that
maintains a degree-constrained delay-sensitive multicast
tree for a dynamic group [27]. The above algorithms are
designed for a single source and are therefore not suitable
when there are many potential sources (such as in
distributed games). Building one tree for each possible
source is too costly. Using a single tree for all sources is also
problematic. First, a minimum-delay tree for one source
may not be a minimum-delay tree for other sources. Second,
the single-tree approach concentrates the traffic on the links
of the tree and leaves the capacities of the majority nodes
(leaves) unused, which affects the overall throughput in
multisource multicasting. Third, a single tree may be
partitioned beyond repair for a dynamic group.

This paper proposes two overlay multicast systems that
support any-source multicast with varied host capacities
and dynamic membership. We model the capacity as the
maximum number of direct children to which a node is
willing to forward multicast messages. We extend Chord
[28] and Koorde [29] to be capacity-aware, and they are
called CAM-Chord and CAM-Koorde, respectively.1 A
dedicated CAM-Chord or CAM-Koorde overlay network
is established for each multicast group. We then embed
implicit degree-varying multicast trees on top of CAM-
Chord or CAM-Koorde and develop multicast routines that
automatically follow the implicit multicast trees to dis-
seminate multicast messages. Dynamic membership man-
agement and scalability are inherited features from Chord
or Koorde. Capacity-aware multiple-source multicast are
added features. Our analysis on CAM multicasting sheds
light on the expected performance bounds with respect to
the statistical distribution of host heterogeneity.

The rest of the paper is organized as follows: Section 2
gives an overview of our proposed systems. Section 3 and

Section 4 describe CAM-Chord and CAM-Koorde in details
respectively. Section 5 discusses some related issues.
Section 6 presents the simulation results. Section 7 draws
the conclusion.

2 OVERVIEW

Consider a multicast group G of n nodes. Each node x 2 G
has a capacity cx, specifying the maximum number of direct
child nodes to which x is willing to forward the received
multicast messages. The value of cx should be made
roughly proportional to the upload bandwidth of node x.
Intuitively, x is able to support more direct children in a
multicast tree when it has more upload bandwidth. In a
heterogeneous environment, the capacities of different
nodes may vary in a wide range. Our goal is to construct
a resilient capacity-aware multicast service which meets the
capacity constraints of all nodes, allows frequent membership
changes, and delivers multicast messages from any source to
the group members via a dynamic, balanced multicast tree.

Our basic idea is to build the multicast service on top of a
capacity-aware structured P2P network. We focus on extend-
ing Chord [28] and Koorde [29] for this purpose. The resulting
systems are called CAM-Chord and CAM-Koorde, respec-
tively. The principles and techniques developed in this paper
should be easily applied to other P2P networks as well.

A CAM-Chord or CAM-Koorde overlay network is
established for each multicast group. All member nodes
(i.e., hosts of the multicast group) are randomly mapped by a
hash function (such as SHA-1) onto an identifier ring
½0; N � 1�, where the next identifier after N � 1 is zero. Nð¼
2bÞ should be large enough such that the probability of
mapping two nodes to the same identifier is negligible. Given
an identifierx 2 ½0; N � 1�, we define successor(x) as the node
clockwise after x on the ring, and predecessor(x) as the node
clockwise before x on the ring. bxx refers to the node whose
identifier is x; if there is not such a node, then it refers to
successor(x). Node bxx is said to be responsible for identifier x.
With a little abuse of notation, x, bxx, successor(x), and
predecessor(x) may represent a node or the identifier that
the node is mapped to, depending on the appropriate context
where the notations appear. Given two arbitrary identifiers x
and y, ðx; y� is an identifier segment that starts from ðxþ 1Þ,
moves clockwise, and ends at y. The size of ðx; y� is denoted as
ðy� xÞ. Note that ðy� xÞ is always positive. It is the number of
identifiers in the segment of ðx; y�. The distance betweenxand
y is jx� yj ¼ jy� xj ¼ minfðy� xÞ; ðx� yÞg, where ðy� xÞ is
the size of segment ðy; x� and ðx� yÞ is the size of segment
ðx; y�. ðy; x� and ðx; y� form the entire identifier ring.

Before we discuss the CAMs, we briefly review Chord
and Koorde. Each node x in Chord has Oðlog2 nÞ neighbors,
which are 1

2,
1
4,

1
8, . . . , of the ring away from x, respectively.

When receiving a lookup request for identifier k, a node
forwards the request to the neighbor closest to k. This
greedy algorithm takes Oðlog2 nÞ hops with high probability
to find bkk, the node responsible for k. Each node in Koorde
has m neighbors. A node’s identifier x is represented as a
base-m number. Its neighbors are derived by shifting one
digit (with value 0..m-1) into x from the right side and
discard x’s leftmost bit to maintain the same number of
digits. When x receives a lookup request for k, the routing

136 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

1. CAM stands for Capacity-Aware Multicast.

path of the request represents a transformation from x to k
by shifting one digit of k at a time into x from the right until
the request reaches the node responsible for k. Because k
has Oðlogm nÞ digits, it takes Oðlogm nÞ hops with high
probability to resolve a lookup request. Readers are referred
to the original papers for more details.

Our first system is CAM-Chord, which is essentially a

base-cx (instead of base-2) Chord with cx variable for different

nodes. The number of neighbors of a node x is Oðcx logn
log cx
Þ,

which is related to the node’s capacity. Hence, different nodes

may have different numbers of neighbors. The distances

betweenx and its neighbors on the identifier ring are 1
cx

, 2
cx

, . . . ,
cx�1
cx

, 1
c2
x
, 2
c2
x
, . . . , cx�1

c2
x

, . . . of the ring, respectively. Apparently,

CAM-Chord becomes Chord if cx ¼ 2, for all node x. We will

design a greedy lookup routine for CAM-Chord and a

multicast routine that essentially embeds implicit, capacity-

constrained, balanced multicast trees in CAM-Chord. The

multicast messages are disseminated via these implicit trees.

It is a challenging problem to analyze the performance of

CAM-Chord. The original analysis of Chord cannot be

applied here because cx is variable. We will provide a new

set of analysis on the expected performance of the lookup

routine and the multicast routine.
The second system is CAM-Koorde, which differs from

Koorde in both variable number of neighbors and how the
neighbors are calculated. This difference is critical in
constructing balanced multicast trees. Each node x has cx
neighbors. The neighbor identifiers are derived by shifting
x to the right for a variable number l of bits and then
replacing the left-most l bits of x with a certain value. In
comparison, Koorde shifts x one digit (base m) to the left
and replaces the right-most digit. This subtle difference
makes sure that CAM-Koorde spreads neighbors of a node
evenly on the identifier ring while neighbors in Koorde tend
to cluster together. We will design a lookup routine and a
multicast routine that essentially performs broadcast.
Remarkably, we show that this broadcast-based routine
achieves roughly balanced multicast trees with the expected
number of hops to a receiver being Oðlogn=Eðlog cxÞÞ.

CAM-Chord maintains a larger number of neighbors than

CAM-Koorde (by a factor of Oð logn
log cx
Þ), which means larger

maintenance overhead. On the other hand, CAM-Chord is

more robust and flexible because it offers backup paths in its

topology [30]. The two systems achieve their best perfor-

mances under different conditions. Our simulations show

that CAM-Chord is a better choice when the node capacities

are small and CAM-Koorde is better when the node capacities

are large.

3 CAM-CHORD APPROACH

CAM-Chord is an extension of Chord. It takes the capacity
of each individual node into consideration. We first
describe CAM-Chord as a regular P2P network that
supports a lookup routine, which is to find bkk for a given
identifier k. We then present our multicast algorithm on top
of CAM-Chord.

When a node joins or leaves the overlay topology, the
lookup routine is needed to maintain the topology as it is
defined. CAM-Chord is not designed for data sharing
among peers as most other P2P networks (e.g., Chord [28])
do. There are NO data items associated with the identifier
space. Each multicast group forms its own CAM-Chord
network whose sole purpose is to provide an infrastructure
for dynamic capacity-aware multicasting.

3.1 Neighbors

For a node x in Chord, its neighbor identifiers are
ðxþ 2iÞ mod N , 8i 2 ½1:: log2 N �, which are 1

2,
1
4,

1
8, . . . , of the

ring away from x. CAM-Chord is a base-cx Chord with
variable cx for different nodes. Let cix mean ðcxÞi. The
neighbor identifiers are ðxþ j� cixÞ mod N , denoted as xi;j,
8j 2 ½1::cx � 1�, 8i 2 ½0:: logN

log cx
� 1�. i and j are called the level

and the sequence number of xi;j. Let x0;0 ¼ x. The actual
neighbors are cxi;jxi;j, which are the nodes responsible for xi;j.
Note that dx0;1x0;1 is always successor(x).

See an illustration in Fig. 1 with cx ¼ 3. The level-one
neighbors in CAM-Chord divide the whole ring into cx
segments of similar size. The level-two neighbors further
divides a close segment ðx; xþ 1

cx
N � into cx subsegments of

similar size. And, so on.
Consider an arbitrary identifier k. Let

i ¼ log ðk� xÞ
log cx

� �
; ð1Þ

j ¼ k� x
cix

� �
: ð2Þ

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 137

Fig. 1. Illustration of Chord versus CAM-Chord neighbors (cx ¼ 3).

It can be easily verified that xi;j is the neighbor identifier
of x that is counter-clockwise closest to k, which meanscxi;jxi;j is the neighbor node of x that is counter-clockwise
closest to node bkk.2 We call i the level and j the sequence
number of k with respect to x.

3.2 Lookup Routine

CAM-Chord requires a lookup routine to assist member join/
departure during a dynamic multicast session. This routine
returns the address of node bkk responsible for a given identifier
k. x:fooðÞ denotes a procedure call to be executed at x. It is a
local (or remote) procedure call if x is the local (or a remote)
node. The set of identifiers that x is responsible for is
ðpredecessorðxÞ; x�. The set of identifiers that successorðxÞ is
responsible for is ðx; successorðxÞ�.

x.LOOKUP(k)

1. if k 2 ðx; successorðxÞ� then

2. return the address of successorðxÞ
3. else

4. i log ðk�xÞ
log cx

j k
5. j

�
k�x
cix

�
6. if k 2 ðx; cxi;jxi;j� then

7. return the address of cxi;jxi;j
8. else

/* forward request to xi;j */

9. return cxi;jxi;j:LOOKUPðkÞ
First, the LOOKUP routine checks if k is between x and

successor(x). If so, LOOKUP returns the address of
successor(x). Otherwise, it calculates the level i and the
sequence number j of k. If k falls between x and cxi;jxi;j, which
means cxi;jxi;j is responsible for the identifier k, LOOKUP
returns the address of cxi;jxi;j. On the other hand, if cxi;jxi;j
precedes k, then x forwards the lookup request to cxi;jxi;j.
Because cxi;jxi;j is x’s closest neighbor preceding k, CAM-Chord
makes a greedy progress to move the request closer to k.

3.3 Topology Maintenance

Because CAM-Chord is an extension of Chord, we use the
same Chord protocols to handle member join/departure
and to maintain the correct set of neighbors at each node.
The difference is that our LOOKUP routine replaces the
Chord LOOKUP routine. The details of the protocols can be
found in [28].

The join operation of Chord can be optimized because two

consecutive nodes on the ring are likely to have similar

neighbors. When a new node joins, it first performs a lookup

to find its successor and retrieves its successor’s neighbors

(called fingers in Chord). It then checks those neighbors to

make corrections if necessary. In a base-c Chord, the join

complexity without the optimization isOðc log2 n

log2 c
Þ for a constant

c. The optimization reduces the complexity to Oðc logn
log cÞ.

CAM-Chord can be regarded as a base-cChord where c is a

random variable following the node-capacity distribution. It

cannot always perform the above optimization because

consecutive nodes may have different capacities, which make

their neighbor setsdifferent. Whenthis happens, anew nodex

has to performOðcx logn
log cx
Þ lookups to find all its neighbors. The

lookup complexity is Oð� logn

logEðlog c
c Þ
Þ by Theorem 1 (to be

proved). The join complexity is therefore Oðcx log2 n

� log cx logEðlog c
c Þ
Þ,

which would be reduced to Oðc log2 n

log2 c
Þ if the capacities of all

nodes had the same value, i.e., cwas a constant. This overhead

is too high for a traditional P2P file-sharing application such

as FastTrack, because the observations in [31] showed that

over 20 percent of the connections last 1 minute or less and

60 percent of the IP addresses keep active for no more than

10 minutes each time after they join the system. But, CAM-

Chord is not designed for file-sharing applications. One

appropriate CAM-Chord application is teleconferencing,

which has far less participants than FastTrack and less

dynamic member changes. We do not expect the majority of

participants to keep joining and departing during a con-

ference call. Another application is distributed games, where

a user is more likely to play for an hour than for one minute.
CAM-Chord makes a tradeoff between capacity aware-

ness and maintenance overhead, which makes it unsuitable
for highly dynamic multicast groups. For them, CAM-
Koorde is a better choice because a node only has cx
neighbors. Our future research will attempt to develop new
techniques to overcome this limitation of CAM-Chord.

3.4 Multicast Routine

On top of the CAM-Chord overlay, we want to implicitly
embed a dynamic, roughly balanced multicast tree for each
source node. Each intermediate node in the tree should not
have more children than its capacity. It should be
emphasized that no explicit tree is built. Given a multicast
message, a node x executes a MULTICAST routine, sending
the message to cx selected neighbors, which, in turn, execute
the MULTICAST routine to further propagate the message.
The execution of the MULTICAST routine at different nodes
makes sure that the message follows a capacity-aware
multicast tree to reach every member.

Let msg be a multicast message, k be an identifier, and x
be a node executing the MULTICAST routine. The goal of
x:MULTICASTðmsg; kÞ is to deliver msg to all nodes whose
identifiers belong to ðx; k�. The routine is implemented as
follows: x chooses cx neighbors that split ðx; k� into cx
subsegments as even as possible. Each subsegment begins
from a chosen neighbor and ends at the next clockwise
chosen neighbor. x forwards the multicast message to each
chosen neighbor, together with the subsegment assigned to
this neighbor. When a neighbor receives the message and its
subsegment, it forwards the message using the same
method. The above process repeats until the size of the
subsegment is reduced to one. The distributed computation
of MULTICAST recursively divides ðx; k� into nonoverlap-
ping subsegments and, hence, no node will receive the
multicast message more than once.

x.MULTICAST(msg, k)

1. if k ¼ x then

2. return

3. else

4. i blog k�x
log cx
c

138 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

2. It is possible that cxi;jxi;j ¼ bkk.

5. j bk�xcix c
/*select children from level-i neighbors preceding k*/

6. k0 k

7. for m ¼ j down to 1

8. dxi;mxi;m:MULTICASTðmsg; k0Þ
9. k0 xi;m � 1

/* select ðcx � j� 1Þ children from level-ði� 1Þ
neighbors */

10. l cx
11. for m ¼ cx � j� 1 down to 1

12. l l� cx
cx�j /* for even separation */

13. dxi�1;dlexi�1;dle.MULTICASTðmsg; k0Þ
14. k0 xi�1;dle � 1

/* select x’s successor */

15. dx0;1x0;1.MULTICASTðmsg; k0Þ
To split ðx; k� evenly, x first calculates the level i and the

sequence number j of k with respect to x (Lines 4-5). Then,

neighbors dxi;mxi;m ð8m 2 ½1::j�) at the ith level preceding k are
selected as children of x in the multicast tree (Lines 6-9). We

also select x’s successor, which is dx0;1x0;1 (Line 15). Since jþ 1

may be less than cx, in order to fully use x’s capacity, cx �
1� j neighbors at the ði� 1Þth level are chosen; Lines 10-14

ensure that the selection is evenly spread at the ði� 1Þth
level. Because the algorithm selects neighbors that divide

ðx; k� as even as possible, it constructs a multicast tree that is

roughly balanced. At Line 9, we optimize the code by using
k xi;m � 1 instead of k dxi;mxi;m � 1. That is because there is

no node in ðxi;m; dxi;mxi;mÞ by the definition of dxi;mxi;m.

3.5 Analysis

Assume cx � 2 for every node x. We analyze the performance

of the LOOKUP routine and the multicast routine of CAM-

Chord. Suppose a node x receives a lookup request for

identifier k and it forwards the request to a neighbor node cxi;jxi;j

that is closest to k. We call
k� bxi;jxi;j
k�x the distance reduction ratio,

which measures how much closer the request is from k after

one-hop routing. The following lemma establishes an upper

bound on the distance reduction ratio with respect to cx,

which is a random variable of certain distribution.

Lemma 1. Suppose a node x forwards a lookup request for

identifier k to a neighbor cxi;jxi;j. If cxi;jxi;j 2 ðx; k�, then

E
k� cxi;jxi;j
k� x

� �
< E

ln cx
cx � 1

� �
:

Proof. Based on the algorithm of the LOOKUP routine, i

must be the height of k with respect to x. By (1) and (2), k

can be written as

k ¼ xþ jcix þ l;

where j 2 ½1::cx � 1� is the sequence number of k with

respect to x and l 2 ½0::cixÞ.

k� x ¼ jcix þ l: ð3Þ

By definition (Section 3.1), xi;j ¼ xþ jcix. Because x,
xi;j, cxi;jxi;j, and k are in clockwise order on the identifier
ring, we have

k� cxi;jxi;j � k� xi;j ¼ l: ð4Þ

By (3) and (4), we have

k� cxi;jxi;j
k� x �

l

jcix þ l
<

cix
jcix þ l

:

We now derive the expected distance reduction ratio.

Eðk� bxi;jxi;j
k�x Þ depends on three random variables, j, l, and cx.

Because the location of k is arbitrary with respect to x, we

can consider j and l as independent random variables with

uniform distributions on their respective value ranges.

E
k0 �dxi;mxi;m
k� x

� �
¼ E 1

cx � 1
�cx�1
j¼1

1

cix

Z cix

0

k0 � cxi;jxi;j
k� x dl

 !

¼ E 1

cx � 1
�cx�1
j¼1

1

cix

Z cix

0

cxi
jcix þ l

dl

 !

¼ E 1

cx � 1
ð�cx�1

j¼1 ðlnðjþ 1Þ � ln jÞÞ
� �

¼ E ln cx
cx � 1

� �
:

ut

Theorem 1. Let cx, for all nodes x, be independent random

variables of certain distribution. The expected length of a

lookup path in CAM-Chord is Oð� lnn
lnEðln cxcx Þ

Þ.
Proof. Suppose (x1; x2; . . . ; xm) is a prefix of a lookup path

for identifier k, where x1 is the node that initiates the

lookup, and xi, i 2 ½1::m�, and k are in clockwise order on

the identifier ring. Because the nodes are randomly

mapped to the identifier ring by a hash function, the

distance reduction ratio after each hop is independent of

those after other hops. Consequently, k�xi
k�xi�1

; i 2 ½2::m�,
are independent random variables.

Eðk� xmÞ ¼ E
k� xm
k� xm�1

� k� xm�1

k� xm�2
� . . . � k� x2

k� x1
� ðk� x1Þ

� �
¼ E k� xm

k� xm�1

� �
� E k� xm�1

k� xm�2

� �
� . . . � E k� x2

k� x1

� �
� Eðk� x1Þ

< E
ln cx
cx � 1

� �� �m�1

�N;

ð5Þ

where cx is a random variable with the same distribution as

cxi ; i 2 ½1::m�. Next, we derive the value of m that ensures

Eðk� xmÞ < N
n , which is the average distance between two

adjacent nodes on the identifier ring. The following is a

sufficient condition to achieve Eðk� xmÞ < N
n .

E
ln cx
cx � 1

� �� �m�1

�N ¼ N
n

m ¼ � lnn

lnEð ln cxcx�1Þ
:

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 139

If Eðk� xmÞ < N
n , the expected number of additional

routing hops from xm to k is Oð1Þ. Therefore, OðmÞ ¼
Oð� lnn

lnEðln cxcx Þ
Þgives the expected length of the lookup path.tu

It is natural that the expected length of a lookup path in
CAM-Chord depends on the probability distribution of cx,
which affects the topological structure of the overlay
network. For a given distribution, an upper bound of the
expected path length can be derived from Theorem 1. The
following theorem gives an example.

Theorem 2. Suppose the node capacity cx follows a uniform
distribution with EðcxÞ ¼ c. The expected length of a lookup
path in CAM-Chord is Oðlnnln cÞ.

Proof. Suppose the range of cx is ½t1::t2� with EðcxÞ ¼ c. We
perform Big-O reduction as follows:

E
ln cx
cx

� �
¼ �

Xt2
cx¼t1

ln cx
cx
� 1

t2 � t1 þ 1

 !

¼ �

Z t2

t1

ln cx
cx

dcx �
1

t2 � t1 þ 1

� �
¼ �

1

2
ln2 t2 �

1

2
ln2 t1

� �
� 1

c

� �
¼ �

ln2 c

c

� �
because t2 � 2c and t1 � c:

Therefore,

lnE
ln cx
cx

� �
¼ � ln

ln2 c

c

� �
¼ �ð� ln cÞ:

By Theorem 1, Oð� lnn
lnEðln cxcx Þ

Þ ¼ Oðlnnln cÞ. tu
Other distributions of cx may be analyzed similarly.
Next, we analyze the performance of the MULTICAST

routine in CAM-Chord. Suppose x executes

x:MULTICASTðmsg; kÞ;

which is responsible for delivering msg to all nodes in the

identifier segment ðx; kÞ. Specifically, x forwards msg to

some neighbor nodes dxi;mxi;m by remotely invokingdxi;mxi;m:MULTICASTðmsg; k0Þ, which is responsible for deli-

vering msg to a smaller subsegment ðdxi;mxi;m; k
0Þ, wheredxi;mxi;m; k

0 2 ðx; kÞ. It is a typical divide-and-conquer strategy.

We call
k0�cxi;mxi;m
k�x the segment reduction ratio, which measures

the degree of reduction in problem size after one-hop

multicast routing. The following lemma establishes an

upper bound on the segment reduction ratio with respect

to cx, which is a random variable of certain distribution.

Lemma 2. Suppose a node x forwards a multicast message to a
neighbor dxi;mxi;m, i.e., x:MULTICASTðmsg; kÞ calls dxi;mxi;m:
MULTICASTðmsg; k0Þ. It must be true that

E
k0 �dxi;mxi;m
k� x

� �
< E

ln cx
cx � 1

� �
:

Proof. Based on the algorithm of the MULTICAST routine,
the execution of x:MULTICASTðmsg; kÞ will divide its
responsible segment ðx; kÞ into cx subsegments, and dxi;mxi;m
is responsible for delivering msg to all nodes in one

subsegment ðdxi;mxi;m; k
0Þ. The largest subsegment is created

by Lines 6-9. When Line 7 is executed for m 2 ½j� 1::1�,
k0 ¼ xi;mþ1 � 1. Therefore,

k0 �dxi;mxi;m < xi;mþ1 � xi;m
¼ xþ ðmþ 1Þcix � x�mcix
¼ cix:

ð6Þ

By Line 4, i is the level of k with respect to x. By (1) and

(2), k can be written as

k ¼ xþ jcix þ l;

where j 2 ½1::cx � 1� is the sequence number of k with
respect to x and l 2 ½0::cixÞ.

k� x ¼ jcix þ l: ð7Þ

By (6) and (7), we have

k0 �dxi;mxi;m
k� x <

cxi
jcix þ l

:

We now derive the expected segment reduction ratio.

Eðk
0�cxi;mxi;m
k�x Þ depends on three random variables, j, l, and cx.

Because the location of k is arbitrary with respect to x, we

can consider j and l as independent random variables with

uniform distributions on their respective value ranges.

E
k0 �dxi;mxi;m
k� x

� �
¼ E 1

cx � 1
�cx�1
j¼1

1

cix

Z cix

0

k0 � cxi;jxi;j
k� x dl

 !

¼ E 1

cx � 1
�cx�1
j¼1

ln cx
cix

Z cix

0

cxi
jcix þ l

dl

 !

¼ E 1

cx � 1
ð�cx�1

j¼1 ðlnðjþ 1Þ � ln jÞÞ
� �

¼ E ln cx
cx � 1

� �
:

ut

A multicast path is defined as the path that the MULTI-
CAST routine takes to deliver a multicast message from a
source node to a destination node. The proofs of the
following two theorems are very similar to those of
Theorems 1 and 2, due to the similarity between Lemma 2
and Lemma 1, on which the theorems are based. To avoid
excessive repetition and to conserve space, we omit the
proofs for Theorems 3 and 4.

Theorem 3. Let cx, for all nodes x, be independent random

variables of certain distribution. The expected length of a

multicast path in CAM-Chord is Oð� lnn
lnEðln cxcx Þ

Þ.
Theorem 4. Suppose the node capacity cx follows a uniform

distribution and EðcxÞ ¼ c. The expected length of a multicast

path in CAM-Chord is Oðlnnln cÞ.

4 CAM-KOORDE APPROACH

This section proposes CAM-Koorde. For any node x in
CAM-Koorde, its number of neighbors is exactly equal to its
capacity cx. The maintenance overhead of CAM-Koorde is

140 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

smaller than that of CAM-Chord due to a smaller number of
neighbors.

Like Koorde, CAM-Koorde embeds the Bruijn graph in
the identifier ring. On the other hand, it has two major
differences from Koorde, which are critical to our capacity-
aware multicast service.

. The first difference is about neighbor selection. The
neighbor identifiers of a node x in Koorde are
derived by shifting x one digit (base m) to the left
and then replacing the last digit with 0 through
m� 1. The neighbor identifiers differ only at the last
digit. Consequently, they are clustered and often
refer to the same physical node. For the purpose of
multicast, we want the neighbors to spread evenly
on the identifier ring. The neighbor identifiers of a
node x in CAM-Koorde are derived by shifting x one
or more bits to the right and then replacing the high-
order bits with 0 through certain number. The
neighbor identifiers differ at the high-order bits
and, therefore, they are evenly distributed on the
identifier ring.

. The second difference is about the number of
neighbors. Koorde requires every node to have the
same number of neighbors. CAM-Koorde allows
nodes to have different numbers of neighbors.

4.1 Neighbors

Let N ¼ 2b. In CAM-Koorde, x has cx neighbors, which are
categorized into three groups. All computations are
assumed to be modulo N .

. The basic group has four neighbors. Two are x’s
predecessor and successor. The other two are the
nodes responsible for identifiers ðx=2Þ and
2b�1 þ ðx=2Þ, respectively.

. After the basic group, there are cx � 4 remaining
neighbors. Let s ¼ blogðcx � 4Þc. If s > 1, we shall
shift x by s bits to the right to derive the neighbor
identifiers.3 If s > 1, then let t ¼ 2s; otherwise, let
t ¼ 0. The neighbors in the second group are the
nodes responsible for identifiers (i� 2b�s þ x=2s), 8
i 2 ½0::t� 1�.

. After the basic and second groups, there are t0 ¼
cx � 4� t remaining neighbors. Let s0 ¼ sþ 1. The

neighbors in the third group are the nodes responsible

for identifiers (i� 2b�s
0 þ x=2s0 Þ; 8i 2 ½0::t0 � 1�.

It is required that cx � 4. The basic group is mandatory.
The optional second and third groups pick up the
remaining neighbors.

An example is given in Fig. 2, showing the neighbors of
node 36 ð100100Þ whose capacity is 10. The binary
representation of the node identifier is given in the
parentheses. The basic group is

f35 ð100011Þ; 37 ð100101Þ; 18 ð010010Þ; 50 ð110010Þg:

The second group is

f9 ð001001Þ; 25 ð011001Þ; 41 ð101001Þ; 57 ð111001Þg:

The third group is

f4 ð000100Þ; 12 ð001100Þg:

4.2 Lookup Routine

Definition 1. Given two b-bit identifiers x and k, if an l-bit
prefix of x matches an l-bit suffix of k, we say x and k share l
ps-common bits. x ¼ k if the two share b ps-common bits.

Similar to CAM-Chord, a lookup routine is needed in
CAM-Koorde for member join/departure. First consider an
N-node network with every identifier having a correspond-
ing node. Given an identifier k, suppose node x wants to
query for the address of node k. The lookup routine
forwards the lookup request along a chain of neighbors
whose identifiers share progressively more ps-common bits
with k. Starting from x, we identify a neighbor that has the
longest prefix matching the suffix of k. More specifically, if
the third group is not empty and a third-group neighbor
can be derived by selecting the ðblogðcx � 4Þc þ 1Þ bits of k
that precedes the current ps-common bits and shifting them
from the left into x, then the lookup request is forwarded to
this neighbor. Otherwise, if the second group is not empty
and a second-group neighbor can be derived by selecting
the blogðcx � 4Þc bits of k that precedes the current ps-
common bits and shifting them from the left into x, then the
lookup request is forwarded to this neighbor. Otherwise,
we forward the request to a first-group neighbor that
increases the number of ps-common bits by one. To
determine each subsequent node on the forwarding path,
a similar process repeats by shifting more bits of k into the
identifier of the next hop receiver. After at most b hops, the
request can reach node k.

Now, suppose n� N , which is normally the case. We
still calculate the chain of neighbor identifiers in the above
way, which essentially transforms identifier x to identifier k
in a series of steps, each step adding one or more bits from
k. Once the next neighbor identifier y on the chain is
calculated, the request is forwarded to byy, which, in turn,
calculates its neighbor identifier that should be the next on
the forwarding path and then forwards the request.

The pseudocode of the LOOKUP routine is shown
below. It uses the high-order bits of the node identifier to
match the low-order bits of k, which is different from
Koorde’s routine and is critical for our multicast routine, to
be discussed shortly.

x.LOOKUP(k)

1. if k 2 ðpredecessorðxÞ; x� then

2. return the address of x

3. if k 2 ðx; successorðxÞ� then

4. return the address of successorðxÞ

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 141

3. If s ¼ 1, it means to shift one bit. The basic group already does that.

Fig. 2. CAM-Koorde topology with identifier space [0..63].

5. m1 be the number of ps-common bits shared by x and k

6. find the neighbor y that shares the largest number m2 of

ps-common bits with k

7. if m1 � m2 then

8. return y.LOOKUP(k)

9. else

10. if jk� predecessorðxÞj < jk� successorðxÞj then

11. return predecessorðxÞ.LOOKUP(k)

12. else

13. return successorðxÞ.LOOKUP(k)

Koorde uses Chord’s protocols with a new LOOKUP
routine for node join/departure, so does CAM-Koorde.

4.3 Multicast Routine

When a node receives a multicast message, it forwards the
message to all neighbors except those that have received or
are receiving the message. Because neighbor connections
are bidirectional, it is easy for a node to perform the
checking through a short control packet. The overhead is
negligible when the message is large, e.g., a video file. Note
that a node does not have to wait for the entire message to
arrive before forwarding it to neighbors. The forwarding is
done on per packet basis, but the checking is performed
only for the first packet of a message, which carries the
message header. The pseudocode of the MULTICAST
routine is shown below:

x.MULTICAST(msg)

1. for each neighbor y do

2. if y has not received or is not receiving msg then

3. y.MULTICAST(msg)

4.4 Analysis

Lemma 3. Let cx, for all nodes x, be independent random
variables of certain distribution. The expected length of the
shortest path between two nodes in CAM-Koorde is
Oðlogn=Eðlog cxÞÞ.

Proof. Consider two arbitrary nodes x0 and y. Let y0 be an
OðlognÞ-bit prefix of y. We show there exists a path of
length Oðlogn=Eðlog cxÞÞ that reaches a node cxmxm with y0

also as its prefix.

. We construct a physical path (x0, bx1x1, bx2x2, . . . , dxm�1xm�1,cxmxm) as follows: Nodex0 has a basic or second-group

neighbor bx1x1, where x1 is derived by shifting

maxf1; blogðcx0
� 4Þcg low-order bits of y0 into x0

from the left.4 The bits of y0 that have been used in

shifting are called used bits. Similarly, bx1x1 has a

second-group neighbor bx2x2, where x2 is derived by

shifting maxf1; blogðcbx1x1
� 4Þcg low-order unused

bits of y0 into bx1x1 Finally, dxm�1xm�1 has a second-

group neighbor cxmxm, wherexm is derived by shifting

the remaining maxf1; blogðcdxm�1xm�1
� 4Þcg low-order

unused bits of y0 into dxm�1xm�1. The length of path (x0,bx1x1, bx2x2, . . . , dxm�1xm�1) ism. The total number of used bits

of y0 is
Pm�1

i¼0 maxf1; blogðcbxixi � 4Þcg, which is

OðlognÞ. Let cx be a random variable of the same

distribution as cbxixi , 8i 2 ½0::m� 1�.

Xm�1

i¼0

maxf1; blogðcbxixi � 4Þcg ¼ OðlognÞ

Xm�1

i¼0

log cbxixi ¼ OðlognÞ

E
Xm�1

i¼0

log cbxixi
 !

¼ OðlognÞ

mEðlog cxÞ ¼ OðlognÞ
m ¼ Oðlogn=Eðlog cxÞÞ:

. Next, we construct an identifier list (x0, x01, x02,

. . . , x0m�1, x0m) as follows: x01 is derived by

shifting maxf1; blogðcx0
� 4Þcg low-order bits of

y0 into x0 from the left. x02 is derived by shifting

maxf1; blogðcbx1x1
� 4Þcg low-order unused bits of

y0 into x01 Finally, where x0m is derived by

shifting the remaining maxf1; blogðcdxm�1xm�1
� 4Þcg

low-order unused bits of y0 into x0m�1.

y0 is an OðlognÞ-bit prefix of both x0m and y. Therefore,

the distance between x0m and y on the identifier ring,

jx0m � yj, is OðNnÞ. Note that N
n is the average distance

between any two adjacent nodes on the ring. If we can

show that Eðjcxmxm � x0mjÞ < N
n , then

Eðjcxmxm � yjÞ � Eðjcxmxm � x0mj þ jx0m � yjÞ
¼ Eðjcxmxm � x0mjÞ þEðjx0m � yjÞ ¼ O N

n

� �
;

which means that the expected number of hops from cxmxm
to y is Oð1Þ.
8i 2 ½1::m�, define a random variable �i ¼ jbxixi � xij.

Because xi can be anywhere in (predecessorðbxixiÞ; bxixiÞ, we
have

Eð�iÞ ¼
1

2
EðjpredecessorðbxixiÞ; bxixijÞ ¼ N

2n
; ð9Þ

where N
n is the expected distance between two adjacent

nodes on the identifier ring.

xi and x0i are derived from dxi�1xi�1 and x0i�1, respectively,
by shifting the same maxf1; blogðccxi�1xi�1

� 4Þcg bits of y0 in

from the left. Therefore,

jxi � x0ij ¼
jdxi�1xi�1 � x0i�1j

2maxf1; blogðccxi�1xi�1
� 4Þcg :

It follows that, 8i 2 ½i::m�,

jbxixi � x0ij � jbxixi � xij þ jxi � x0ij
¼ �i þ

jdxi�1xi�1 � x0i�1j
2maxf1; blogðccxi�1xi�1

� 4Þcg :

By induction, we have

jcxmxm � x0mj �Xm
i¼1

�i

Ym�1

j¼i

1

2maxf1; blogðcbxjxj � 4Þcg :

142 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

4. If cx < 6, we can pick x1 from the basic group, which shifts one bit of y0

into x0; if cx � 6, we can pick x1 from the second group, which shifts
blogðcx0

� 4Þc bits of y0 into x0.

Because cx � 4 for any node x in CAM-Chord,
maxf1; blogðcbxjxj � 4Þcg � 1. Hence,

jcxmxm � x0mj �Xm
i¼1

�i
1

2

� �m�i
Eðjcxmxm � x0mjÞ �Xm

i¼1

Eð�iÞ
1

2

� �m�i
¼ N

2n

Xm
i¼1

1

2

� �m�i
¼ N

2n

Xm�1

i¼0

1

2

� �i
<
N

n
:

Consequently, the expected number of hops from cxmxm to

x0m and then to y is Oð1Þ. The expected length of the

entire path from x0 to y is OðmÞ ¼ Oðlogn=Eðlog cxÞÞ. tu

Theorem 5. Let cx, for all nodes x, be independent random

variables of certain distribution. The expected length of a

multicast path in CAM-Koorde from a source node to a

member node is Oðlogn=Eðlog cxÞÞ.
Proof. According to the MULTICAST routine, a multicast

packet is delivered in CAM-Koorde by broadcast, which
follows the shortest paths to the member nodes. There-

fore, the expected length of a multicast path from a
source node to a member node is Oðlogn=Eðlog cxÞÞ by

Lemma 3. tu
Theorem 6. Suppose the node capacity cx follows a uniform

distribution and EðcxÞ ¼ c. The expected length of a multicast

path in CAM-Koorde from a source node to a member node is

Oðlogn= log cÞÞ.
Proof. Suppose the range of cx is ½t1::t2� with EðcxÞ ¼ c. We

perform Big-O reduction as follows:

Eðlog cxÞ ¼
1

t2 � t1 þ 1

Xt2
cx¼t1

log cx

¼ �
1

t2 � t1 þ 1

Z t2

t1

log cxdcx

� �
¼ �

1

t2 � t1 þ 1
ððt2 log t2 � t2Þ � ðt1 log t1 � t1ÞÞ

� �
¼ �ðlog cÞ because t2 � 2c and t1 � c:

By Theorem 5, Oðlogn=Eðlog cxÞÞ ¼ Oðlogn
log cÞ. tu

5 DISCUSSIONS

5.1 Group Members with Very Small Upload
Bandwidth

A node x with very small upload bandwidth should only be
a leaf in the multicast trees unless itself is the data source. In

order to make sure that the MULTICAST routine does not

select x as an intermediate node in any multicast tree, x
must not be in the CAM-Chord (or CAM-Koorde) overlay

network. Instead, it joins as an external member. x asks a
node y known to be in CAM-Chord (or CAM-Koorde) to

perform LOOKUP(k) for an arbitrary identifier k, which

returns a random node z in the overlay network. x then
attempts to join z as an external member. If z cannot support
x, z forwards x to successor(z). If z admits x as an external
member, z will forward the received multicast messages to
x and x will multicast its messages via z. If z leaves the
group, x must rejoin via another node in CAM-Chord (or
CAM-Koorde).

5.2 Proximity and Geography

The overlay connections between neighbors may have very
different delays. Two neighbors may be separated by
transcontinental links, or they may be on the same LAN.
There exist some approaches to cope with geography, for
example, Proximity Neighbor Selection and Geographic Layout.
With Proximity Neighbor Selection, nodes are given some
freedom in choosing neighbors based on other criteria (i.e.,
latencies), in addition to the arithmetic relations between
their identifiers. With Geographic Layout, node identifiers
are chosen in a geographically informed manner. The main
idea is to make geographically closeby nodes form clusters
in the overlay. Readers are referred to [32], [30] for details.

In extension to the existing P2P networks, CAMs can
naturally inherit most of those features without much
additional effort. For example, instead of choosing the
ith neighbor to be ðxþ 2iÞ, a proximity optimization of Chord
allows the ith neighbor to be any node within the range of
½ðaþ 2iÞ; ðaþ 2iþ1Þ, which does not affect the complexities
[30]. This optimization can also be applied to CAM-Chord
(which is an extension of Chord) without affecting the
complexities. A node x can choose any node whose identifier
belongs to the segment ½xþ j� cix; xþ ðjþ 1Þ � cixÞ as the
neighbor xi;j. Given this freedom, some heuristics (e.g.,
smallest delay first) may be used to choose neighbors to
promote proximity-clustering. Specifically, a node x can
progressively scan the nodes in the allowed segment for
neighbor xi;j, for example, by following the successor link to
probe the next node in the segment after every 100k data bits
sent by x, which trivializes the probing overhead. x always
use the nearest node it has found recently as its neighbor.

6 SIMULATION

Throughput and latency are two major performance metrics
for a multicast application. We evaluate the performance of
CAMs from these two aspects. We simulate multicast
algorithms on top of CAM-Chord, Chord, CAM-Koorde,
and Koorde, respectively. The identifier space is ½0; 219Þ. If
not specified otherwise, the default number of nodes in an
overlay network is 100; 000 and the node capacities are
taken from ½4::10� with uniform probability. The upload
bandwidths of the nodes are randomly distributed in a
default range of ½400; 1; 000� kbps.

It should be noted that the value ranges may go far
beyond the default ones in specific simulations. In our
simulations, cx ¼ bBx=pc, where Bx is the node’s upload
bandwidth and p is a system parameter of CAMs,
specifying the desired bandwidth per link in the multicast
tree. By varying the value of p, we can construct CAMs with
different average node capacities, which also mean different
average numbers of children per nonleaf node and,
consequently, different tree depths (latency). If the average

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 143

node capacity c is not the default value of 7, the node
capacities are taken uniformly from ½4; 2c� 4�.

6.1 Throughput

We compare the sustainable throughput of multicast
systems based on CAM-Chord, Chord, CAM-Koorde, and
Koorde. Throughput is defined as the rate at which data can
be continuously delivered from a source node to all other
nodes. Due to limited buffer space at each node, the
sustainable multicast throughput is decided by the link
with the least allocated bandwidth in the multicast tree.
CAM-Chord and CAM-Koorde produce much larger
throughput because a node’s capacity cx (which is its
number of children in the multicast tree) is adjustable based
on the node’s upload bandwidth. The primary advantage of
CAMs over the Chord/Koorde is their ability to adapt the
overlay topology according to host heterogeneity.

Fig. 3 compares the throughput of CAM-Chord, Chord,
CAM-Koorde, and Koorde with respect to the average
number of children per nonleaf node in the multicast tree.
CAMs perform much better. Their throughput improvement
over Chord and Koorde is 70-80 percent when the nodes’
upload bandwidths are chosen from the rather narrow
default range of ½400; 1; 000� kbps. The larger the upload-
bandwidth range, the more the throughput improvement, as
demonstrated by Fig. 4. In general, let ½a; b� be the range of
upload bandwidth. The upper bound b of the range is shown
on the horizontal axis of Fig. 4, while the lower bound a is
fixed at 400 kbps. The figure shows that the throughput
improvement by CAMs increases when the upload-band-
width range is larger, representing a greater degree of host
heterogeneity. The simulation data also indicate that the
throughput ratio of CAM-Chord (CAM-Koorde) over Chord
(Koorde) is roughly proportional to aþb

2a .
Fig. 5 shows the multicast throughput with respect to the

size of the multicast group. According to the simulation
results, the throughput is largely insensitive to the group size.

6.2 Throughput versus Latency

We measure multicast latency by the average length of
multicast paths. Latency is determined by both the number of
hops and the hop delay. In CAM-Chord and CAM-Koorde,

the overlay links are randomly formed among the nodes due
to the use of DHT. Therefore, the latency of an overlay path is
statistically proportional to the number of hops. That’s why
we used the number of hops to characterize the latency
performance. In fact, the measurement in terms of number of
hops carries information beyond latency. It is also an
indication of how many times a message has to be relayed,
which is a resource consumption issue. However, with the
proximity neighbor selection in Section 5.2, the latency is no
longer proportional to the number of hops. We add a
simulation in Section 6.4 to study this case, where the actual
delay is measured.

Both throughput and latency are functions of average
node capacity. With a larger average node capacity
(achieved by a smaller value of p), the throughput decreases
due to more children per nonleaf node and the latency also
decreases due to smaller tree depth. Therefore, there exists a
tradeoff between throughput and latency, which is depicted
by Fig. 6. Higher throughput can be achieved at the cost of
longer routing paths. Given the same upload bandwidth
distribution, the system’s performance can be tuned by
adjusting p. The figure also shows that, for relatively small
throughput (less than 46kbps in the figure)—namely, for

144 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

Fig. 3. Multicast throughput with respect to average number of children

per nonleaf node.

Fig. 4. Throughput improvement ratio with respect to upload bandwidth

range.

Fig. 5. Multicast throughput with respect to size of the multicast group.

large node capacities—CAM-Koorde slightly outperforms
CAM-Chord; for relatively large throughput (greater than
46kbps in the figure)—namely, for small node capacities—
CAM-Chord outperforms CAM-Koorde, which will be
further explained in Section 6.4.

6.3 Path Length Distribution

Figs. 7 and 8 present the statistical distribution of multicast
path lengths, i.e., the number of nodes that can be reached
by a multicast tree in certain number of hops. Each curve
represents a simulation with node capacities chosen from a
different range. When the capacity range increases, the
distribution curve moves to the left of the plot due to
shorter multicast paths. The improvement in the distribu-
tion can be measured by how much the curve is shifted to
the left. At the beginning, a small increase in the capacity
range causes significant improvement in the distribution.
After the capacity range reaches a certain level (½4; 10� in our
simulations), the improvement slows down drastically.

Each curve has a single peak, and the right side of the
peak quickly decreases to zero. It means that the vast
majority of nodes are reached within a small range of path
lengths. We did not observe any multicast path whose
length was significantly larger than the average path length.

6.4 Average Path Length

Fig. 9 shows the average path length with respect to the
average node capacity. We also plot an artificial line, 1:5 lnn

ln c

with n ¼ 105, which upper-bounds the average path lengths
of CAM-Chord and CAM-Koorde, verifying Theorem 4 and
Theorem 6.

From the figure, when the average node capacity is less
than 10, the average path length of CAM-Chord is smaller
than that of CAM-Koorde; when the average node capacity
is greater than 12, the average path length of CAM-Koorde
is smaller than CAM-Chord. A smaller average path length
means more balanced multicast trees. Therefore, for small
node capacities, CAM-Chord multicast trees are more
balanced than CAM-Koorde multicast trees, and vice versa.
The reasons are explained as follows: On one hand, a
nonleaf CAM-Koorde node x may have less children than cx
because some neighbors may have already received the
multicast message from a different path. This tends to make
the depth of a CAM-Koorde multicast tree larger than that
of a CAM-Chord tree. On the other hand, a CAM-Chord
node x may split ðx; k� into uneven subsegments (i.e.,
subtrees) with a ratio up to cx (Lines 6-15 in Section 3.4).
This ratio of unevenness becomes small when the node

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 145

Fig. 6. Throughput versus average path length.

Fig. 7. Path length distribution in CAM-Chord. Legend “½x::y�” means the

node capacities are uniformly distributed in the range of ½x::y�.

Fig. 8. Path length distribution in CAM-Koorde. Legend “½x::y�” means

the node capacities are uniformly distributed in the range of ½x::y�.

Fig. 9. Average path length with respect to average node capacity.

capacities are small. Combining these two factors, CAM-
Chord creates better balanced trees for small node
capacities; CAM-Koorde creates better balanced trees for
large node capacities.

Next, we use CAM-Chord as an example (Section 5.2) to
study the impact of proximity optimization. In [33], Mukher-
jee found that the end-to-end packet delay on the Internet can
be modeled by a shifted Gamma distribution, which is a long-
tail distribution. The shape parameter varies from approxi-
mately 1.0 during low loads to 6.0 during high loads on the
backbone. In this paper, we set the shape parameter to be 5.0
and the average packet delay to be 50 ms. Fig. 10 compares the
average latency of delivering a multicast message from a
source to a receiver in CAM-Chord with or without the
proximity optimization. The simulation is performed for
different average node capacities, and the impact of proxi-
mity optimization is significant. In most cases, it reduces the
latency more than by half.

6.5 Impact of Dynamic Capacity Variation

In a real environment, the upload bandwidth of a node may
fluctuate. If we always use the same implicit multicast trees,
then the dynamic variation of node capacities will cause
variation in average throughput but not in average latency.
CAMs can also be easily modified to ensure throughput,
but allow latency variation. If a node’s capacity decreases, it
simply forwards messages to a smaller number of neigh-
bors, which automatically reshapes the implicit tree. If a
node’s capacity increases for a long time, the node can take
advantage of the improved capacity by increasing the
number of neighbors.

We define the capacity ratio as the actual capacity of a node
x at the real time divided by the claimed capacity cx that is
used to build the topology of CAMs. We define the latency
ratio as the actual delay at a given capacity ratio divided by the
“benchmark” delay when the capacity ratio is 100 percent,
namely, no dynamic capacity variation. Apparently, the
latency ratio is a function of the capacity ratio.

Fig. 11 shows the relation between the latency ratio and
the capacity ratio. When the capacity ratio is smaller, which
means the nodes cannot support as many children as they
have claimed, the nodes will forward the received messages

to a fewer number of neighbors such that each child will

still receive a sufficient amount of bandwidth. But, the

height of the implicit multicast tree will be larger, which

means a larger latency ratio. As show in the figure, when

the average capacity becomes 50 percent of the claimed one,

the average latency is increased by 47 percent and 42 percent

for CAM-Chord and CAM-Koorde, respectively. It shows

that the dynamic capacity variation will cause the latency

variation (instead of throughput variation).

7 CONCLUSION

This paper proposes two overlay multicast services, called

CAM-Chord and CAM-Koorde, which are capacity-aware

extensions of Chord and Koorde with multicast routines

that follow implicit, well-balanced trees to disseminate

multicast messages. One attractive property is that the

number of multicast children of a node is bounded by its

capacity, which may vary widely among the nodes. It

prevents the multicast throughput from degrading due to

the overload of low-capacity nodes. With each source node

having a separate, implicit multicast tree, the overall traffic

is well balanced across the network.

REFERENCES

[1] G. Banavar, M. Chandra, B. Nagarajaro, R. Strom, and C. Sturman,
“An Efficient Multicast Protocol for Content-Based Publish-
Subscribe System,” Proc. Int’l Conf. Distributed Computing Systems
’98, May 1998.

[2] Y.H. Chu, S. Rao, and H. Zhang, “A Case for End System
Multicast,” Proc. SIGMETRICS ’00, June 2000.

[3] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole,
“Overcast: Reliable Multicasting with an Overlay Network,” Proc.
Symp. Operating Systems Design and Implementation ’00, Oct. 2000.

[4] C. Kommareddy, S. Banerjee, and B. Bhattacharjee, “Scalable
Application Layer Multicast,” Proc. ACM SIGCOMM ’02, Aug.
2002.

[5] S.E. Deering, “Multicast Routing in a Datagram Internetwork,”
PhD thesis, Stanford Univ., Dec. 1991.

[6] S.E. Deering, D. Estrin, D. Farinacci, V. Jacobson, C.-G. Liu, and L.
Wei, “An Architecture for Wide-Area Multicast Routing,” Proc.
ACM SIGCOMM ’94, pp. 126-135, Aug. 1994.

[7] Y. Chu, S.G. Rao, S. Seshan, and H. Zhang, “Enabling Conferen-
cing Applications on the Internet Using an Overlay Multicast
Architecture,” Proc. ACM SIGCOMM ’01, Aug. 2001.

146 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 17, NO. 2, FEBRUARY 2006

Fig. 10. Proximity optimization. Fig. 11. Throughput versus latency.

[8] B. Zhang, S. Jamin, and L. Zhang, “Host Multicast: A Framework
for Delivering Multicast to End Users,” Proc. INFOCOM ’02, June
2002.

[9] G.-I. Kwon and J.W. Byers, “ROMA: Reliable Overlay Multicast
with Loosely Coupled TCP Connections,” Proc. INFOCOM ’04,
Mar. 2004.

[10] P. Mohapatra and Z. Li, “Impact of Topology on Overlay Routing
Service,” Proc. INFOCOM ’04, Mar. 2004.

[11] Y. Shavitt and T. Tankel, “On the Curvature of the Internet and Its
Usage for Overlay Construction and Distance Estimation,” Proc.
INFOCOM ’04, Mar. 2004.

[12] F. Baccelli, A. Chaintreau, Z. Liu, A. Riabov, and S. Sahu,
“Scalability of Reliable Group Communication Using Overlays,”
Proc. INFOCOM ’04, Mar. 2004.

[13] V. Pappas, B. Zhang, A. Terzis, and L. Zhang, “Fault-Tolerant
Data Delivery for Multicast Overlay Networks,” Proc. Int’l Conf.
Distributed Computing Systems ’04, Mar. 2004.

[14] S. Zhuang, B. Zhao, A. Joseph, R. Katz, and J. Kubiatowicz,
“Bayeux: An Architecture for Scalable and Fault-Tolerant Wide-
Area Data Dissemination,” Proc. 11th Int’l Workshop Network and
Operating System Support for Digital Audio and Video (NOSSDAV
’01), June 2001.

[15] R. Zhang and Y.C. Hu, “Borg: A Hybrid Protocol for Scalable
Application-Level Multicast in Peer-to-Peer Networks,” Proc.
NOSSDAV ’03, 2003.

[16] B.Y. Zhao, J.D. Kubiatowicz, and A.D. Joseph, “Tapestry: An
Infrastructure for Fault-Tolerant Wide-Area Location and Rout-
ing,” Technical Report UCB/CSD-01-1141, Univ. of California at
Berkeley, Apr. 2001.

[17] A. Rowstron and P. Druschel, “Pastry: Scalable, Decentralized
Object Location, and Routing for Large-Scale Peer-to-Peer
Systems,” Proc. Middleware ’01, Nov. 2001.

[18] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker, “Application-
Level Multicast Using Content-Addressable Networks,” Proc.
Second Int’l Workshop Network Group Comm. (NGC ’01), 2001.

[19] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker, “A
Scalable Content Addressable Network,” Proc. ACM SIGCOMM
’01, Aug. 2001.

[20] S. El-Ansary, L.O. Alima, P. Brand, and S. Haridi, “Efficient
Broadcast in Structured P2P Networks,” Proc. Int’l Workshop Peer-
to-Peer Systems ’03, Feb. 2003.

[21] M. Castro, M. Jones, A.-M. Kermarrec, A. Rowstron, M. Theimer,
H. Wang, and A. Wolman, “An Evaluation of Scalable Applica-
tion-Level Multicast Built Using Peer-to-Peer Overlays,” Proc.
INFOCOM ’03, Apr. 2003.

[22] S. Shi, J. Turner, and M. Waldvogel, “Dimensioning Server Access
Bandwidth and Multicast Routing in Overlay Networks,” Proc.
NOSSDAV ’01, June 2001.

[23] S. Shi and J. Turner, “Routing in Overlay Multicast Networks,”
Proc. INFOCOM ’02, June 2002.

[24] J. Albrecht, D. Kosti, A. Rodriguez, and A. Vahdat, “Bullet: High
Bandwidth Data Dissemination Using an Overlay Mesh,” Proc.
Symp. Operating Systems Principles ’03, Oct. 2003.

[25] S. Banerjee, C. Kommareddy, B. Bhattacharjee, K. Kar, and S
Khuller, “Construction of an Efficient Overlay Multicast Infra-
structure for Real-Time Applications,” Proc. INFOCOM ’03, Mar.
2003.

[26] A. Riabov, L. Zhang, and Z. Liu, “Overlay Multicast Trees of
Minimal Delay,” Proc. Int’l Conf. Distributed Computing Systems ’04,
Mar. 2004.

[27] H. Yamaguchi, A. Hiromori, T. Higashino, and K. Taniguchi, “An
Autonomous and Decentralized Protocol for Delay Sensitive
Overlay Multicast Tree,” Proc. Int’l Conf. Distributed Computing
Systems ’04, Mar. 2004.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,
“Chord: A Scalable Peer-to-Peer Lookup Service for Internet
Applications,” Proc. ACM SIGCOMM ’01, pp. 149-160, Aug. 2001.

[29] M. Kaashoek and D. Karger, “Koorde: A Simple Degree-Optimal
Distributed Hash Table,” Proc. Second Int’l Workshop Peer-to-Peer
Systems, Feb. 2003.

[30] K.P. Gummadi, R. Gummadi, S.D. Gribble, S. Ratnasamy, S.
Shenker, and I. Stoica, “The Impact of DHT Routing Geometry on
Resilience and Proximity,” Proc. ACM SIGCOMM ’03, Aug. 2003.

[31] S. Sen and J. Wong, “Analyzing Peer-to-Peer Traffic across Large
Networks,” Proc. Second Ann. ACM Internet Measurement Workshop,
Nov. 2002.

[32] S. Ratnasamy, “Routing Algorithms for DHTs: Some Open
Questions,” Proc. First Int’l Workshop Peer-to-Peer Systems, Mar.
2002.

[33] A. Mukherjee, “On the Dynamics and Significance of Low
Frequency Components of Internet Load,” Internetworking: Re-
search and Experience, vol. 5, no. 4, pp. 163-205, 1994.

Zhan Zhang received the MS degree in
computer science from the Fudan University of
China in 2003. Since 2003, he has been working
toward the Phd degree in computer and in-
formation science and engineering at the Uni-
versity of Florida. His current research fields
include sensor networks and overlay networks.

Shigang Chen received the BS degree in
computer science from the University of Science
and Technology of China in 1993. He received
the MS and PhD degrees in computer science
from the University of Illinois at Urbana-Cham-
paign in 1996 and 1999, respectively. After
graduation, he had worked with Cisco Systems
for three years before joining the University of
Florida as an assistant professor in 2002. His
research interests include network security,

quality of service, and sensor networks.

Yibei Ling received the BS degree in electrical
engineering from Zhejiang University in 1982,
the MS degree in statistics from Shanghai
Medical University (now Fudan University) in
1988, and the PhD degree in computer science
from Florida State University at Miami in 1995.
He is a research scientist in applied research,
Telcordia Technologies (formerly Bellcore). His
research interests include distributed computing,
query optimization in database management

system, scheduling, checkpointing, system performance, fault localiza-
tion and self-healing in mobile ad hoc networks, and power-aware
routing in mobile ad hoc networks. He has published several papers in
the IEEE Transactions on Computers, IEEE Transactions on Knowledge
and Data Engineering, IEEE Transactions on Biomedical Engineering,
SIGMOD, ICDE, PODC, and Information System. He is the architect, as
well as developer, of the voice subsystem of Telcordia Notification
System. He is a member of the IEEE.

Randy Chow received the BS degree in
electronic engineering from National Chiao-Tung
University, Taiwan, in 1968, and the MS and
PhD degrees from the Department of Computer
and Information Science at the University of
Massachusetts in 1974 and 1977, respectively.
He has been on the faculty in the Computer and
Information Science and Engineering Depart-
ment at the University of Florida since 1981,
where he is currently a full professor. His

research interests are distributed systems, computer networks, and
security with a focus on ontology-based information access models for
workflow systems. Dr. Chow’s recent affiliations include serving as a
program director for the Distributed Systems and Compiler Program at
the US National Science Foundation from 2001 to 2003 and a visiting
professor at National Chiao-Tung University form 2003 to 2004. He is a
member of the IEEE, ACM, and the editorial board of the Journal of
Information Science and Engineering.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

ZHANG ET AL.: CAPACITY-AWARE MULTICAST ALGORITHMS ON HETEROGENEOUS OVERLAY NETWORKS 147

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

