
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011 1253

Fit a Compact Spread Estimator
in Small High-Speed Memory

MyungKeun Yoon, Tao Li, Shigang Chen, and Jih-Kwon Peir

Abstract—The spread of a source host is the number of distinct
destinations that it has sent packets to during a measurement
period. A spread estimator is a software/hardware module on a
router that inspects the arrival packets and estimates the spread of
each source. It has important applications in detecting port scans
and distributed denial-of-service (DDoS) attacks, measuring the
infection rate of a worm, assisting resource allocation in a server
farm, determining popular Web contents for caching, to name
a few. The main technical challenge is to fit a spread estimator
in a fast but small memory (such as SRAM) in order to operate
it at the line speed in a high-speed network. In this paper, we
design a new spread estimator that delivers good performance
in tight memory space where all existing estimators no longer
work. The new estimator not only achieves space compactness,
but operates more efficiently than the existing ones. Its accuracy
and efficiency come from a new method for data storage, called
virtual vectors, which allow us to measure and remove the errors
in spread estimation. We also propose several ways to enhance
the range of spread values that the estimator can measure. We
perform extensive experiments on real Internet traces to verify the
effectiveness of the new estimator.

Index Terms—Network traffic measurement, spread estimation.

I. INTRODUCTION

T RAFFIC measurement and classification in high-speed
networks has many challenging problems [1]–[8]. In this

paper, we study the problem of spread estimation, which is to es-
timate the number of distinct destinations to which each source
has sent packets that are of all or certain specific types.

We define a contact as a source–destination pair, for which
the source has sent a packet to the destination. In the most gen-
eral terms, the source or destination can be an IP address, a port
number, or a combination of them together with other fields in
the packet header. The spread of a source is the number of dis-
tinct destinations contacted by the source during a measurement
period. A spread estimator is a software/hardware module on a
router (or firewall) that inspects the arrival packets and estimates
the spread of each source. It must implement two functions. The
first function is to store the contact information extracted from
the arrival packets. The second function is to estimate the spread

Manuscript received September 21, 2009; accepted August 10, 2010; ap-
proved by IEEE/ACM TRANSACTIONS ON NETWORKING Editor P. Crowley.
Date of publication October 11, 2010; date of current version October 14, 2011.
An earlier version of this paper appeared in the Proceedings of the IEEE Interna-
tional Conference on Computer Communications (INFOCOM), Rio de Janeiro,
Brazil, April 19–25, 2009.

M. Yoon is with the Department of Computer Engineering, Kookmin Univer-
sity, Seoul 136-702, Korea (e-mail: mkyoon@kookmin.ac.kr).

T. Li, S. Chen, and J.-K. Peir are with the Department of Computer and Infor-
mation Science and Engineering, University of Florida, Gainesville, FL 32611
USA (e-mail: tali@cise.ufl.edu; sgchen@cise.ufl.edu; peir@cise.ufl.edu).

Digital Object Identifier 10.1109/TNET.2010.2080285

of each source based on the collected information. Although our
discussion will focus on the source’s spread, we may change
the role of source and destination and use the same spread esti-
mator to measure the spread of a given destination, which is the
number of distinct sources that have contacted the destination.

A spread estimator has many important applications in
practice. Intrusion detection systems can use it to detect port
scans [9], in which an external host attempts to establish too
many connections to different internal hosts or different ports of
the same host. It can be used to detect distributed denial-of-ser-
vice (DDoS) attacks when too many hosts send traffic to a
receiver [10], i.e., the spread of a destination is abnormally
high. It can be used to estimate the infection rate of a worm by
monitoring how many addresses the infected hosts will each
contact over a period of time. A large server farm may use it
to estimate the spread of each server (as a destination) in order
to assess how popular the server’s content is, which provides a
guidance for resource allocation. An institutional gateway may
use it to monitor outbound traffic and determine the spread of
each external Web server that has been accessed recently. This
information can also be used as an indication of the server’s
popularity, which helps the local proxy to determine the cache
priority of the Web content.

The major technical challenge is how to fit a spread estimator
in a small high-speed memory. Today’s core routers forward
most packets on the fast forwarding path between network in-
terfaces that bypasses the CPU and main memory. To keep up
with the line speed, it is desirable to operate the spread estimator
in fast but expensive, size-limited SRAM [11]. Because many
other essential routing/security/performance functions may also
run from SRAM, it is expected that the amount of high-speed
memory allocated for spread estimation will be small. More-
over, depending on the applications, the measurement period
can be long, which requires the estimator to store an enormous
number of contacts. For example, to measure the popularity of
Web servers, the measurement period is likely to be hours or
even days. Hence, it is critical to design the estimator’s data
structure as compact as possible.

The past research meets the above challenge with several
spread estimators [11]–[13] that process a large number of con-
tacts in an ever smaller space. This paper adds a new member
that not only requires far less memory than the best known one,
but also operates much more efficiently. It is able to provide
good estimation accuracy in a tight space where all existing es-
timators fail. Our major contribution is a new methodology for
contact storage and spread estimation based on virtual vectors,
which use the available memory more efficiently for tracking
the contacts of different sources.

Do we need a new spread estimator when there are already
several? Consider the following scenario. Collected from the

1063-6692/$26.00 © 2010 IEEE

1254 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

main gateway at the University of Florida, Gainesville, on
an average day, the Internet traffic trace that we used in our
experiments has around 10 million distinct contacts from
3.5 million distinct external sources to internal destinations.
Now assume the router can only allocate 1 MB SRAM for the
spread estimator. On average, there are only 2.3 bits allocated
for tracking the contacts from each source. We classify the ex-
isting estimators into several categories based on how they store
the contact information: 1) storing per-flow information, such
as Snort [14] and FlowScan [10]; 2) storing per-source infor-
mation, such as bitmap algorithms [12] and one-level/two-level
algorithms1 [13]; and 3) mapping sources to the columns of a bit
matrix, where each column stores contacts from all sources that
are mapped to it, such as Online Streaming Module (OSM) [11].
Obviously, the first two categories will not work here because
2.3 bits are not enough to store the contacts of a source. As we
will discuss shortly, OSM is also ineffective in this scenario
because mapping multiple sources to one column introduces
significant irremovable errors in spread estimation. Our new
estimator uses a simple one-dimensional bit array. A virtual bit
vector is constructed from the array for each source. The virtual
vectors share bits uniformly at random and introduce uniform
errors in spread estimation that can be measured and removed.
Based on virtual vectors, a spread estimator is mathematically
developed and analyzed. The new estimator requires much
less computation and fewer memory accesses than OSM, yet
it can work in a very small memory where OSM cannot. Its
performance is evaluated by experiments using real Internet
traffic traces.

The rest of the paper is organized as follows. Section II
discusses the related work and the motivation for our solution.
Section III describes our new spread estimator. Sections IV
and V present the analytical and experimental results, re-
spectively. Section VI extends our estimator for larger spread
values. Section VII draws the conclusion.

II. EXISTING SPREAD ESTIMATORS

Snort [14] maintains a record for each active connection and a
connection counter for each source IP. Keeping per-flow state is
too memory-intensive for a high-speed router, particularly when
the fast memory allocated to the function of spread estimation
is small.

One-level/two-level algorithms [13] maintain two hash
tables. One stores all distinct contacts that occurred during
the measurement period, including the source and destination
addresses of each contact. The other hash table stores the source
addresses and a contact counter for each source address. A
probabilistic sampling technique is used to reduce the number
of contacts to be stored. However, instead of storing the actual
source/destination addresses in each sampled contact, one can
use bitmaps [12] to save space. Each source is assigned a
bitmap where a bit is set for each destination that the source
contacts. One can estimate the number of contacts stored in a
bitmap based on the number of bits set [12]. An index structure

1A probabilistic sampling technique is used in [13] to reduce the number of
contacts that are input to the estimator (at the expense of estimation accuracy).
Naturally, it also reduces the number of sources appearing in input contacts.
This technique can be equally applied to other estimators such as those in [12]
and the one to be proposed in this paper. When we say per-source state, we refer
to sources that appear in the contacts after sampling (if the sampling technique
is used).

is needed to map a source to its bitmap. It is typically a hash
table where each entry stores a source address and a pointer to
the corresponding bitmap. However, such a spread estimator
cannot fit in a tight space where only a few bits are available for
each source—not enough for a bitmap to work appropriately.

If we make each bitmap sufficiently long, we will have to re-
duce the number of them and there will not be enough bitmaps
for all sources. One solution is to share each bitmap among mul-
tiple sources. Consider a simple spread estimator that uses a
bit matrix whose columns are bitmaps. Sources are assigned to
columns through a hash function. For each contact, the source
address is used to locate the column and, through another hash
function, the destination address is used to determine a bit in
the column to be set. One can estimate the number of contacts
stored in a column based on the number of bits set. However,
the estimation is for contacts made by all sources that are as-
signed to the column, not for the contacts of a specific source
under query.

The information stored for one source in a column is the noise
for others that are assigned to the same column. One must re-
move the noise in order to estimate the spread correctly. To solve
this problem, OSM [11] assigns each source randomly to (typ-
ically three) columns through hash functions, and it sets one
bit in each column when storing a contact. A source will share
each of its columns with a different set of other sources. Con-
sequently, the noise (i.e., the bits set by other sources) in each
column will be different. Based on such difference, a method
was developed to remove the noise and estimate the spread of
the source [11].

OSM also has problems. Not only does it increase the over-
head by performing hash operations, making memory
accesses and using bits for storing each contact, but the noise
can be too much to be removed in a compact memory space
where a significant fraction of all bits (e.g., above 50%) are set.
The columns to which high-spread sources are assigned have
mostly ones; they are called dense columns, which present a
high level of noise for other sources.2 The columns to which
only low-spread sources are assigned are likely to have mostly
zeros; they are called sparse columns. As we observe in the ex-
periments, in a tight space, dense columns will account for a sig-
nificant fraction of all columns. The probability for a low-spread
source to be assigned to dense columns is not negligible. Since
these dense columns will have many bits set at common po-
sitions, the difference-based noise removal will not work, and
hence the spread estimation will be wrong. We will confirm the
above analysis by the experimental results in Section V.

Also related is the detection of stealthy spreaders using online
outdegree histograms in [15], which detects the event of collab-
orative address scan by a large number of sources, each scanning
at a low rate. It is able to estimate the number of participating
sources and the average scanning rate, but it cannot perform the
task of estimating the spread of each individual source in the ar-
rival packets.

III. DESIGN OF COMPACT SPREAD ESTIMATOR (CSE)

We first motivate the concept of virtual vectors that are used
to store the contact information. We then design our compact
spread estimator (CSE). Finally, we discuss how to store source
addresses.

2Note that each high-spread source produces � dense columns.

YOON et al.: FIT A COMPACT SPREAD ESTIMATOR IN SMALL HIGH-SPEED MEMORY 1255

A. Motivation for Virtual Vectors

Existing estimators divide the space into bitmaps and then
allocate the bitmaps to sources. If we use per-source bitmaps
and each bitmap has a sufficient number of bits, then the total
memory requirement will be too big. If we share bitmaps, it is
hard to remove the noise caused by sources that are assigned to
the same bitmap. Resolving this dilemma requires us to look at
space allocation from a new angle.

Our solution is to create a virtual bit vector for each source by
taking bits uniformly at random from a common pool of avail-
able bits. In the previous estimators, two bitmaps do not share
any bit. Two sources either do not cause noise to each other,
or cause severe noise when they share a common bitmap—they
share all bits in the bitmap. Each source experiences a different
level of noise that cannot be predicted. In our estimator, two
virtual vectors may share one or more (which is very unlikely)
common bits. While each source has its own virtual vector to
store its contacts, noise still occurs through the common bit be-
tween two vectors. However, there is a very nice property: Be-
cause the bits in virtual vectors are randomly picked, there is an
equal probability for any two bits from different vectors to be the
same physical bit. The probability for the contacts of one source
to cause noise to any other source is the same. When there are a
large number of sources, the noise that they cause to each other
will be roughly uniform. Such uniform noise can be measured
and removed. This property enables us to design a spread esti-
mator for a tight space where the previous estimators will fail.
The new estimator is not only far more accurate in spread esti-
mation, but also much more efficient in its online operations.

B. CSE: Storing Contacts in Virtual Vectors

Our CSE consists of two components: one for storing con-
tacts in virtual vectors, and the other for estimating the spread
of a source. The first component will be described here, and the
second in Section III-C.

CSE uses a bit array of size , which is initialized to zeros
at the beginning of each measurement period. The th bit in the
array is denoted as . We define a virtual vector of
size for each source address , where . It consists of

bits pseudo-randomly selected from

(1)
where , , are different hash functions whose
range is . They can be generated from a single
master hash function

(2)

where is an array of different random numbers, and is the
XOR operator.

When a contact is received, CSE sets one bit in ,
and the location of the bit is determined by both and .
More specifically, the source address is used to identify a
virtual vector , and the destination address is used to
determine a bit location in the virtual vector

(3)

From (2) and (3), we know that the th bit in vector is
at the following physical location in :

Hence, to store the contact , CSE performs the fol-
lowing assignment:

(4)

We stress that setting one bit by (4) is the only thing that
CSE does when storing a contact. It takes two hash opera-
tions and one memory access. The source’s virtual vector,
as defined in (1), is never explicitly computed until the
spread estimation is performed on an offline machine (to be
described shortly). The bit, which is physically at location

in , is logically considered as
a bit at location in the virtual vector .
Note that duplicate contacts will be automatically filtered
because they are setting the same bit and hence have no impact
on the information stored in . Multiple different contacts may
set the same physical bit. This is embodied in the probabilistic
analysis when we derive the spread estimation formula.

C. CSE: Spread Estimation

At the end of the measurement period, one may query for the
spread of a source , i.e., the number of distinct contacts that

makes in the period. Let be the actual spread of . The
formula that CSE uses to compute the estimated spread of
is

(5)

where is the fraction of bits in whose values are zeros, and
is the fraction of bits in whose values are zeros. The

values of and can be easily found by counting zeros in
and , respectively. The first item, , captures
the noise, which is uniformly distributed in and thus does not
change for different sources. The second item, ,
is the estimated number of contacts that are stored in ,
including the contacts made by and the noise.

We expect that queries are performed after is copied from
the router’s high-speed memory to an offline computer in order
to avoid interfering with the online operations. We will derive
(5) mathematically. Its accuracy and variance will be analyzed
in the next section.

Some additional notations are given as follows. Let be the
number of distinct contacts from all sources during the mea-
surement period, be the random variable for the number of
“0” bits in , and be the random variable for the number of
“0” bits in the virtual vector . Clearly, and

.
Let be the event that the th bit in remains “0”

at the end of the measurement period, and be the corre-
sponding indicator random variable. We first derive the proba-
bility for to occur and the expected value of . For an ar-
bitrary bit in , each of the contacts made by has a
probability of to set the bit as 1, and each of the contacts
made by other sources has a probability of to set it as 1.

1256 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

All contacts are independent of each other when setting bits in
. Hence

(6)
Since is the number of “0” bits in the virtual vector,

. Hence

(7)

as

as (8)

The above equation can be rewritten as

(9)

Since the bits in any virtual vector are selected from uni-
formly at random, the process of storing contacts in the vir-
tual vectors is to set bits randomly selected (with replacement)
from a pool of bits. The mathematical relation between and

has been given in [16] (in a database context) as follows:

(10)

where

(11)

Hence, (9) can be written as

(12)

We have a few approximation steps above. In practice, and
are likely to be very large numbers, the spread values that

are of interest are likely to be large, and will be chosen large.
The approximation errors that are accumulated in (12) can be
measured as

which is independent of and . This error is very small when
is reasonably large. For example, when MB, as shown

in Fig. 1, the error is only 0.25% when is 200.
Let and .

Equation (12) is rewritten as

Replacing and by the instance values and
, which are obtained from and , respectively, we

have the following estimation for , , and :

(13)

(14)

(15)

Fig. 1. Approximation error is very small when � is reasonably large.

According to [16, Theorem A4], is the maximum likeli-
hood estimator (MLE) of . Following a similar analysis, it is
straightforward to see that and are the maximum likelihood
estimators of and , respectively. is the noise, the esti-
mated number of contacts made by others but inserted in
due to bit sharing between virtual vectors, and estimates the
total number of contacts stored in , including the noise.

When is close to zero, it may happen with a small proba-
bility that is greater than due to statistical variance. In
this case, we set .3

D. System Architecture

The spread estimation system consists of a sampling module,
CSE, and a module for storing distinct source addresses (SSA).
CSE has two submodules: one for storing contacts (CSE-SC),
and the other for spread estimation (CSE-SE), which have been
described in Section III-B and III-C. CSE-SC is located in the
high-speed memory (such as SRAM) of a router, and CSE-SE
is located on an offline computer answering spread queries.

The sampling module is used to handle the mismatch between
the line speed and the processing speed of CSE-SC. In case
CSE-SC cannot keep up with the line speed, the source/desti-
nation addresses of each arriving packet will be hashed into a
number in a range . Only if the number is smaller than
a threshold , the contact is forwarded to CSE-SC. The
threshold can be adjusted to match CSE-SC with the line speed.
The final estimated spread of a source will become . The
focus of this paper is on CSE, assuming an incoming stream of
contacts, regardless whether it comes from a sampling module
or not.

Most applications, such as those we discuss in Section I, are
interested in high-spread sources. For them, we do not have to
invoke SSA for each packet. When CSE-SC stores a contact at
a bit in , only if the bit is set from “0” to “1”, the source
address is passed to the SSA module, which checks whether
the address has already been stored and, if not, keeps the ad-
dress. Compared to CSE-SC, SSA operates infrequently. First,
numerous packets may be sent from a source to a destination in
a TCP/UDP session, but only the first packet may invoke SSA
because the remaining packets will set the same bit. Second,
while a source may send thousands or even millions of packets
through a router, the number of times its address is passed to
SSA will be bounded by (which is the number of bits in the
source’s virtual vector). Hence, SSA can be implemented in the
main memory thanks to its infrequent operation.

3Such an estimation still provides useful information. It indicates that � is
close to zero with high probability.

YOON et al.: FIT A COMPACT SPREAD ESTIMATOR IN SMALL HIGH-SPEED MEMORY 1257

For CSE-SE to work, and should be chosen large enough
such that the noise introduced by other sources does not set all
(or most) bits in a virtual vector. Hence, it is unlikely that the
address of a high-spread source will not be stored in SSA. For
example, even when only 10% of the bits in a virtual vector are
not set by noise, for a source making 100 distinct contacts, the
probability for none of its contacts being mapped to those 10%
of bits is merely .

IV. ANALYSIS

We first study the mean and variance of and , based on
which we analyze the accuracy of the spread estimation .

A. Mean and Variance of and

After setting bits randomly selected from a pool of bits,
Whang [16] uses to estimate the value of and
gives the following results:

Since , we have

(16)

(17)

If we choose an appropriate memory size such that
and is negligible when compared to ,

then , which is indeed the average noise that
a virtual vector of size will receive when all contacts are
evenly distributed across the space of bits. When is large,
the standard deviation, which is the square root of , is
insignificant when compared to the mean.

Next, we study . Let . Equation (8) can
be rewritten as

(18)

We derive in Appendix A, and it is

(19)

In (14), is a function of . We expand the right-hand side
of (14) by its Taylor series about

(20)
Since , the mean of the second term in (20) is 0.
Therefore, we keep the first three terms when computing the
approximated value for

TABLE I
BIAS WITH RESPECT TO � AND �

by definition. Applying (19), we have

(21)

If is large enough such that is negligible,
then . Recall that .
Hence, . In Section IV-B, we
will characterize more precisely the mean of and how much it
deviates from the true value of .

To derive the variance of , we keep the first two items on
the right-hand side of (20)

(22)

The combined impact of and on the variance of
will be studied next.

B. Estimation Bias and Standard Deviation

Based on the means of and derived previously, we ob-
tain the mean of the spread estimation

(23)

The estimation bias is

(24)

As an example, for , MB, and ,
600, or 800, the bias with respect to is shown in Table I. It is
very small when compared to the true spread .

The variance of is

(25)

We have already obtained , , , and
, and thus only need to derive . Recall that

and . We expand

1258 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

and by their Taylor series about
and , respectively

(26)

From (16), (17), (21), (22), (25), and (26), we can obtain the
closed-form approximation of , which we omit. The stan-
dard deviation, divided by to show the relative value, is

(27)

We have made a number of approximations, particularly the
truncation of less significant items in the Taylor series when de-
riving , , , , and . The stan-
dard deviation embodies all those approximations. In Section V,
Figs. 3–6, we will show the numerical values of the standard
deviation calculated from (27) and compare them to the values
measured from the experiments. The result demonstrates that
the analytical approximations only introduce minor error when
the source spread is not too small.

V. EXPERIMENTS

We evaluate CSE through experiments using real Internet
traffic traces. Our main goal in this paper is to provide a good
spread estimator that can work in a small memory. In most
of our experiments, the memory size, when averaging over
all sources appearing in the input stream of contacts, ranges
from 1.15 to 9.21 bits per source. Existing estimators that keep
per-flow or per-source state [12], [13] will not work here as
we have explained in Section II. The only related work that
can still be implemented in such a small memory is OSM [11].
However, as the experimental results will demonstrate, it does
not work well. Hence, CSE is valuable in the sense that it
substantially extends the low end of the memory requirement
for the function of spread estimation in practice.

Fig. 2. Traffic distribution. Each point shows the number of sources having a
certain spread value.

It should be noted that CSE makes two hash operations and
one memory access for storing each contact, whereas OSM
makes hash operations and memory accesses, where is
typically 3. While CSE’s efficient online operations are clearly
advantageous for high-speed routers, our evaluation will focus
on the area that is less quantified so far—the accuracy of spread
estimation.

A. Experiment Setup

We obtained inbound packet header traces that were collected
through Cisco’s NetFlow from the main gateway at the Univer-
sity of Florida for six days. We implemented CSE and OSM and
executed them with the input of the six days’ data. The experi-
mental results are similar for those days. In this section, we will
only present the results for the first day.

In our experiments, the source of a contact is the IP address
of the packet sender, and the destination is the IP address of the
receiver. The traffic trace on April 1, 2005, has 3 558 510 dis-
tinct source IP addresses, 56 234 distinct destination addresses,
and 10 048 129 distinct contacts. The average spread per source
is 2.84; namely, each source makes 2.84 distinct contacts on av-
erage. Fig. 2 shows the number of sources at each spread value
in log scale. The number of sources decreases exponentially as
the spread value increases from 1 to around 500. After that, there
is zero, one, or a few sources for each spread value.

We always allocate the same amount of memory to CSE and
OSM for fair comparison. In each experiment, we feed the con-
tacts extracted from the traffic trace to CSE or OSM, which
stores the contact information in its data structure (located in
SRAM or high-speed cache memory when deployed in a real
router). The source addresses will be recorded in a separate data
structure (located in the main memory because the operations
for recording source addresses are performed infrequently as
explained in Section III-D). After all contacts are processed, we
use CSE or OSM to estimate the spread of each recorded source
(which should be performed on an offline computer such as the
network management center in practice).

B. Accuracy of Spread Estimation

The first set of experiments compare CSE and OSM in the
accuracy of their spread estimations. CSE has two configurable
parameters: the memory size and the virtual vector size .
We perform four experiments with , 1, 2, and 4 MB,
respectively. In each experiment, we choose a value for that
minimizes the standard deviation as defined in (27) at ,
which is the middle point of the range (0, , 500) in which

YOON et al.: FIT A COMPACT SPREAD ESTIMATOR IN SMALL HIGH-SPEED MEMORY 1259

Fig. 3. � � ��� MB. Each point in the first plot (CSE) or the second plot (OSM) represents a source, whose �-coordinate is the true spread � and �-coordinate
is the estimated spread ��. The third plot shows the bias of CSE and OSM, which is the measured ���� � �� with respect to �. The fourth plot shows the standard

deviation, which is the measured ��	������ for CSE and OSM, together with the numerically calculated standard deviation for CSE based on (27) and (25).

Fig. 4. � �
 MB. See the caption of Fig. 3 for explanation.

Fig. 5. � � � MB. See the caption of Fig. 3 for explanation.

Fig. 6. � � � MB. See the caption of Fig. 3 for explanation.

the spreads of most sources fall (see Fig. 2). For example, for
MB, the value of that minimizes the standard deviation

at is calculated from (27) to be 286.
OSM also has two configurable parameters: the memory

size and the column size (the number of rows in the bit
matrix). The original paper does not provide a means to de-
termine the best column size, but it suggests that 64 bits are
typical. We tried many other sizes, and the performance of
OSM under different column sizes will be presented shortly.
After comparison, we choose the column size to be 128, which
we believe is better than or comparable to other sizes for our
experiments.

Figs. 3–6 present the experimental results when the memory
allocated is 0.5, 1, 2, and 4 MB, respectively. Each figure has

four plots from left to right. Each point in the first plot (CSE) or
the second plot (OSM) represents a source, whose -coordinate
is the true spread and -coordinate is the estimated spread .
The line of is also shown. The closer a point is to the
line, the more accurate the spread estimation is. To make the
figure legible, when there are too many sources having a certain
spread , we randomly pick five to show in the first two plots.
The third and fourth plots present the bias , and the stan-
dard deviation measured in the experiment, respec-
tively. Because there are too few sources for some spread values
in our Internet trace, we divide the horizontal axis into measure-
ment bins of width 25 and measure the bias and standard devia-
tion in each bin. To verify the analytical result in Section IV, we
also show the standard deviation numerically calculated from

1260 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 7. Left plot shows the bias of CSE, which is the measured ���� � ��
with respect to �. Right plot shows the standard deviation of CSE, which is the

measured ���������.

(27) and (25) as the curve under title “CSE_std_cal” in the
fourth plot. We have the following experimental results.

• First and second plots: CSE works far better than OSM
when the allocated memory is small. As the memory
size increases, the performance of OSM improves and
approaches toward the performance of CSE.

• Third and fourth plots: Both the bias and the standard devi-
ation of CSE are much smaller than those of OSM. More-
over, the third plot shows that OSM is no longer a nonbias
estimator when the memory is small. In fact, if we compare
the absolute error (that is not shown in the figures),
the maximum absolute errors of CSE over the measure-
ment bins are smaller than the average absolute errors of
OSM in all four experiments.

• Fourth plot: For CSE, the numerically calculated stan-
dard deviation, which is the curve titled “CSE_std_cal,”
matches well with the experimentally measured value,
which is the curve titled “CSE_std_dev.” It shows that
the approximations made in the analysis do not introduce
significant error.

C. Impact of Different Values on Performance of CSE

The second set of experiments study the impact of different
virtual-vector sizes on the performance of CSE. We let

MB and vary the value of from 200 to 1000 while keeping the
other parameters the same as in the previous set of experiments.

Fig. 7 presents the bias and the standard deviation of CSE
under different values. The experimental results show that the
estimation bias of CSE stays close to zero and the standard de-
viation changes only slightly for a wide range of values from
200 to 500. However, when becomes too large (such as 1000),
both the estimation bias and the standard deviation jump up. We
will further study the impact of large values in Section VI.

D. Impact of Different Column Sizes on Performance of OSM

The third set of experiments demonstrate the impact of dif-
ferent column sizes on the performance of OSM. We let

MB and vary the column size from 64 to 512 while keeping
the other parameters the same as in the first set of experiments.
Fig. 8 presents the bias and the standard deviation of OSM. None
of the values makes OSM a nonbias estimator. When is too
large (such as 512), both bias and standard deviation are large.
When is too small (such as 64), its estimated spread does not
go beyond 267, as shown in the left plot of Fig. 9. Comparing

and , the former leads to a much larger stan-
dard deviation, as shown in the right plot of Fig. 8. The impact
of larger deviation can also be seen by comparing the right plot

Fig. 8. Left plot shows the bias of OSM, which is the measured ���� � ��
with respect to �. Right plot shows the standard deviation of OSM, which is the

measured ���������.

Fig. 9. Left plot shows the distribution of ��� ��� for all sources under OSM
when � � �	, where � and �� are the true spread and the estimated spread,
respectively. Right plot shows the distribution of ��� ��� OSM when � �
��.

TABLE II
FALSE POSITIVE RATIO AND FALSE NEGATIVE RATIO

WITH RESPECT TO MEMORY SIZE

of Fig. 9, where , and the second plot in Fig. 4, where
.

E. Application: Detecting Address Scan

Our last set of experiments compare CSE and OSM using
an application for address scan detection. Suppose the security
policy is to report all external sources that contact 250 or more
internal destinations during a day. If a source with a spread less
than 250 is reported, it is called a false positive. If a source with
a spread 250 or above is not reported, it is called a false negative.
The false positive ratio (FPR) is defined as the number of false
positives divided by the total number of sources reported. The
false negative ratio (FNR) is defined as the number of false neg-
atives divided by the number of sources whose spreads are 250
or more. The experimental results are shown in Table II. Clearly,
CSE outperforms OSM by a wide margin when we take both
FPR and FNR into consideration. The FNR is zero for OSM
when MB. That is because OSM is a bias estimator in
such a small memory. Its FPR is 66.2%.

CSE also has nonnegligible FPR and FNR because its esti-
mated spread is not exactly the true spread. To accommodate
impreciseness to a certain degree, the security policy may be re-
laxed to report all sources whose estimated spreads are

or above, where . If a source whose true
spread is less than gets reported, it is called
an -false positive. If a source with a true spread 250 or more

YOON et al.: FIT A COMPACT SPREAD ESTIMATOR IN SMALL HIGH-SPEED MEMORY 1261

Fig. 10. CSE with � � � MB. The four plots use � � ���, 300, 500, and 1000, respectively, from left to right.

Fig. 11. CSE with a sampling module and � � � MB. The three plots use � � ���, 1/4, and 1/16, respectively, from left to right.

TABLE III
� � ���, FALSE POSITIVE RATIO AND FALSE NEGATIVE RATIO WITH

RESPECT TO MEMORY SIZE

TABLE IV
� � ���, FALSE POSITIVE RATIO AND FALSE NEGATIVE RATIO WITH

RESPECT TO MEMORY SIZE

is not reported, it is called an -false negative. The FPR and
FNR are defined the same as before. The experimental results
for are shown in Table III, and those for are
shown in Table IV, where the FPR and FNR for CSE are merely
0.1% and 0.6%, respectively, when MB.

VI. ESTIMATION RANGE EXTENSION

We give an upper bound on the source spread that CSE can
estimate and discuss the approaches that can increase the upper
bound.

A. Estimation Range

The size of a virtual vector determines the maximum spread
that CSE can estimate. When the spread of a source is too
large such that all bits in the virtual vector are set to “1,” then

, and the item in (5) becomes undefined. Hence,
for CSE to work, there must be at least one zero in the virtual
vector, which sets an upper bound on the maximum spread that
CSE can estimate. The maximum value that (5) can produce is

. It happens when there is only one zero in
the virtual vector of a source (such that). When all
bits in the virtual vector are ones (such that), we set the
source degree to the maximum value of the estimation range,

.

B. Increasing Virtual Vector Size

One way to increase the estimation upper bound,
, is to enlarge the virtual vector size . We repeat the ex-

periment in Section V-B for CSE with MB. This time
we vary from 200 to 1000, which extends the estimation upper
bound from to . The ex-
perimental results are shown in Fig. 10. When , the first
plot shows that the maximum source degree that CSE can mea-
sure is slightly below 1000. As we increase , CSE can measure
increasingly larger source degrees. However, it comes with a
penalty. When becomes too large, the estimation bias and the
standard deviation increase significantly for sources with rela-
tively small spreads, as we have demonstrated in Fig. 7, where

.

C. Adopting a Sampling Module

Another approach to increase the estimation range is to adopt
a sampling module. The sampling approach has been used in
[12] and [13]. We show that it can also work for CSE. Let
be the sampling probability. Each contact is hashed
into a number in a range . Only if the number
is smaller than , the contact is recorded by CSE. The
estimated spread becomes , where is computed from (5).
The estimation upper bound becomes ,
which increases as decreases.

The experimental results of CSE with sampling are presented
in Fig. 11. The three plots have sample probabilities, 1/2, 1/4,
and 1/16, respectively. The results demonstrate that when the
sampling probability becomes smaller, the estimation range in-
creases and the estimation accuracy is improved for sources with
large spreads. However, the left plot of Fig. 12 shows that when

1262 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 12. Left plot shows the standard deviation of the spread values estimated

by CSE with sampling probability �. It is the value of ��������� measured
from the experiments. Right plot is the bias of the estimated spreads. It is the
average difference between the estimated spread and the actual spread, i.e., the
measured ���� � �� value.

is too small (such as 1/16), the standard deviation of the esti-
mation worsens for sources with relatively small spreads (e.g.,

). For these sources, we observe from the right plot of
Fig. 12 that the absolute value of the estimation bias tends to be
larger when is smaller.

D. Maximum Likelihood Estimation

The previous two approaches are able to extend the estimation
range, but once the estimation range is extended too large, the
estimation accuracy for small spreads deteriorates. To solve this
problem, we propose another approach, called Multiple CSE
(MCSE), which simultaneously performs multiple independent
CSE estimations with different sampling probabilities and se-
lects the best of the estimations based on a maximum likelihood
method.

The bit array is divided into a number of bit segments,
denoted as , . We use to denote the th bit of

. Each segment is assigned a sampling probability , such
that . The size of , denoted as , is proportional
to . Namely, . Each segment
serves as the storage of an independent CSE estimator that has
a sampling probability . There are in total estimators. An
estimator with a larger sampling probability will need to store
more contacts, and hence it requires a larger segment size .

One way to choose the sampling probabilities is to set
such that each bit segment provides a different estima-

tion range. The segments with smaller sampling probabilities
have larger estimation ranges. They are suitable for sources with
larger spreads. The segments with larger sampling probabilities
have smaller estimation ranges. They are suitable for sources
with smaller spreads due to the relatively small standard devia-
tions in the estimation.

First, we describe how to store the contacts in the bit seg-
ments. Consider an arbitrary source address . A virtual vector
of size is defined for in each bit segment. The virtual
vector for in is constructed in the same way as we do
in Section III-B except that in the formulas there is replaced
with .

All estimators share the same sampling module, which is
implemented as follows: When a contact is received,
it is hashed into a number in a range . Let

. If for a certain
value of , then the contact will be stored in , i.e.,
a bit in will be set to one. If ,

then the contact will not be stored in any bit segment. Clearly,
each contact is stored in at most one segment.

After the sampling module determines that a contact
should be stored in , we decide the bit to

be set in the same way as depicted in Section III-B.
Specifically, the following assignment is performed:

.
Next, we describe how to estimate the spread of a source

at the end of a measurement period. Each segment provides
an estimation as follows:

(28)

where is the fraction of bits in whose values are zeros,
and is the fraction of bits in the virtual vector of whose
values are zeros. Let be the number of bits in the virtual
vector whose values are zeros. . In total, we have

estimations: , which is called the estimation
vector.

Now, the problem is how to determine which estimation we
should use. Our solution is a maximum likelihood method. For
each estimation , we compute the following likelihood value:
If is indeed , what is the probability for us to observe
the current estimation vector? In other words, what is the prob-
ability for the virtual vectors of the source in the segments
to take their current states, , for ?

Let be the probability for us to observe
as the spread estimation from under the condition that

. Let and be the
probabilities for us to observe and under the condition
that , respectively

(29)

where is the probability that an arbitrary bit in the virtual
vector of (constructed in) remains zero at the end of the
measurement period. Each contact made by and stored in
has a probability of to set the bit as one. Each contact stored
in but not made by has a probability of to set the
bit as one. Hence, can be approximated as

(30)

where is an estimation for the number
of contacts stored in , according to (10).

Under the condition that , the probability for us to
observe the current estimation vector is

(31)

YOON et al.: FIT A COMPACT SPREAD ESTIMATOR IN SMALL HIGH-SPEED MEMORY 1263

Fig. 13. Three plots show the results of MCSE with � � �, 3, and 4, respectively, when � � � MB.

Fig. 14. Left plot shows the standard deviation of the spread values estimated
by MCSE whose number of bit segments varies from 2 to 4. The standard de-

viation is the value of ������	�� measured from the experiments. The right
plot is the bias of the estimated spreads. It is the average difference between the
estimated spread and the actual spread, i.e., the measured ���� � �	 value.

After , , is computed, we select the largest one,
, , and use as the final estimation for

the spread of the source.
Fig. 13 presents the experimental results of MCSE. In the ex-

periment for the first plot in the figure, the bit array is di-
vided into two segments whose sampling probabilities are 1/2
and 1/4, respectively. In the experiment for the second plot,
is divided into three segments whose sampling probabilities are
1/2, 1/4, and 1/8, respectively. In the experiment for the third
plot, is divided into four segments whose sampling proba-
bilities are 1/2, 1/4, 1/8, and 1/16, respectively. The three plots
demonstrate that when the number of segments increases in
MCSE, the estimation range increases and the estimation accu-
racy is improved for sources with large spreads. However, un-
like CSE with sampling in Section VI-C, the estimation accu-
racy for sources with relatively small spreads is not significantly
reduced. This can be seen by comparing how closely the points
in each plot are located to the line of . Recall that each
source is represented by one point whose -coordinate is the
source’s actual spread and -coordinate is the estimated spread.
The shape of the point distribution for is similar across
the plots, which indicates that the standard deviation and the
bias of spread estimation do not differ much when increases.
This observation is confirmed by the quantitative measurement
in Fig. 14 for sources with small spreads. The first plot of the
figure shows that when increases from 2 to 4, the standard de-
viation in spread estimation tends to increase only slightly. The
second plot shows that the estimation bias does not noticeably
change as increases.

When we compare the third plot in Fig. 13 (MCSE whose
largest sampling probability is 1/16) to the third plot in Fig. 11
(CSE whose sampling probability is 1/16), it is evident that
MCSE has better estimation accuracy when . This can

also be seen by comparing their standard deviation curves in
Figs. 14 (the case of) and 12 (the case of).

VII. CONCLUSION

This paper proposes a new spread estimator that is able to
provide good accuracy in a small memory where all existing
estimators fail. It not only achieves space compactness, but also
operates more efficiently than the existing work. Our main tech-
nical contributions include a novel data structure based on vir-
tual vectors, its operation protocol, and the corresponding for-
mula for spread estimation, which is statistically analyzed and
experimentally verified.

APPENDIX

VARIANCE OF

We derive the variance of . The probability for and ,
, to happen simultaneously is

Since and , we have

Based on (7) and the equation above, we have

1264 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 19, NO. 5, OCTOBER 2011

(32)

REFERENCES

[1] C. Estan and G. Varghese, “New directions in traffic measurement and
accounting,” in Proc. ACM SIGCOMM, Oct. 2002, pp. 323–336.

[2] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen, “Sketch-based
change detection: Methods, evaluation, and applications,” in Proc.
IMC, 2003, pp. 234–247.

[3] C. R. Meiners, A. Liu, and E. Torng, “Topological transformation ap-
proaches to optimizing TCAM-based packet classification systems,” in
Proc. ACM SIGMETRICS, Jun. 2009, pp. 73–84.

[4] Q. Dong, S. Banerjee, J. Wang, and D. Agrawal, “Wire speed packet
classification without TCAMs: A few more registers (and a bit of logic)
are enough,” in Proc. ACM SIGMETRICS, Jun. 2007, pp. 253–264.

[5] A. Kumar, M. Sung, J. Xu, and J. Wang, “Data streaming algorithms
for efficient and accurate estimation of flow size distribution,” in Proc.
ACM SIGMETRICS, 2004, pp. 177–188.

[6] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-code bloom
filter for efficient per-flow traffic measurement,” in Proc. IEEE IN-
FOCOM, Mar. 2004, vol. 3, pp. 1762–1773.

[7] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lundn, “Online iden-
tification of hierarchical heavy hitters: Algorithms, evaluation, and ap-
plication,” in Proc. ACM SIGCOMM IMC, Oct. 2004, pp. 101–114.

[8] C. Hu, S. Wang, J. Tian, B. Liu, Y. Cheng, and Y. Chen, “Accurate
and efficient traffic monitoring using adaptive non-linear sampling
method,” in Proc. IEEE INFOCOM, Apr. 2008, pp. 26–30.

[9] S. Staniford, J. Hoagland, and J. McAlerney, “Practical automated
detection of stealthy portscans,” J. Comput. Security, vol. 10, pp.
105–136, 2002.

[10] D. Plonka, “FlowScan: A network traffic flow reporting and visualiza-
tion tool,” in Proc. USENIX LISA, 2000, pp. 305–317.

[11] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and desti-
nations in high-speed networks: Algorithms, analysis and evaluation,”
IEEE J. Sel. Areas Commun., vol. 24, no. 10, pp. 1840–1852, Oct. 2006.

[12] C. Estan, G. Varghese, and M. Fish, “Bitmap algorithms for counting
active flows on high-speed links,” IEEE/ACM Trans. Netw., vol. 14, no.
5, pp. 925–937, Oct. 2006.

[13] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New streaming
algorithms for fast detection of superspreaders,” in Proc. NDSS, Feb.
2005, pp. 149–166.

[14] M. Roesch, “Snort-lightweight intrusion detection for networks,” in
Proc. 13th USENIX Syst. Admin. Conf., 1999, pp. 229–238.

[15] Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D. Song,
and M. Kao, “Detecting stealthy spreaders using online outdegree his-
tograms,” in Proc. IEEE Int. Workshop Quality Service, Jun. 2007, pp.
145–153.

[16] K. Whang, B. Vander-Zanden, and H. Taylor, “A linear-time proba-
bilistic counting algorithm for database applications,” Trans. Database
Syst., vol. 15, no. 2, pp. 208–229, Jun. 1990.

MyungKeun Yoon received the B.S. and M.S. de-
grees in computer science from Yonsei University,
Seoul, Korea, in 1996 and 1998, respectively, and the
Ph.D. degree in computer engineering from the Uni-
versity of Florida, Gainesville, in 2008.

He is an Assistant Professor with the Department
of Computer Engineering, Kookmin University,
Seoul, Korea. He worked for the Korea Financial
Telecommunications and Clearings Institute, Seoul,
Korea, from 1998 to 2010. His research interests
include computer and network security, network

algorithms, and mobile networks.

Tao Li received the B.S. degree in computer science
from the University of Science and Technology of
China, Hefei, China, in 2007, and is currently pur-
suing the Ph.D. degree at the University of Florida,
Gainesville.

His advisor is Dr. Shigang Chen, and his re-
search interests include network security and sensor
networks.

Shigang Chen received the B.S. degree in com-
puter science from the University of Science and
Technology of China, Hefei, China, in 1993, and the
M.S. and Ph.D. degrees in computer science from
the University of Illinois at Urbana-Champaign in
1996 and 1999, respectively.

After graduation, he was with Cisco Systems for
three years before joining the University of Florida,
Gainesville, in 2002, where he is currently an Asso-
ciate Professor with the Department of Computer and
Information Science and Engineering. His research

interests include network security and wireless networks.
Dr. Chen was a Guest Editor for Wireless Networks and the IEEE

TRANSACTIONS ON VEHICULAR TECHNOLOGIES. He served as a Technical
Program Committee (TPC) Co-Chair for the Computer and Network Security
Symposium of IEEE IWCCC 2006, a Vice TPC Chair for IEEE MASS 2005, a
Vice General Chair for QShine 2005, a TPC Co-Chair for QShine 2004, and a
TPC member for many conferences including IEEE ICNP, IEEE INFOCOM,
IEEE ICC, IEEE GLOBECOM, etc. He received the IEEE Communications
Society Best Tutorial Paper Award in 1999 and a National Science Foundation
(NSF) CAREER Award in 2007.

Jih-Kwon Peir received the Ph.D. degree in com-
puter science from the University of Illinois at Ur-
bana-Champaign in 1986.

After graduation, he joined the IBM T. J. Watson
Research Center, Yorktown Heights, NY, as a Re-
search Staff Member. At IBM, he participated in the
design of high-performance mainframe computers.
From 1992 to 1994, he was with the Computer
and Communication Lab in Taiwan as a Deputy
Director of the computer system division, where
he was in charge of the development of an Intel

Pentium-based symmetric multiprocessor system. He is currently an Associate
Professor with the Computer and Information Science and Engineering Depart-
ment, University of Florida, Gainesville. His main research interests include
high-performance computer system architectures/microarchitectures, network
and graphics processors, and their memory hierarchy designs.

Dr. Peir served on the Editorial Board of the IEEE TRANSACTIONS ON

PARALLEL AND DISTRIBUTED SYSTEMS. He also serves as a Subject Area
Editor for the Journal of Parallel and Distributed Computing.

