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Abstract— A firewall’s complexity is known to increase with
the size of its rule set. Complex firewalls are more likely to have
configuration errors which cause security loopholes. Until now,
two rules can be merged into one only when they are exactly
same for all the dimensions except one for which each value of
two rules should be adjacent to each other. In this paper, we
propose a new and aggressive reduction algorithm which finds
a group of rules and replace it with a smaller new group so
that the total size of rule set can be reduced. This can not be
achievable by any previous work because all of them eliminate
rules only when these rules are redundant by other rules in the
same rule set. The proposed algorithm is also orthogonal to the
previous works so that it can be used to supplement them.
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I. INTRODUCTION

Firewalls are the cornerstones of corporate intranet security.
Once a company acquires a firewall, a system administrator
must configure and manage it according to a security policy
that meets the company’s needs. Configuration is a crucial
task, probably the most important factor to determine a secu-
rity level [1]. A firewall rule set consists of a large number
of rules. A single rule typically includes a group of source
addresses, a group of destination addresses, a group of source
ports, a group of destination ports, a group of services and an
appropriate action. The action can be either “accept” or “deny.”
For the sake of brevity, we consider only “accept” or “deny,”
while recent firewalls can support other types of action such
as writing a log record, applying a proxy, and implementing a
virtual private network (VPN) [20]. In many firewalls, the rule
set is order-sensitive: the firewall checks if the first rule in the
rule set applies to a new session. If so, the packets are either
dropped or let through according to the action of the first rule.
Otherwise, the firewall checks if the second rule applies, and
so forth [11].

Analyzing firewall rule sets from various organizations in
the telecommunications, financial institutes, etc., Wool quan-
tified the complexity of a rule set in terms of the numbers
of rules, network objects, and interfaces [2]. While firewall
managers intuitively classify a rule set as “complicated” or
“simple,” Wool quantifies this intuition into a concrete measure
of rule complexity (RC) as follows [2]:

RC = Rules + Objects +
Interfaces × (Interfaces − 1)

2
(1)

where Rules is the raw number of rules in the rule set,
Objects is the number of network objects, and Interfaces

is the number of interfaces on the firewall. As complex rule
sets easily cause mistakes and mal-configurations in firewall
security, it is very important to configure the rule set as small
as possible for enhancing firewall security, or the security of
enterprise networks [2]. In most real world networks, because
the numbers of Interfaces and Objects are relatively small
compared to the number of Rules, it is important to make
Rules small.

In this paper, we propose how to reduce the size of rule
set so that network security can be enhanced. To reduce rule
set, previous works rely on merging two rules into one only
when they are all the same except one dimension for which
the values of the two rules should be adjacent to each other.
To the contrary, our approach is new and aggressive in that it
finds a group of rules and replace it with a smaller new group.
Our algorithm is also orthogonal to the previous works like
[4] so that it can be used together with them to achieve more
optimal result. The proposed algorithm can be applied to a
general classification problem as well as firewall’s rule set.

The rest of paper is organized as follows. Section II surveys
the related work. Section III proposes simple substitutional
optimization (SSO), which covers the basic idea of the sub-
stituting approach to reduce the size of rule set. Section IV
presents complex substitutional optimization (CSO), which is
based on SSO and the algorithms from [4]. Section V draws
the conclusion.

II. RELATED WORKS

Gouda and Liu proposed the firewall decision diagram
(FDD) to represent a rule set as a tree structure. This diagram
makes it possible to check the consistency and completeness of
the rule set systematically. They developed a sequence of five
algorithms that can be applied to FDD to generate a compact
sequence of rule set while maintaining the consistency and
completeness of the original rule set [4]. They also proposed
a method for diverse firewall design and presented algorithms
to detect discrepancies between two rule sets for the same
firewall [5].

Firewall rule sets have to be written, ordered and dis-
tributed carefully in order to avoid firewall policy anomalies
that may expose a network to danger. Al-Shaer and Hamed
identified anomalies that could exist in a single- or multi-
firewall environment. They also presented a set of techniques
and algorithms to discover policy anomalies in centralized and
distributed legacy firewalls [6]. Smith et al. dealt with the issue
of how to place a set of firewalls around a complex network,
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with varying security needs of the different nodes, in order
to minimize cost and delay. An operations research view was
proposed into the deployment of multiple firewalls [19].

Since the syntax and semantics of the rule set and their
ordering depend on the firewall product/vendor, firewall man-
agement becomes difficult. This is akin to the dark age of
software development, where programs were written in as-
sembly language and thus the programmer had to know all the
idiosyncrasies of the target processor. This problem gets even
worse when there are many firewalls dividing a company’s
intranets into multiple domains [11]. Many approaches were
proposed to use a high-level language to define and analyze
firewall policies and then map this language to filtering rules
[11], [12], [13], [14], [17].

Packet filtering of a firewall can be viewed as a special
case of packet classification. The packet classification problem
is to determine the first matching rule for each incoming
packet at a router. A good tutorial is provided by Gupta et
al. on packet classification algorithms such as basic search
algorithms, geometric algorithms, heuristic algorithms, and
hardware-specific algorithms [9]. Traditionally, researchers of
packet classification have focused on how to find matching
rules as fast as possible using sophisticated data-structures or
hardware-driven approaches, most of which are beyond the
scope of this paper [7], [8], [9], [10], [15], [16]. Some of
them deal with how to reduce the size of a rule set. Gupta
identified special types of redundant rules in his PhD thesis
[8], namely backward redundant rules and forward redundant
rules, by studying 793 packet classifiers from 101 different
Internet Service Providers and enterprise networks with a total
of 41,505 rules [3]. A rule r in a packet classifier is backward
redundant iff there exists another rule r’ listed above r such
that all packets that match r also match r’. Gupta observed
that on average 7.8% of the rules in a packet classifier are
backward redundant [8]. A rule r in a packet classifier is
forward redundant iff there exists another rule r’ listed below
r such that the following three conditions hold: (1) all packets
that match r also match r’, (2) r and r’ have the same decision,
(3) for each rule r” listed between r and r’ either r and r” have
the same decision, or no packet matches both r and r”. Gupta
observed that on average 7.2% of the rules in a packet classifier
are forward redundant [8].

Liu et al. suggested how to find and eliminate upward
redundant rules and downward redundant rules [3]. Up-
ward/downward redundant rules include backward/forward
redundant rules. A rule r in a packet classifier is upward
redundant iff there is no packet whose first matching rule is r.
Geometrically, a rule is upward redundant in a packet classifier
if the rule is overlayed by some rules listed above it. A rule
r in a packet classifier, where no rule is upward redundant, is
downward redundant iff for each packet, whose first matching
rule is r, the first matching rule below r has the same decision
as r [3].

Useful tips on implementing firewalls are presented in [20].
This practical document addresses concepts relating to the
design, selection, deployment, and management of firewalls

TABLE I

FIREWALL RULE SET AND OPTIMIZATION

(A) Original rule set (B) Optimized rule set [4]

(1)F0∈[1,4]∧F1∈[1,10] d (1)F0∈[5,6]∧F1∈ [3,8] a

(2)F0∈[5,8]∧F1∈[1,2] d (2)F0∈[7,8]∧F1∈ [3,4] a

(3)F0∈[5,6]∧F1∈[3,8] a (3)F0∈[7,8]∧F1∈ [6,8] a

(4)F0∈[7,8]∧F1∈[3,4] a (4)F0∈[1,10]∧F1∈ [1,10] d

(5)F0∈[7,8]∧F1∈[5,5] d (C) Best optimization

(6)F0∈[7,8]∧F1∈[6,8] a (1)F0∈[7,8]∧F1∈ [5,5] d

(7)F0∈[5,8]∧F1∈[9,10] d (2)F0∈[5,8]∧F1∈ [3,8] a

(8)F0∈[9,10]∧F1∈[1,10] d (3)F0∈[1,10]∧F1∈ [1,10] d

and firewall environment.
The usefulness of direction-based filtering in firewalls is

shown in [21]. It shows that the discrepancy can make it very
confusing for firewall managers to recognize the direction of a
packet correctly. Improving traditional firewall performance is
shown in [22] by reducing the number of rule comparisons re-
quired per packet. This is done by placing the most frequently
matched rules around the beginning of the rule set. Directed
acyclical graphs are used to represent the presence of rules
efficiently. It is proved as an NP-complete problem to find an
optimal graph.

III. SIMPLE SUBSTITUTIONAL OPTIMIZATION (SSO)

A. Definition

A firewall’s rule set consists of rules where first coming
rules have higher priority. We denote rule ri as ri = (F0 ∈
S0 ∧ . . . Fi ∈ Si ∧ . . . Fn−1 ∈ Sn−1 Action) in accordance
with the notations used in [4]. For simplicity, we denote
rule ri’s Sm value as ri.Sm. We only consider two types
of Action: a (accept) or d (deny). Each Fi represents for
a unique dimension. In general, Fi can be IP addresses
(source/destination), or port numbers (source/destination), or
protocol types (TCP/UDP/ICMP). Si is range-values. For
simplicity, we assume that each dimension ranges from 1 to
10. In the real world, the dimension of IP address ranges from
0 to 232-1 while port numbers range from 0 to 216 − 1.

Table I shows three rule sets, (A), (B), and (C), all of
which have the same meaning. In this example, each rule set
consists of two dimensions. Table I (A) has 8 rules that can
be represented by two-dimensional rectangles as in [10]. Fig.
1 illustrates table I (A) as two dimensional rectangles.

In this paper, we say that two rules ri and rj are
adjacent when they satisfy two conditions: ri.Sm equals
rj .Sm for (0 ≤ m ≤ n − 2). ri.Sn−1 is adja-
cent to rj .Sn−1, i.e., Min(ri.Sn−1)=Max(rj .Sn−1) + 1 or
Min(rj .Sn−1)=Max(ri.Sn−1) + 1. When two rules are ad-
jacent, they can be merged into one as (F0 ∈ S0 ∧ . . . Fi ∈
Si ∧ . . . Fn−1 ∈ (ri.Sn−1 ∪ rj .Sn−1))

Until now, two rules can be merged into one only if they
are adjacent. In this paper, we propose to reduce rule set
by replacing a group of rules with other smaller group even
though they are not adjacent.
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Fig. 1. Two dimensional representation for table 1 (A)
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Fig. 2. Substitutional optimization example for routing table

B. Basic Idea

The number of rules can be reduced by substituting a new
group of rules for a given group. Fig. 2 shows an example in a
routing table. The class B network of 128.227.0.0/16 is divided
into four sub-networks: 128.227.0.0/18, 128.227.64.0/18,
128.227.128.0/18 and 128.227.192.0/18. To forward packets
to appropriate interfaces, the router has four rules as shown
in Fig. 2. However, an experienced router manager can make
the routing table simpler by substituting a new group of two
rules (128.227.64.0/18 interface0, 128.227.64.0/16 interface1)
for the old four rules. In this paper, we propose to apply this
basic substitutional optimization to firewall’s rule set.

To optimize firewall’s rule set, Gouda et al. propose five
algorithms for designing the sequence of rules in a firewall
to be consistent, complete, and compact [4]. These algorithms
include reduction, marking, generation, compactness, and
simplification. As in [4], we denote firewall’s rule set as R.
Table I (B) shows how R changes after applying these five
algorithms to rule set (A). In this example, half the rules are
eliminated while the semantics of the rule set remains same.
Fig. 3 shows FDD for R in table I (B).

However, as shown in table I (C), the rule set can be reduced
further, which can not be achievable by any previous work [3],
[4], [7], [8]. This is because previous approaches can eliminate
some rules only when they are redundant by other rules. To

F0

F1F1

a d

[5,6]
[7,8]

[1,4]
[9,10]

[3,8]

[1,2]
[9,10]

[3,4]
[6,8]

[1,2]
[5,5]

[9,10]

ALL
ALL

ALL

Fig. 3. FDD for table I (B)

the contrary, the rule set of table I (C) can be obtained by our
proposal, Substitutional Optimization (SO).

C. Algorithm

We propose a simple algorithm, simple substitutional opti-
mization (SSO). It can reduce the number of firewall’s rule set
aggressively when a certain condition is satisfied.

We assume that a rule set has already been converted into
FDD [4] and SSO uses it as an input. Therefore, no rules
are overlapped with each other when SSO starts.

We define replicable-group as a group of rules which can be
replaced by other smaller group without changing the meaning
of the rule set. For example, in Fig. 1, the rule set of {(F0 ∈
[5, 6] ∧ F1 ∈ [3, 8] a), (F0 ∈ [7, 8] ∧ F1 ∈ [3, 4] a), (F0 ∈
[7, 8] ∧ F1 ∈ [6, 8] a), (F0 ∈ [7, 8] ∧ F1 ∈ [5, 5] d)} can be
substituted by a group of two rules {(F0 ∈ [7, 8] ∧ F1 ∈
[5, 5] d), (F0 ∈ [5, 8] ∧ F1 ∈ [3, 8] a)}. In this case, the
first three rules of the original rule set form a replicable-
group: {(F0 ∈ [5, 6] ∧ F1 ∈ [3, 8] a), (F0 ∈ [7, 8] ∧ F1 ∈
[3, 4] a), (F0 ∈ [7, 8]∧F1 ∈ [6, 8] a)}. In general, a replicable-
group is defined as a group of three rules (ri, rj , rk) that has
the following properties (we use the same notations of Fig. 1):

(1) ri.Sm = rj .Sm = rk.Sm, (0 ≤ m ≤ n − 3)
(2) ri.Sn−2 = rj .Sn−2, ri.Sn−2 �= rk.Sn−2

(3) ri.Sn−2 are adjacent to rk.Sn−2

(4) ri.action = rj .action = rk.action
(5) ri.Sn−1 ⊂ rk.Sn−1,Max(ri.Sn−1) = Max(rk.Sn−1)
(6) rj .Sn−1 ⊂ rk.Sn−1,Min(rj .Sn−1) = Min(rk.Sn−1)

The first property means that Sm values should be same
except two dimensions: m = (n − 2) and (n − 1). In Fig.
1, x and y-axes represent for dimension (n − 2) and (n − 1)
respectively. The second property says that only two of the
three rules have the same value for Sn−2. The other properties
mean that ri, rj and rk forms a bracket-like shape as in Fig.
1.

For a replicable-group of (ri, rj , rk), we define an inscribed-
rule rid and an inscribing-rule rig as follows:

rid = (F0 ∈ S0 ∧ . . . Fn−3 ∈ Sn−3 ∧ Fn−2 ∈ ri.Sn−2

∧Fn−1 ∈ (rk.Sn−1 − ri.Sn−1 − rj .Sn−1) ¬ri.action) (2)
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R={};
SSO(R) {

Find ri, rj , and rk satisfying following conditions;
(1) ri.Sm = rj .Sm = rk.Sm, (0 ≤ m ≤ n − 3)
(2) ri.Sn−2 = rj .Sn−2, ri.Sn−2 �= rk.Sn−2

(3) ri.Sn−2 are adjacent to rk.Sn−2

(4) ri.action = rj .action = rk.action
(5) ri.Sn−1 ⊂ rk.Sn−1,Max(ri.Sn−1) = Max(rk.Sn−1)
(6) rj .Sn−1 ⊂ rk.Sn−1,Min(rj .Sn−1) = Min(rk.Sn−1)
R = R − {ri, rj , rk} + {rig};
R′ = R′ ∪ {rid};

}

Fig. 4. SSO Algorithm

rig = (F0 ∈ S0 ∧ . . . Fn−3 ∈ Sn−3 ∧ Fn−2 ∈ (ri.Sn−2

∪rk.Sn−2) ∧ Fn−1 ∈ rk.Sn−1 ri.action) (3)

where ¬ri.action is the opposite of ri’s action.
Geometrically, a replicable-group and rid form a rectangle

in which Sn−2 and Sn−1 are the ranges for the lower and the
upper bases, and rid is the inscribed rectangle. Every pair of
a replicable-group and rid can be replaced with a smaller rule
set by the following theorem 1.

Theorem 1: A replicable-group consisting of ri, rj and rk

can be replaced with rid and rig to decrease the number of
rules for a given rule set.

Proof : If rid is placed above rig , the semantics of the
original rule set R remains same over the area of (F0 ∈ S0 ∧
. . . Fn−3 ∈ Sn−3 ∧ Fn−2 ∈ (ri.Sn−2 ∪ rk.Sn−2) ∧ Fn−1 ∈
(rk.Sn−1 ∪ ri.Sn−1 ∪ rj .Sn−1)). If R includes rid explicitly,
the number of rules will decrease to |R|−2 after substitution.
If not, it will be |R| − 1. In any case, substitution decreases
the number of rules.

Fig. 4 shows the algorithm for SSO. Besides R, we use
temporary rule set R′ to maintain high priority rules separately.
In fact, R′ is a set of r′ids, and will be merged with R at the
end of the whole algorithm.

D. Example

For an example, we apply SSO to Fig. 1. A replicable-
group of ri, rj and rk is found as follows:

• ri = {F0 ∈ [7, 8] ∧ F1 ∈ [6, 8] a}
• rj = {F0 ∈ [7, 8] ∧ F1 ∈ [3, 4] a}
• rk = {F0 ∈ [5, 6] ∧ F1 ∈ [3, 8] a}

By equation 2 and 3, rid and rig become

• rid = {F0 ∈ [7, 8] ∧ F1 ∈ [5, 5] d}
• rig = {F0 ∈ [5, 8] ∧ F1 ∈ [3, 8] a}

Table II shows R and R′ after SSO has been applied to table
I (A). The number of rules has been decreased by two.

TABLE II

AFTER SSO(R) IS EXECUTED

R (1)F0∈[1,4]∧F1∈[1,10] d
(2)F0∈[5,8]∧F1∈[1,2] d
(3)F0∈[5,8]∧F1∈[3,8] a
(4)F0∈[5,8]∧F1∈[9,10] d
(5)F0∈[9,10]∧F1∈[1,10] d

R′ (1)F0∈[7,8]∧F1∈ [5,5] d

IV. COMPLEX SUBSTITUTIONAL OPTIMIZATION (CSO)

A. Basic Idea

We can combine SSO and the five algorithms proposed in
[4], which we call complex substitutional optimization (CSO).
After a replicable-group in R is substituted by rid and rig ,
some rules in the changed rule set may become adjacent
to each other. This can happen because CSO can eliminate
some rules that have prevented other rules from being merged
together and abbreviated. If then, we can use again the ideas
of [4], [7] to merge two adjacent rules so that the total size of
rule set decreases further. In this way, CSO can reduce rule
set dramatically when used together with the algorithms from
[4].

B. Algorithm

SSO can be used together with the five algorithms from
[4]: reduction, marking, generation, compactness, and
simplification. More specifically, SSO is executed repeti-
tively together with reduction. So, the input to SSO does
not have ”ALL” marking as in [4]. We also assume that no
dimension is allowed to disappear until the end of the whole
algorithm.

Fig. 5 shows CSO algorithm in which SSO is mixed up
with the five algorithms from [4]. During the while loop,
reduction and SSO are repeated alternatively until no substi-
tution happens. Reduction should be executed before SSO is
executed since reduction can make adjacent rules merged into
one so that SSO does not need to take care of it. For example,
if rule (2) in table I (A) were two rules of {F0 ∈ [5, 6]∧F1 ∈
[1, 2] d} and {F0 ∈ [7, 8] ∧ F1 ∈ [1, 2] d}, reduction would
put them together into {F0 ∈ [5, 8] ∧ F1 ∈ [1, 2] d} before
SSO is applied to.

Once the while loop exits, we can benefit the five algorithms
from [4]. Readers who want to know details about reduction,
marking, generation, compactness, and simplification
should refer [4].

At the end of the whole algorithm, we concatenate R to R′.
All rules from R′ precede any of R. In this way, R′ has higher
priority to R since we assumed that a first-matching rule has
high priority when conflict happens.

C. Example

We show how efficiently CSO optimizes the firewall’s rule
set in table III. The original rule set has three dimensions each
of which ranges from 1 to 10.

According to CSO algorithm in Fig. 5, reduction is
executed first of all, but it does not reduce any rule. Next,
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CSO(R) {
R’={};
While (any change at SSO subroutine) {

reduction(R);
SSO(R);

}
reduction(R);
marking(R);
generation(R);
compactness(R);
simplification(R);
R=merge(R,R’);

}
Fig. 5. CSO Algorithm

SSO is applied to the rule set. After this first substitution, we
obtain two rule sets, R and R′, which decrease the size of
rule set by four rules. This is shown in table IV. For example,
rules (1), (4) and (5) in table III forms a replicable-group. In
Table IV, they are replaced by rule (1) in R and rule (1) in R′.
Each of them corresponds to rig and rid. In this case, rule (7)
in table III equals rid, i.e., explicitly defined in the original
rule set. Similarly, rules (9), (10), (12), and (14) in table III
are replaced with rule (6) in R and rule (2) in R′ in table IV.

Since there was a change in SSO, we reenter the while
loop. After second reduction in the while loop is applied,
rules of table IV (R) are reduced to five rules in table V: three
belongs to R and two belongs to R′. For example, rules (1)
and (6) in table IV (R) are reduced to rule (1) in table V (R).
Rules (2), (4), (7) and (9) in table IV (R) are reduced to rule
(2) in table V (R). Similarly, rules (3), (5), (8) and (10) in table
IV (R) are reduced to rule (3) in table V (R). R′ remains same
since this is used by only SSO.

Since no more change happens during the next SSO, we
exit the while loop. From now, we can benefit the algorithms
from [4], and just need to merge R and R′ to make a new
optimized rule set. Fig. 6 is FDD for R of table V (R) before
reduction is applied. After applying reduction, marking,
generation, compactness and simplification to this FDD,
we get the third and the fourth rules shown in table VI (A).
After merge, the first and the second rules in table VI (A) are
added up. The final rule set consists of only four rules as in
the table VI (A).

Fig. 7 and table VI (B) show FDD and R when the
algorithms from [4] are executed without SO. In conclusion,
for this simple example, CSO reduces the size of rule set from
16 to 4, resulting in 75% reduction, while the state-of-the-art
algorithm eliminated 6 rules, that is just 37.5% reduction.

V. CONCLUSION

In this paper, we proposed new algorithms for optimizing
firewall’s rule set: SSO and CSO. We observe that previous
works could merge two rules into one only when they are
adjacent. Our approach expands this one dimensional merger
to two dimensional substitution. In CSO, we augment SSO

TABLE III

ORIGINAL RULE SET

(1) F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [2, 7] a
(2) F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [1, 1] d
(3) F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [8, 10] d
(4) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [5, 7] a
(5) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [2, 3] a
(6) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [1, 1] d
(7) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [4, 4] d
(8) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [8, 10] d
(9) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [2, 3] a
(10) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [5, 7] a
(11) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [1, 1] d
(12) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [4, 4] d
(13) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [8, 10] d
(14) F0 ∈ [6, 10] ∧ F1 ∈ [1, 4] ∧ F2 ∈ [2, 7] a
(15) F0 ∈ [6, 10] ∧ F1 ∈ [1, 4] ∧ F2 ∈ [1, 1] d
(16) F0 ∈ [6, 10] ∧ F1 ∈ [1, 4] ∧ F2 ∈ [8, 10] d

TABLE IV

RULE SET AFTER THE FIRST SSO APPLIED

R (1) F0 ∈ [1, 5] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [2, 7] a
(2) F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [1, 1] d
(3) F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [8, 10] d
(4) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [1, 1] d
(5) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [8, 10] d
(6) F0 ∈ [6, 10] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [2, 7] a
(7) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [1, 1] d
(8) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [8, 10] d
(9) F0 ∈ [6, 10] ∧ F1 ∈ [1, 4] ∧ F2 ∈ [1, 1] d
(10) F0 ∈ [6, 10] ∧ F1 ∈ [1, 4] ∧ F2 ∈ [8, 10] d

R’ (1) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [4, 4] d
(2) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [4, 4] d

TABLE V

RULE SET AFTER WHILE LOOP FINISHED

R (1) F0 ∈ [1, 10] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [2, 7] a
(2) F0 ∈ [1, 10] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [1, 1] d
(3) F0 ∈ [1, 10] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [8, 10] d

R’ (1) F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [4, 4] d
(2) F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [4, 4] d

TABLE VI

FINAL RULE SET AND COMPARISON WITH [4]

A. Final rule set obtained by CSO
(1)F0 ∈ [1, 5] ∧ F1 ∈ [4, 10] ∧ F2 ∈ [4, 4] d
(2)F0 ∈ [6, 10] ∧ F1 ∈ [5, 10] ∧ F2 ∈ [4, 4] d
(3)F0 ∈ [1, 10] ∧ F1 ∈ [1, 10] ∧ F2 ∈ [2, 7] a
(4)F0 ∈ ALL ∧ F1 ∈ ALL ∧ F2 ∈ ALL d

B. Final rule set obtained by [4]
(1)F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ [2, 7] a
(2)F0 ∈ [1, 5] ∧ F1 ∈ [1, 3] ∧ F2 ∈ ALL d
(3)F0 ∈ [1, 5] ∧ F1 ∈ ALL ∧ F2 ∈ [2, 3] a
(4)F0 ∈ [1, 5] ∧ F1 ∈ ALL ∧ F2 ∈ [5, 7] a
(5)F0 ∈ [1, 5] ∧ F1 ∈ ALL ∧ F2 ∈ ALL d
(6)F0 ∈ ALL ∧ F1 ∈ [5, 10] ∧ F2 ∈ [2, 3] a
(7)F0 ∈ ALL ∧ F1 ∈ [5, 10] ∧ F2 ∈ [5, 7] a
(8)F0 ∈ ALL ∧ F1 ∈ [5, 10] ∧ F2 ∈ ALL d
(9)F0 ∈ ALL ∧ F1 ∈ ALL ∧ F2 ∈ [2, 7] a
(10)F0 ∈ ALL ∧ F1 ∈ ALL ∧ F2 ∈ ALL d
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Fig. 6. FDD for table V (R) before reduction
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Fig. 7. FDD for table III before reduction

in such a way that SSO is used together with the previous
work [4]. We showed that CSO can reduce rule set in a new
manner, which is not achievable by any previous work.

The proposed algorithm is aggressive in reducing firewall’s
rule set since it can reduce the size of rule set by actively
substituting a smaller group of rules for a larger existing group.
This is an innovative approach since previous works depend on
only adjacent relationship between two rules for reducing rule
set. The proposed algorithm can also be applied to a general
classification problem as well as firewall’s rule set.
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