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Abstract
With the development of GPS-enabled devices, wireless communication and storage technologies, trajectories representing
the mobility of moving objects are accumulated at an unprecedented pace. They contain a large amount of temporal and
spatial semantic information. A great deal of valuable information can be obtained by mining and analyzing the trajectory
dataset. Trajectory clustering is one of the simplest and most powerful methods to obtain knowledge from trajectory data,
which is based on the similarity measure between trajectories. The existing similarity measurement methods cannot fully
utilize the specific features of trajectory itself when measuring the distance between trajectories. In this paper, an enhanced
trajectory model is proposed and a new trajectory clustering algorithm is presented based on multi-feature trajectory
similarity measure, which can maximize the similarity of trajectories in the same cluster, and can be used to better serve
for applications including traffic monitoring and road congestion prediction. Both the intuitive visualization presentation
and the experimental results on synthetic and real trajectory datasets show that, compared to existing methods, the proposed
approach improves the accuracy and efficiency of trajectory clustering.

Keywords Trajectory · Similarity measure between trajectories · Trajectory features · Trajectory similarity clustering ·
Trajectory centers

1 Introduction

Nowadays, with the rapid development of satellites, wireless
communication, storage and various positioning (such as
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GPS, GSM and RFID) technologies, it is possible to collect
and store a large number of trajectory data of moving
objects, recording information about vehicle location, mobile
user activity, animal migration, hurricane movement, etc.
A trajectory is a sequence of time-ordered locations for
a moving object. It contains a lot of spatial and temporal
semantic information. Therefore, analysis on trajectory data
has become practically useful [1–5]. For example, the
moving trajectories of mobile users can reflect their interests
and favorites. Analysis of these trajectories can help in
planning road system, recommending tourist routes and
sharing life experience [6]. One of the typical analysis tasks
is trajectory clustering, which is also one of the simplest
and most powerful methods for acquiring knowledge from
trajectory data [7–9].

Trajectory clustering is a process of assigning a set of
similar trajectories into groups (called clusters), so that the
trajectories within each cluster are highly similar, and there
is low similarity among different clusters [10, 11]. Its purpose
is to extract the common motion characteristics of similar
moving objects, in order to predict the behaviors of moving
objects or to provide the decision-making guidance for man-
agement in many fields, such as location recommendation,
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market research, vehicle destination prediction, urban plan-
ning, weather forecast [1, 2, 7, 12–14], etc. Much has been
achieved in clustering research. The representative algo-
rithms include k-means [15], DBSCAN [16], BIRCH [17]
and OPTICS [18], which mainly focus on clustering of point
data objects but cannot be directly used in trajectory cluster-
ing, because the distance measurement between trajectories
is very complicated. In traditional clustering, each data point
is a separate object. However, in trajectory clustering, each
trajectory including several closely related sampling points
is the basic object. Clustering of time series is another kind
of clustering problem. Some application results have been
achieved [19, 20]. For example, Literature [19] produced
day-ahead forecasts of wind power by time series clus-
ter analysis, where a Quality Threshold (QT) algorithm is
adopted to cluster the time series. There are some similar-
ities between time series and trajectories because both of
them are sequences with time attributes, but the dissimi-
larity calculation in both problems cannot be generalized.
The intrinsic characteristics and the movement trend of a
trajectory cannot be utilized by these traditional clustering
algorithms. New methods are needed to address the trajec-
tory clustering problem. The key issue is how to measure the
similarity degree between trajectories. An appropriate and
valid model for defining the similarity between trajectories
is critical to the quality of trajectory clustering. Cluster-
ing results with high accuracy play an important role in
management decisions. For example, the municipal traffic
department can plan urban roads and alleviate road con-
gestion problems based on the cluster analysis of vehicle
trajectories. The higher the accuracy of clustering results,
the greater the guiding significance provided, otherwise
misdirection will occur.

This paper presents a new similarity measurement method
based on multiple trajectory features and a corresponding
trajectory similarity clustering algorithm. The key contribu-
tions of this paper include:

1) An enhanced trajectory model is introduced for trajec-
tory analysis.

2) A Multi-feature Trajectory Similarity Measure algo-
rithm (MFTSM) is proposed to calculate the distance
between any two trajectories based on multiple features
of trajectories. In particular, the location distance based
on area calculation is used to address the continuity
problem of trajectory.

3) A trajectory clustering algorithm based on MFTSM
is proposed, denoted as TC MFTSM, in which the
initial centers of the clusters are optimized based on
contemporary trajectories.

4) Several comparative experiments are performed to ver-
ify the effectiveness and evaluate the efficiency of the

proposed algorithms. The experimental results demon-
strate that our algorithms outperform the prior work on
trajectory similarity clustering.

The rest of this paper is organized as follows. Section 2
introduces the related work. In Section 3, we introduce an
enhanced trajectory model. In Section 4, we describe the
rate and time interval of contemporary trajectories, as well
as an algorithm RTofCT, which will be used later. Section 5
introduces the trajectory similarity measure algorithm,
MFTSM. Section 6 introduces the trajectory clustering
algorithm based on MFTSM. Experimental results and
analysis are presented in Section 7. Section 8 concludes the
paper and provides future research directions.

2 Related work

There are mainly two ways to address the problem of tra-
jectory clustering: 1) Define a specific trajectory clustering
algorithm based on the intrinsic properties of trajectories.
For example, Wei et al. [21] proposed a trajectory cluster-
ing method based on the regression model. In their method,
a trajectory is approximately represented by fitting poly-
nomial. 2) Two-stage method. Firstly, design a similarity
(distance) measurement method based on trajectory data.
Secondly, improve some traditional clustering algorithm to
realize trajectory clustering. The vast majority of studies are
carried out in the second way. This paper also focuses on
trajectory clustering in this way, where the emphasis is tra-
jectory similarity measurement [2, 22–25]. At present, there
are many related research results in this field.

Lee et al. [12] proposed a partition-and-group framework
for clustering trajectories, i.e., to divide each trajectory
into several t-partitions according to the idea of line
segment Hausdorff distance in image processing, in order
to represent the local features of complex trajectories.
And then they used the traditional density-based clustering
method DBSCAN to find the general sub-trajectories from
the trajectory database. This method solves the problem
of comparisons between complex trajectories. However,
the distance calculation between two trajectories is based
on spatial locations. Each t-partition is only the line
between two endpoints of the trajectory segment, which
is an approximate description of the trajectory, resulting
in the loss of local features. Lin et al. [26] proposed a
similarity measurement method named OWD (One Way
Distance), which merely focuses on spatial shapes of
moving trajectories without considering the time dimension.
Morris et al. [27] compared various trajectory similarity
clustering methods, and proposed that performance is
actually dictated by the trajectory properties encountered
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in a dataset. Ferreira et al. [24] proposed a trajectory
similarity measurement method based on vector field, and
then used k-means clustering method to achieve trajectory
clustering. Domingo-Ferrer et al. [28] proposed a trajectory
similarity calculation method based on the Euclidean
distance between each point pair on the trajectory, which
considers the time and space dimensions while ignoring
other factors such as trajectory orientation, moving speed
and continuity feature. Similarly, Wang et al. [29] proposed
a similarity measurement method that takes trajectory shape
into account on the basis of Literature [28]. It also does
not consider the continuity of the trajectory. Gudmundsson
et al. [30] proposed a subtrajectory clustering approach
based on Fréchet distance, which merely considers a
trajectory as a directed curve in 2D. Besse et al. [31]
proposed a new distance SSPD (Symmetrized Segment-Path
Distance). It is time insensitive and compares the shape
and physical distance between two trajectories. Sanchez
et al. [7] proposed hashing techniques based on DBH
(Distance-Based Hashing) and LSH (Locality Sensitive
Hashing) for fast trajectory similarity clustering. In their
method, trajectory similarity measurement is based on
DTW (Dynamic Time Warping) distance [32, 33] and
trajectory clustering is realized using k-means algorithm.
The above methods ignore the comprehensive impact of the
internal and external characteristics of trajectory itself on
the similarity between trajectories.

When calculating the distance between two trajectory
segments, most existing methods use the center point
and the length of trajectory segment as standards. For
example, Zhang et al. [34] proposed a new trajectory
clustering algorithm which considers semantic spatio-
temporal information based on Traclus algorithm [12],
where spatial distance consisting of perpendicular distance
and horizontal distance is calculated based on those
standards. Such methods ignore the continuity of trajectory.
In this paper, the location distance is calculated using the
area of quadrangle formed by two trajectory segments. For
each pair of segments, our value of location distance is more
accurate. In addition, we propose an enhanced trajectory k-
means clustering method, in which the selection of initial
trajectory centers is optimized based on the temporal
features of trajectories. So we have made improvements in
both stages of trajectory clustering.

In summary, there are a variety of trajectory similarity
clustering methods, but almost none of them is widely
approved. Aiming at the above problems, based on the
characteristics of orientation, speed, shape, location and
continuity of the trajectory, we propose a more accurate
similarity measurement method based on trajectory multi-
feature. And a trajectory similarity clustering algorithm is
consequently proposed in this paper.

3 Preliminary concept and problem
definition

3.1 Trajectory model

Definition 1 (Time-stamped location) [28]: Let t be a
timestamp and (x, y) be a location in R

2. A time-stamped
location is defined as a triple (t, x, y), which means that an
object is at location (x, y) at time t .

Hereinafter, triple and location will be used as synonyms
for time-stamped location.

Definition 2 (Trajectory): A trajectory is an ordered set of
time-stamped locations, denoted as T .

T = {T id, (t1, x1, y1), (t2, x2, y2), . . . , (tn, xn, yn)} (1)

where tr < tr+1 for all 1 ≤ r < n, T id is the identification
of the trajectory, and n is the number of sampled points in
the trajectory.

Consider a set of p trajectories T S = {T1, T2, . . . , Tp},
where Ti = {i, (t i1, xi

1, y
i
1), . . . , (t

i
m, xi

m, yi
m)} represents the

i-th trajectory in T S, 1 ≤ i ≤ p.
Figure 1 shows an example in which four trajectories

are provided. The sampled points in each trajectory can be
projected to the R2(x-y) plane.

Definition 3 (Length of trajectory): Consider a trajectory
T . The length of T is defined as the number of triples in T .
It is denoted as |T |.

For example, |T | = n in (1).
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Fig. 1 The motion trajectories of different moving objects and their
projections in the 2D-plane
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Definition 4 (Sub-trajectory) [28]: Consider a trajectory S.
S = {Sid, (ti1, xi1 , yi1), (ti2 , xi2 , yi2), . . . , (tim, xim, yim)} is
defined as a sub-trajectory of T in (1), denoted as S � T ,
where 1 ≤ i1 < · · · < im ≤ n.

Definition 5 (Trajectory segment): Consider a trajectory
T . A trajectory segment is defined as the line segment
between any adjacent pair of time-stamped locations ((tr ,

xr , yr ), (tr+1, xr+1, yr+1)) in the trajectory T , 1 ≤ r < n.

In analyzing trajectory data, it is necessary to know
the interrelation between different trajectories. We use
pt%-contemporary defined below to indicate whether two
trajectories have common timestamps or not.

Definition 6 (pt%-contemporary trajectories) [28]: Con-
sider two trajectories Ti = {i, (t i1, xi

1, y
i
1), . . . , (t

i
m, xi

m, yi
m)}

and Tj = {j, (tj1 , x
j

1 , y
j

1 ), . . . , (t
j
n , x

j
n, y

j
n)}. Their pt%-

contemporary value pt is defined as:

pt = 100·min

(
�t

tim − t i1

,
�t

t
j
n − t

j

1

)
, (2)

where �t is calculated as

�t = max((min(t im, t
j
n ) − max(ti1, t

j

1 )), 0). (3)

If pt = 0, the two trajectories are not contemporary.
If and only if they start at the same time and end at the
same time, then pt = 100. Denote the overlap time of
two trajectories Ti and Tj as ol(Ti, Tj ), which starts at

max(ti1, t
j

1 ) and ends at min(tim, t
j
n ). Hence, ol(Ti, Tj ) =

{max(ti1, t
j

1 ), . . . , min(t im, t
j
n )}.

Consider any two pt%-contemporary trajectories Ti and
Tj for pt > 0, we assume that they have the same
number of time-stamped locations within ol(Ti, Tj ) and
those correspond to the same time-stamps. Therefore, in
our following method, a process of locations interpolation
is firstly conducted for the original trajectory dataset T S

according to the algorithm proposed in Literature [28].

Definition 7 (Trajectory outlier): ∀Ti ∈ T S, it is called as
a trajectory outlier (also known as an outlying trajectory) if
it is not contemporary with any other trajectory Tj in T S.
That is, pt = 0 for Ti and Tj , j = 1 . . . p, j �= i.

3.2 Distance between two trajectories

As described in Sections 1 and 2, it is most important to
design a suitable similarity measurement method (a cer-
tain type of distance between two trajectories) in trajectory
clustering. Because trajectories have temporal and spatial

characteristics, many existing methods [28, 35] for mea-
suring distance between two trajectories mainly consider
the temporal and spatial factors while ignoring the shape
and other trajectory characteristics, such as trajectory seg-
ment orientation, speed, continuity, etc. We propose a new
trajectory similarity measure based on multiple features.
Some related concepts and notions are given as follows.

Definition 8 (The r-th segment vector): The r-th segment
vector of Ti , denoted as segi

r , refers to the directed path of
a moving object in the r-th trajectory segment of the i-th
trajectory. It is defined as:

segi
r = (t ir+1 − t ir , x

i
r+1 − xi

r , y
i
r+1 − yi

r ) (4)

where (t ir , x
i
r , y

i
r ) and (t ir+1, x

i
r+1, y

i
r+1) respectively repre-

sent the r-th and (r+1)-th locations of the i-th trajectory,
1 ≤ r < m.

Definition 9 (The r-th segment speed): The r-th segment
speed of Ti , denoted as seg spi

r , refers to the movement
speed of a mobile object in the r-th trajectory segment of
the i-th trajectory. It is defined as:

seg spi
r =

√
(yi

r+1 − yi
r )

2 + (xi
r+1 − xi

r )
2

t ir+1 − t ir
(5)

where (t ir , x
i
r , y

i
r ) represents the r-th triple of the i-th tra-

jectory, 1 ≤ r < m.

Definition 10 (Trajectory orientation distance): ∀Ti, Tj ∈
T S, the trajectory orientation distance, denoted as disto
(Ti, Tj ), refers to the distance between the two trajectories
calculated based on the angles between two segment
vectors. If Ti and Tj are pt%-contemporary trajectories with
pt > 0,

disto(Ti, Tj ) = 1

pt% · (|ol(Ti, Tj )| − 1)

etij −1∑
r=stij

arccos

×
(

segi
r • seg

j
r

|segi
r |·|segj

r |

)
(6)

where “ • ” is the dot product operator, “arccos” function
is used to calculate the angle between two vectors, pt is
calculated by (2), stij and etij are respectively the start time
and end time of ol(Ti, Tj ), which is defined in Definition 6,

and finally segi
r and seg

j
r are calculated by (4).

Based on the different trajectory orientations, there
are four different scenarios for the angle θ between two
trajectory segment vectors, which are shown in Fig. 2.

Definition 11 (Trajectory speed distance): ∀Ti, Tj ∈ T S,
the trajectory speed distance, denoted as dists(Ti, Tj ), refers



Trajectory similarity clustering based on multi-feature distance measurement 2319

Fig. 2 Four different scenarios for the angle θ between two trajectory segment vectors

to the distance between the two trajectories calculated based
on segment speed. If Ti and Tj are pt%-contemporary
trajectories with pt > 0,

dists(Ti, Tj ) = 1

pt% · (|ol(Ti, Tj )| − 1)

×

√√√√√etij −1∑
r=stij

(seg spi
r − seg sp

j
r )2, (7)

where seg spi
r and seg sp

j
r are calculated by (5), and the

other parameters are the same as defined earlier.

Definition 12 (Trajectory location distance): We call triplei
r

= (t ir , x
i
r , y

i
r ) the r-th time-stamped location of trajectory

Ti . ∀Ti, Tj ∈ T S, the trajectory location distance, denoted
as distl(Ti, Tj ), refers to the distance between the two
trajectories calculated based on the time-stamped locations.
If Ti and Tj are pt%-contemporary trajectories with pt > 0,

distl(Ti, Tj ) = 1

pt% · (|ol(Ti, Tj )| − 1)

etij −1∑
r=stij

√
σr, (8)

where σr represents the sum of areas of two triangles con-
sisting of the four time-stamped locations triplei

r , triple
j
r ,

triplei
r+1 and triple

j

r+1, it is calculated based on the fol-
lowing equations, 1 ≤ r, s < n and 1 ≤ i, j ≤ p.

dt (triplei
r , triplei

s) =
√

(xi
r − xi

s)
2 + (yi

r − yi
s)

2 (9)

αi = dt (triplei
r , triplei

r+1) (10)

βr = dt (triplei
r , triple

j
r ) (11)

γ = dt (triplei
r+1, triple

j
r ) (12)

μ1 = αi + βr + γ

2
(13)

σr,1 =
√

|μ1(μ1 − αi)(μ1 − βr)(μ1 − γ )| (14)

μ2 = αj + βr+1 + γ

2
(15)

σr,2 =
√

|μ2(μ2 − αj )(μ2 − βr+1)(μ2 − γ )| (16)

σr = σr,1 + σr,2 (17)

Definition 13 (Trajectory distance): ∀Ti, Tj ∈ T S, the
trajectory distance, denoted as dist (Ti, Tj ), refers to the
distance between the two trajectories. If Ti and Tj are
pt%-contemporary trajectories with pt > 0, we define

dist (Ti, Tj ) = ηo·disto(Ti, Tj ) + ηs ·dists(Ti, Tj )

+ (1 − ηo − ηs)·distl(Ti, Tj ), (18)

where ηo, ηs ∈ [0, 1], respectively represent the weights of
trajectory orientation distance and speed distance.

If pt = 0, i.e. Ti and Tj are not contemporary, but there
is at least one trajectory Tijk ∈ τ ⊆ T S, such that both
(Ti, Tijk) and (Tj , Tijk) are pt%-contemporary with pt > 0,
then

dist (Ti, Tj ) = minTijk∈τ (dist (Ti, Tijk) + dist (Tj , Tijk)).

(19)

Otherwise, dist (Ti, Tj ) is not defined. Where τ is a set
of trajectories being contemporary with both Ti and Tj .

4 Rate and time interval of contemporary
trajectories

A schematic diagram for the proposed trajectory clustering
algorithm is provided in Fig. 3. After pre-processing the
original trajectory dataset, the pt values and distances
between each pair of trajectories are calculated, and then the
trajectory clustering process is completed. The various tech-
nical aspects of the proposed algorithm will be described
in detail in this section and the next two sections.
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Fig. 3 Schematic diagram for
the proposed trajectory
clustering algorithm
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In our trajectory similarity measurement method, we take
the temporal factor into consideration. The calculation of tra-
jectory distance is based on the rate and time interval of con-
temporary trajectories, which are calculated by Algorithm 1,
denoted with RTofCT.

The notations used in the RTofCT algorithm are listed in
Table 1.

There are three steps in Algorithm 1. First, we pre-process
the trajectory dataset TS in order to formalize each trajectory
according to (1) (Line 1), and initialize the related variables
used later (Lines 2-3). Second, the start time and the end
time of each trajectory in TS are calculated and saved into
the matrix TIME (Lines 4-9). Third, the pt values between
each pair of trajectories in TS are calculated and saved into
the matrix PT (Lines 10-17). The matrixes PT and TIME
are calculated based on Definition 6.

The pseudo code of the RTofCT algorithm is given as
follows:

Table 1 Notations used in the RTofCT algorithm

Notation Description

T S A dataset of p trajectories

|T S| The number of trajectories in T S

�t The parameter used to calculate the contemporary
rate between two trajectories Ti and Tj

pt The contemporary rate between two trajectories Ti

and Tj

TIME The matrix which consists of the start and end time
of each trajectory

PT The matrix which consists of the pt values for
each pair of trajectories

TIME(i) The i-th row of TIME, recording the start and the
end time of the i-th trajectory Ti

PT(i, j) The i-th row and j -th column of PT, recording the
contemporary rate between Ti and Tj

The time complexity of Algorithm 1 depends on the fol-
lowing two parts: (a) the time for computing the TIME
matrix, whose time complexity is O(p), where p is the
number of trajectories in dataset TS, i.e. p = |T S|; (b)
the time to calculate the PT matrix. From Lines 10-17 in
Algorithm 1, we know that the values of pt must be calcu-
lated between each pair of trajectories. Hence, the number
of calculations for this part is p·(p − 1)/2. If the value of p
is close to infinity, the time complexity of this part isO(p2).
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So the total approximate time complexity of Algorithm 1
is O(p2). The space complexity of Algorithm 1 is O(p2),
which is mainly due to storing the PT matrix.

Before all the algorithms are executed, T S has been
interpolated based on the method mentioned in Section 3.1.
In the following algorithms, T S as an input dataset, is
assumed to have been pre-processed in the same way as the
first step in Algorithm 1.

5 Trajectory similarity measure algorithm

According to the clustering results of trajectory dataset,
a great deal of valuable information can be extracted.
The similarity measure between trajectories is the basis of
trajectory clustering.

Figure 4 shows two trajectories, each of which contains
five time-stamped locations at times 0, 1, 2 ,3 and 4, respec-
tively. Each pair of the corresponding trajectory segments
moves in the same direction. By calculating the Euclidean
distance between each pair of the corresponding sampling
points, it is easy to get the distance between these two tra-
jectories. However, according to the moving directions and
projections on the x-y plane of the two trajectories, we find
that the similarity calculation method based only on the
distance of the corresponding sampling points of the trajec-
tories is not adequate to achieve accuracy in the similarity
measure. As is shown in Fig. 4, the path in the period of
time 2-4 of Trajectory 1 is exactly the same as the one in
the period of time 0-2 of Trajectory 2. The similarity degree
of these two trajectories will be very high if only the shape
and locations in the x-y plane are considered. Obviously, if
time factor is ignored in distance calculation, the distance
between two trajectories will not reflect the real situation.
An analysis based on this distance may cause erroneous
conclusions, which may lead to wrong guidance in the real
applications.

Therefore, in calculating the distance between two trajecto-
ries, time, location, shape, speed, continuity and other features
of trajectory should be taken into account. The smaller the
distance between two trajectories is, the greater the degree
of similarity between them is.

The trajectory similarity measurement algorithm based
on multiple features is described in Algorithm 2, which is
the basis of our trajectory clustering algorithm. According
to the value of pt , it is divided into three cases. Lines 8-
26 give the distance calculation method. First, if pt > 0,
the two trajectories are contemporary. The distance between
them is calculated based on trajectory orientation distance,
speed distance, and location distance. In the calculation of
each of the three distances, the time aspect of trajectory is
considered based on the value of pt. Equations (4)–(18) are

used in this case (Lines 8-15). Second, if pt is equal to
0, the two trajectories are not contemporary. The distance
measurement between them is based on the intermediate
ones that overlap partially each of them. For this case, the
two trajectories have a certain connection in terms of time
attribute, but the absolute time can not be obtained for
distance calculation. So the third party trajectories are used
to realize the distance measurement between them. Equation
(19) is used here (Lines 16-23). Third, if pt can not be
obtained, indicating that at least one of the trajectories has a
single location, which is most likely to be a noisy point. The
distance related to such trajectory is meaningless, therefore,
it is assigned with Inf in this case.
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Fig. 4 Two trajectories having the same locations at different time
stamp

To make the MFTSM algorithm better understood, a
specific example is given as follows:

Example 1 Consider two trajectories T16 and T17 selected
from the synthetic dataset introduced in Section 7.1. In order
to facilitate demonstration, the two trajectories we choose
are relatively short. T16 = {16, 2, 7827, 17747, 3, 7882.24,
17767.72 , · · · , 49, 11437.04, 17720.53}, T17 = {17, 2,
4286, 15523, 3, 4265.75, 15467.59, · · · , 19, 3817.73,
14642.22}. According to Lines 1-2 of Algorithm 2, (start16,

end16)=(2,49), (start17, end17)=(2,19). Then, as is shown
in Lines 3-6, the �t and pt values between T16 and
T17 are calculated based on (2) and (3). That is, �t =
max ((min(end16, end17) − max(start16, start17)), 0) =
max((19 − 2), 0) = 17, and pt = 100·min(�t/(end16 −
start16), �t/(end17 − start17)) = 100·min(17/(49 −
2), 17/(19 − 2)) = 36.17. Based on Line 7, the value of
(etij − stij ) is calculated, the result is 17. Because pt > 0,
the value of dist (T16, T17) is calculated based on Lines 8-
15. According to the corresponding steps, the result is as
follows: dist (T16, T17) = 19.0441.

Note that MFTSM algorithm is able to compare trajecto-
ries that are time-wise overlapping only partially or not at
all. A lemma proved in Literature [28] guarantees that any
two trajectories at minimum distance for clustering must
have some overlapping time span. Therefore, the distance
between two non-overlapping trajectories can be calculated
but is too large. So any pair of non-overlapping trajectories
is hard to be clustered.

Algorithm 2 is used to calculate the distance between any
two trajectories, whose time complexity mainly depends
on the distance calculation. For one thing, the time com-
plexity of Algorithm 2 is O(interval) when pt > 0,
where interval is the common duration of any two trajec-
tories. For another, from Lines 16-23 in Algorithm 2, we
know that if the condition pt == 0 is met, the number
of calculations for the MFTSM algorithm is interval·|T S|.
The other steps in the algorithm only need to be calcu-
lated once. Hence, the total approximate time complexity of
Algorithm 2 is O(interval·|T S|). In general, interval is
much smaller than |T S|. For example, in our later experi-
ments, the maximum value of interval is 101 and |T S| is
1000 for synthetic dataset. The space complexity of Algo-
rithm 2 is O(|TS|), which is mainly due to storing TIME
(size: |TS|·3) and the intermediate results dist(Ti, Tijk) and
dist(Tj , Tijk).

Based on the MFTSM algorithm, we calculate the dis-
tance matrix with a size of |T S|·|T S| to better serve the
later research. The distances between each pair of trajec-
tories need to be calculated and stored, so the time com-
plexity of this calculation process is O(interval·|T S|2).
The space complexity is O(|T S|2).

6 Trajectory clustering algorithm based
onMFTSM

There are similarities and differences between trajectory
clustering and point data objects clustering. The same thing
is the general idea of clustering, the main difference is the
distance calculation method. The original trajectories are
partitioned into several clusters based on some similarity
measure metric. Compared with the original k-means
algorithm, our method makes several improvements to
address the different object — trajectory.

In our trajectory clustering algorithm, there are two main
features: 1) The distance between any two trajectories is
calculated based on Algorithm 2 (MFTSM). 2) The trajec-
tory clustering method is an enhanced k-means clustering
process. First, trajectory outliers are removed from the orig-
inal trajectory dataset based on the concept of contemporary
trajectories. Second, instead of randomly generating, our
method selects initial trajectory centers based on the time
duration of each trajectory. In particular, the top numc tra-
jectories with the longest time duration are used as the
initial centres, where numc is the number of trajectory clus-
ters. Third, the number of trajectories within each trajectory
cluster is approximately consistent, the value of “k” is con-
sequently determined. This setting can also be applied to
other applications such as trajectory privacy preservation.
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The proposed trajectory clustering algorithm, denoted
as TC MFTSM, implements trajectory clustering based on
MFTSM algorithm. The algorithm TC MFTSM considers
both temporal and spatial attributes of trajectories, it can
be applied in areas such as congestion predicting and road-
system planning.

The notations used in the TC MFTSM algorithm are
listed in Table 2.

There are mainly three steps in Algorithm 3. First,
trajectory outliers are removed from TS according to
Definition 7 in order to reduce their negative impact on
clustering results (Line 1). Lines 2-4 initialize the related
variables. Second, we calculate the time duration of each
trajectory in TS (Lines 5-7), which are used for the selection
of initial trajectory centers. As a result, the top numc

trajectories with the longest time duration are selected
to initialize TCenters (Lines 8-9). Third, the trajectory
clustering is completed based on the iteration process
(Lines 10-33). Specifically, Lines 13-23 determine if each
trajectory can be classified into a cluster or be discarded.
Lines 24-31 calculate the new trajectory centers based on
the last clustering result. The parameter MR is updated in
Line 32. The clustering process is terminated when the end
condition of the iteration process is met (Line 33). The
output of Algorithm 3 is a set of trajectory clusters TClusters
and a set of centers TCenters (Line 34).

The pseudo code of the TC MFTSM algorithm is given
as follows:

Each iteration of Algorithm 3 contains three main
steps. 1) The determination of trajectory centers. 2) The
classification of each trajectory. For each trajectory Ti , we
find the central trajectory closest to Ti and determine if the
distance between them is less than the threshold MR. If so,
Ti is added into the cluster where the central trajectory is
located. 3) The updation of the parameter MR.

Table 2 Notations used in the TC MFTSM algorithm

Notation Description

MR The threshold of distance radius within any trajectory

cluster

MD The threshold of the number of discarded trajectories

MI The threshold of iteration times

T Clusters A set consisting of trajectory clusters

T Centers A set consisting of centers of trajectory clusters

T Discards A set consisting of discarded trajectories

tra tp(i) The time period occupied by the i-th trajectory

iter ct The counter of iteration times

cid The cluster id

numc The number of trajectory clusters
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Note that the improved k-means clustering method
adopted here is based on relatively uniform division. The k
value is adjusted in the experiments to verify the effect of
TC MFTSM algorithm. It is different from density-based
clustering methods, such as the Quality Threshold (QT)
algorithm mentioned in Section 1. QT clustering algorithm
depends on the value of diameter threshold, which is mainly
set according to the observations and empirical values. And
the time complexity of QT clustering algorithm is relatively
high, because only one cluster can be obtained after one
iteration.

The reason that we use an improved k-means clustering
method lies in two aspects. On the one hand, k-means
is one of the most famous and most popular clustering
methods. It is available in many applications. Moreover,
k-means method belongs to the category of partitioning
methods, which are the simplest and most basic version
of clustering analysis. On the other hand, our proposed
algorithm TC MFTSM is mainly compared with the
existing algorithms MDAV [28] and GC DM [29], where
the idea of k-means method is used in trajectory clustering.
In order to obtain better comparison results on these three
algorithms, we implement the trajectory clustering based
on the improved k-means algorithm. In fact, we have
improved trajectory k-means clustering method in terms of
the selection of initial central trajectories, the selection of k
value and the updation of trajectory centers.

In addition, the trajectory outliers as defined in Definition 7
are removed in the first step of Algorithm 3. The imple-
mentation of this step has two advantages: one is to reduce
the running time, and the other is to reduce the interference
of outlying trajectories on clustering results. Table 3 shows
the execution time comparison of two schemes run on the
synthetic dataset, which will be introduced in Section 7.1.
Scheme 1 refers to the scheme implemented according to
Algorithm 3, that is the TC MFTSM algorithm. Scheme 2
does not perform the step of removing trajectory outliers in
Algorithm 3, and the other steps in Scheme 2 are the same
as those in Scheme 1.

As can be seen from Table 3, in the vast majority of
cases, the execution time of Scheme 1 is less than that of
Scheme 2 with the same k. It shows that the removal of
trajectory outliers can effectively improve the efficiency of
the algorithm. The accuracy verification can be seen from
Section 7.

Table 3 Execution time comparison of two schemes run on the
synthetic dataset [sec]

k 20 40 60 80 100 120 140

Scheme 1 31.84 64.51 18.31 10.82 28.59 7.92 0.79

Scheme 2 138.52 112.25 62.10 33.13 19.80 17.47 15.58

The time complexity of Algorithm 3 depends on the
following four aspects:

(a) Line 1: the time for removing the trajectory outliers
from T S, whose time complexity is O(p), where p =
|T S|. (b) Lines 5-7: the time for calculating the vector
tra tp based on TIME, the time complexity is O(p). (c)
Line 8: it is used to sort the vector tra tp, whose time
complexity isO(p logp). (d) Lines 10-33: First, from Lines
13-23 in Algorithm 3, we know that an iterative process of
clustering must be executed numc·p times. Hence, the time
complexity of this sub-part is O(numc·p). Second, from
Lines 26-31, we know that the function of this sub-part
is to calculate the new T centers, whose time complexity
is O(numc·lenclz). Therefore, the time complexity of the
two sub-parts is O(numc·p) + O(numc·lenclz). Because
lenclz

.= p/numc, p ≥ lenclz, the executive times
do not exceed 2·numc·p. The time complexity of Lines
13-31 is O(numc·p). Further, Lines 11-32 are repeated
max(MI,MD) times according to the repeat conditions (as
shown in Line 33). In general, max(MI,MD) 	 p, so
the maximum time complexity of this part (Lines 10-33) is
O(numc·p2).

The time complexity of the other lines is O(1). So the
total approximate time complexity of Algorithm 3 isO(p)+
O(p)+O(p logp)+O(numc·p2). In conclusion, its overall
time complexity is O(numc·p2).

The space complexity of Algorithm 3 is O(p2), which
is mainly due to storing the distance matrix. TC MFTSM
also needs space to store T Clusters and T Centers, but
the space complexity of TC MFTSM does not exceed
O(p2) because the space required by them are respectively
numc·lenclz and numc. Both numc (the number of
trajectory clusters) and lenclz (the number of trajectories
within each cluster) are much smaller than p. So the space
complexity of Algorithm 3 is O(p2).

7 Experiments

We perform experiments to evaluate the accuracy and
efficiency of the proposed algorithm. The experiments are
conducted with Matlab 8.3 (64-bit) on a PC with Intel (R)
Core (TM) 2 Duo CPU 2.6 GHz and 8 GB of RAM. The
operating system is Microsoft Windows 7.

Three datasets (Section 7.1) are used to verify the
performance of TC MFTSM algorithm. On the one hand,
we compare TC MFTSM with the prior work of GC DM
[29] and MDAV [28]. Trajectory clustering methods
adopted in these two algorithms are used as benchmarks
for evaluating the relative performance of TC MFTSM in
all of the following experiments. On the other hand, in
Section 7.3.3, we also conduct several experiments for
comparing TC MFTSM with a new algorithm using the
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distance calculation method proposed in Literature [34],
where the trajectory clustering method is improved based
on Traclus algorithm [12]. For ease of description, the new
algorithm is denoted as IMDTraclus later.

The four algorithms have certain comparability. They use
different trajectory similarity measurement algorithms, but
similar trajectory clustering methods, which are all based
on greedy clustering. The proposed algorithm adopts a
new trajectory similarity measurement method and makes
some improvements in the trajectory clustering process. The
parameters allocation is presented in Section 7.3.

According to Algorithms 1, 2 and 3, for each dataset, our
experimental process is specifically arranged as follows:

1) Pre-processing the experimental dataset based on our
proposed trajectory model.

2) Calculating the matrixes PT andTIME by implementing
Algorithm 1, and the distancematrix based onAlgorithm 2.

3) Implementing the distance calculation function between
any two trajectories according to Algorithm 2.

4) Completing the trajectory clustering using Algorithm 3.
5) Achieving the experimental results comparison based

on various evaluation metrics.

7.1 Dataset

1) Synthetic dataset

The Brinkhoff generator [36] is used to generate 1000
synthetic trajectories, containing 46906 locations in the
Oldenburg city of German. The parameters used are as
follows: the number of timestamps is 100, the number of
moving objects classes is 6, the number of external objects
classes is 1, the number of moving objects generated per
timestamp is 10, the number of external objects generated
per timestamp is 1, the speed of the moving objects is 250,
the value of “report probability (0-1000)” is 1000, which
means that a moving object is reported at every timestamp
during its moving. There are at most 100 locations in each
trajectory, and 45.5 locations per trajectory on average.

2) Real-life dataset

We also use the dataset of taxi moving trajectories
collected from San Francisco in the United States [37, 38]
as the real-life dataset in our experiments. It contains GPS
coordinates of approximately 500 taxis collected in the
San Francisco Bay Area during May 2008. The locations
in this dataset are very fine-grained because the average
time interval between two consecutive locations is less than
10 seconds [38]. The format of each mobility trajectory
file is as follows. Each line contains latitude, longitude,
occupancy and time, where the occupancy is ignored in our
experiments. Since the trajectory of a cab during an entire

month can hardly be considered a single trajectory, we use
the method in the literature [28] to pre-process this dataset.
In particular, the trajectory data of the day between May 25
at 12:04 and May 26 at 12:04 is extracted because during
this period there was the highest concentration of locations
in the dataset [28]. After a trajectory filtering and location
interpolation process, we obtained 480 trajectories and 244
locations per trajectory on average.

3) Clustered reference dataset

In order to calculate the (Adjusted) Rand Index value
(will be introduced in Section 7.2), a trajectory dataset
with reference classes is required. Therefore, we generate
a dataset of clustered synthetic trajectories using the
publicly available trajectory generator program written by
Piciarelli1.

A set of 1000 normal trajectories from 10 different tra-
jectory clusters and another set of 50 abnormal trajectories
from 50 different clusters are created with the randomness
parameter set to the default value 0.7, which is set referring
to Literature [39]. After being added time dimension, the
dataset contains 1050 random three-dimensional trajectories
of length 10. This dataset is used as one reference dataset
in our experiments. Moreover, another two datasets derived
from it will also be used (Section 7.3.3).

7.2 Evaluationmetrics

The evaluation metrics in our experiments are described in
this section.

1) The intra-cluster and inter-cluster distances

Four types of distances are calculated to evaluate the
clustering effect. Their calculation methods are provided
in Table 4, where indave ci and indmax ci respectively
refer to the average distance and the maximum distance
between central trajectory and other trajectories inside the i-
th cluster, outdave ci and outdmin ci respectively refer to
the average distance and the minimum distance between the
central trajectory of the i-th cluster and trajectories in other
clusters.

The smaller the intra-cluster distance is, or the greater
the inter-cluster distance is, the higher the similarity degree
within each cluster is.

2) The coupling degree

The coupling degree, denoted as cp dg, can be used to
reflect the degree of closeness within a cluster. This metric
is based on the distances presented in Table 4. The smaller

1http://avires.dimi.uniud.it/papers/trclust/create ts2.m

http://avires.dimi.uniud.it/papers/trclust/create_ts2.m
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Table 4 Four types of distances
Type of distance Notation Equation

The average intra-cluster distance indave indave = 1
numc

∑numc

i=1 indave ci

The maximum intra-cluster distance indmax indmax = 1
numc

∑numc

i=1 indmax ci

The average inter-cluster distance outdave outdave = 1
numc

∑numc

i=1 outdave ci

The minimum inter-cluster distance outdmin outdmin = 1
numc

∑numc

i=1 outdmin ci

the coupling degree is, the better the clustering effect is. The
coupling degree can be calculated as follows:

cp dg = 1

numc

numc∑
i=1

indave ci

outdave ci

(20)

3) The Total Sum of Squared Error

We use the Sum of Squared Error (SSE) [40] to measure
the clustering quality. The total SSE, denoted as TSSE, can
be calculated as follows:

T SSE =
numc∑
i=1

(
1

2·|Ci | ·
∑

Tx∈Ci

∑
Ty∈Ci

dist (Tx, Ty)
2) (21)

where Ci represents the i-th trajectory cluster, and
dist (Tx, Ty) is the distance between trajectories Tx and Ty .
The smaller the TSSE is, the better the clustering effect is.

4) The Silhouette Index

The silhouette value is here used as a measure of how
similar a trajectory Tx is to its own cluster Ci (cohesion)
compared to other clusters (separation), denoted as S(Tx):

S(Tx) = b(Tx) − a(Tx)

max{a(Tx), b(Tx)} (22)

where a(Tx) is the average dissimilarity of Tx to all Ty

(Tx, Ty ∈ Ci, Ty �= Tx), b(Tx) is the minimum dissimilarity
over all clusters Cj (j �= i), of the average dissimilarities to
Ty ∈ Cj [41]. The calculation equations are:

a(Tx) = 1

|Ci | − 1

∑
Tx,Ty∈Ci,Ty �=Tx

dist (Tx, Ty) (23)

b(Tx) = minCi,Cj ∈T Clusters,j �=i{ 1

|Cj |
∑

Ty∈Cj

dist (Tx, Ty)}

(24)

We can then quantify the validity of the trajectory
clustering by the Silhouette Index (SI ), defined as follows:

SI = 1

numc

numc∑
i=1

{ 1

|Ci |
∑

Tx∈Ci

S(Tx)} (25)

The silhouette value S(Tx) ranges from -1 to 1, where a
high value indicates that the trajectory Tx is well matched to
its own cluster and poorly matched to neighboring clusters.

If most trajectories have high values, then the trajectory
clustering result is appropriate.

5) The Rand Index and Adjusted Rand Index

Given a set of n elements S = {o1, . . . , on} and two
partitions of S to compare, X = {X1, . . . , Xr}, a partition of
S into r subsets, and Y = {Y1, . . . , Ys}, a partition of S into
s subsets.

First, we evaluate the performance of the proposed
trajectory clustering algorithm using Rand Index (RI) [42].
The RI value is calculated as follows [43]:

RI (X, Y ) = a + b

a + b + c + d
= a + b(

n
2

) (26)

where each element is a trajectory object, a represents the
number of pairs of elements in S that are in the same subset
in X and in the same subset in Y, b represents the number of
pairs of elements in S that are in the different subsets in X
and in the different subsets in Y, c represents the number of
pairs of elements in S that are in the same subset in X and in
the different subsets in Y, d represents the number of pairs
of elements in S that are in the different subsets in X and in
the same subset in Y.

The Rand Index has a value between 0 and 1, with 0
indicating that the two clusterings do not agree on any
pair of objects and 1 indicating that the two clusterings are
identical. The larger the RI value the better is the clustering.

Second, the Adjusted Rand Index (ARI) [42, 43] is
also used in measuring the quality of trajectory clustering.
ARI is the corrected-for-chance version of the Rand Index.
The overlap between X and Y can be summarized in
a contingency table [nij ] where each entry nij (i =
1, . . . , r; j = 1, . . . , s) refers to the number of objects in
common between Xi and Yj , that is, nij = |Xi ∩ Yj |. No
more expatiation about the contingency table here as it can
be obtained from Literature [43].

The ARI value is calculated as follows:

ARI(X, Y ) =
∑

ij

(nij

2

)−[∑i

(
ai

2

) ∑
j

(bj

2

)]/(n
2

)
1
2 [

∑
i

(
ai

2

)+∑
j

(bj

2

)]−[∑i

(
ai

2

) ∑
j

(bj

2

)]/(n
2

)
(27)

where ai = ∑s
j=1 nij , bj = ∑r

i=1 nij . In essence, (27)

calculates the value of Index−ExpectedIndex
MaxIndex−ExpectedIndex

. The ARI
value ranges from -1 to 1 and takes on the value 0 when the
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Index is equal to its expected value (under the generalized
hypergeometric distribution assumption for randomness).
The greater the ARI value is, the higher the clustering
quality is.

7.3 Experimental results

Experimental results and the related analysis are given in
this section, in order to verify the accuracy and efficiency
of the proposed trajectory clustering method based on
multi-feature distance measurement. Specifically, we have
conducted a set of experiments in which we executed
TC MFTSM, GC DM, MDAV and IMDTraclus algorithms
on the synthetic and real datasets.

The parameters used in our algorithms include ηo, ηs , k,
MR, MD, MI.

MD and MI respectively represent the threshold of
the number of discarded trajectories and the threshold of
iteration times. MR represents the threshold of distance
radius within any trajectory cluster. The value of MD
depends on the size of a dataset. As a rule of thumb, we
choose MD so that the number of discarded trajectories is
between 2% and 5% of the total number of trajectories.

The three datasets used in the experiments are respectively
with size of 1000, 480 and 1050, so it is appropriate to set
MD as 20. It is not necessary to assign a large value to the
parameter MI for multiple iterations, because the iteration
terminates when one of the three conditions (Line 33 of
Algorithm 3) is met. It is enough to set the number of
iterations to 100. According to the experimental methods in
Refs. [28, 29], the initial value of MR is set based on the
map size and is increased by 5% for each iteration.

Therefore, the parameters are set as follows: MD =
20, MI = 100, ηo and ηs are equal to 0.3 to give the
same importance to the orientation and speed distance. The
selection of k values is presented in Sections 7.3.1 and 7.3.2.

7.3.1 Synthetic dataset

1) Visual display of the clustering results

To intuitively demonstrate the effect of clustering, with-
out loss of generality, we set the parameter k = 100, and
accordingly, the number of clusters is 9 in each algorithm.
Figures 5, 6 and 7 respectively illustrate the clustering results
of TC MFTSM, GC DM andMDAV on the synthetic dataset.
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Fig. 5 Clustering results of TC MFTSM algorithm on the synthetic dataset
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Fig. 6 Clustering results of GC DM algorithm on the synthetic dataset

The trajectories in 3-dimensional space are depicted with
black lines, and their corresponding projections in the 2D-
plane are marked in red.

In Figs. 5–7, each sub-figure represents a cluster. In each
figure, there are 9 clusters that are respectively shown in 9
sub-figures. In Fig. 5, all the clusters are highly gathered
except the first one. The aggregation effect in Fig. 5 is
superior to the other two figures in terms of time dimension,
spatial dimension and trajectory direction. For example,
in the second sub-figure (Row 1, Col 2) of Fig. 5, all
the trajectories in this cluster have highly similar time
intervals, centralized geographical locations, and consistent
directions. Other sub-figures in Fig. 5 are the same.

From the results of the latter two algorithms, there are
obvious trajectory outliers in some clusters. For example,
in the fifth sub-figure (Row 2, Col 2) of Fig. 6 and in the
seventh sub-figure (Row 3, Col 1) of Fig. 7, the trajectories
in the corresponding cluster are very different with each
other regardless of the time, location or direction. The same
goes for the other clusters in Figs. 6–7. The reason is that
some characteristics are ignored in measuring trajectory
similarity. As is seen from Figs. 5–7, the clustering effect
of the TC MFTSM algorithm outperforms that of the other
two algorithms GC DM and MDAV.

In the following experiments, we vary the value k

between 20 and 140.

2) Execution time

Execution time is the time it takes an algorithm to
complete trajectory clustering. The Execution time compar-
ison of 3 algorithms executed on the synthetic dataset is
shown in Fig. 8.

As can be seen from Fig. 8, in the vast majority of
cases, the execution time of TC MFTSM algorithm is less
than that of the other two algorithms GC DM and MDAV
with the same k. The reason is that in our algorithm the
trajectory outliers have been removed from the dataset
before clustering. The general trend is, the larger the value
of k, the fewer the number of clusters, and the faster the
clustering speed.

3) The intra-cluster and inter-cluster distances

According to the calculation methods described in Table 4,
the four types of distances in the experimental results on the
synthetic dataset are provided in Table 5 and Fig. 9.

Table 5 and Fig. 9 show that the average intra-cluster
distance (indave) of three algorithms is far less than the
average inter-cluster distance (outdave), which indicates
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Fig. 7 Clustering results of MDAV algorithm on the synthetic dataset

the good clustering effect. And all the four distances of
TC MFTSM algorithm are less than that of the other two
algorithms. This depends on the different distance measure
metric. In addition, for the three algorithms at the same
k, it is normal that the minimum inter-cluster distance
(outdmin) is smaller than the maximum intra-cluster distance
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Fig. 8 Execution time comparison of 3 algorithms run on the synthetic
dataset

(indmax) because the distance between some trajectories
and trajectory centers in other clusters is less than the
maximum distance radius in those clusters.

4) The coupling degree

Based on (20), the coupling degree comparison of 3 algo-
rithms run on the synthetic dataset is shown in Fig. 10.
The coupling degree (cp dg) of TC MFTSM is substan-
tially less than that of the algorithms GC DM and MDAV
at the same k in the interval [60,140]. For the dataset con-
taining more than 1000 trajectories, it is proper to set the
presupposed size of each trajectory cluster (k) within this
interval. As described in Section 7.2, the coupling degree
represents the degree of closeness within a cluster. There-
fore, Fig. 10 shows that our algorithm outperforms the
existing algorithms.

5) The Total Sum of Squared Error

Based on (21), we calculate TSSE values of the three algo-
rithms on the synthetic dataset. Table 6 shows the compar-
ison results. Obviously, the TSSE value of our algorithm is
smaller than that of the other two algorithms at the same k.

6) The Silhouette Index
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Table 5 The distances
comparison of clustering
results of 3 algorithms on the
synthetic dataset

Type of value Algorithm k

20 40 60 80 100 120 140

The average intra-cluster distance TC MFTSM 3.85 4.34 5.77 5.33 6.14 6.34 7.48

GC DM 15.7 20.7 21.5 19.7 19.4 20.0 22.6

MDAV 17.4 18.1 17.6 20.4 17.2 21.7 25.8

The maximum intra-cluster distance TC MFTSM 6.67 8.39 11.9 12.6 14.8 18.0 18.5

GC DM 20.4 28.0 33.7 36.6 35.9 44.4 33.3

MDAV 24.1 27.3 29.2 49.8 42.3 41.6 49.8

The average inter-cluster distance TC MFTSM 90.2 136 183 206 251 197 205

GC DM 203 315 295 325 267 305 359

MDAV 404 511 478 759 607 679 990

The minimum inter-cluster distance TC MFTSM 2.98 2.88 3.41 3.28 3.19 2.78 3.80

GC DM 9.66 11.9 12.3 9.47 10.0 11.2 12.5

MDAV 10.8 8.42 8.11 10.1 7.11 8.14 9.71

Based on (22)–(25), we calculate SI values of the three
algorithms on the synthetic dataset. Table 7 shows the
comparison results. As is described in Section 7.2, higher
SI value indicates higher quality of trajectory clustering.
Obviously, the SI value of our algorithm is higher than that
of the other two algorithms at the same k.

7.3.2 Real-life dataset

Because the number of trajectories in the real-life dataset
is 480, which is less than the number of trajectories in the

above synthetic dataset, in the following experiments, we
change the value k, varying it between 10 and 100.

1) Execution time

The Execution time comparison of 3 algorithms run on
the real-life dataset is shown in Fig. 11.

As can be seen from Fig. 11, in the vast majority of cases,
the execution time of TC MFTSM algorithm is less than
that of the other two algorithms GC DM and MDAV with
the same k. And the time curve of TC MFTSM algorithm is
much smoother with different k. Because in our algorithm

Fig. 9 The four types of
distances comparison of
clustering results on the
synthetic dataset

20 40 60 80 100 120 140

5

10

15

20

25

30

T
he

 a
ve

ra
ge

in
tr

a−
cl

us
te

r 
di

st
an

ce

k

(a)

20 40 60 80 100 120 140

5

15

25

35

45

55

T
he

 m
ax

im
um

in
tr

a−
cl

us
te

r 
di

st
an

ce

k

(b)

20 40 60 80 100 120 140

50

200

350

500

650

800

950

1100

T
he

 a
ve

ra
ge

in
te

r−
cl

us
te

r 
di

st
an

ce

k

(c)

20 40 60 80 100 120 140

1

3

5

7

9

11

13

T
he

 m
in

im
um

 
in

te
r−

cl
us

te
r 

di
st

an
ce

k

(d)

 

 

TC_MFTSM GC_DM MDAV



Trajectory similarity clustering based on multi-feature distance measurement 2331

20 40 60 80 100 120 140
2

3

4

5

6

7

8

9

10

11
cp

_d
g 

[%
] 

k

 

 
TC_MFTSM
GC_DM
MDAV

Fig. 10 Coupling degree comparison of 3 algorithms run on the
synthetic dataset

the selection of initial trajectory centers is also optimized
except for the outliers elimination.

2) The intra-cluster and inter-cluster distances

The four types of distances in the experimental results on
the real-life dataset are provided in Table 8 and Fig. 12.

Table 8 and Fig. 12 show that, for this real-life cab
dataset, all of the four distances are very small, and thus
the difference among the 3 algorithms is not very
significant. The results of our algorithm do not outperform
the algorithm MDAV, but the difference is controlled in a
small range. More features are considered in our algorithm,
so the absolute values are bigger than the ones of MDAV.

3) The coupling degree

Based on (20), the coupling degree comparison of 3
algorithms run on the real-life dataset is shown in Fig. 13.
The coupling degree of TC MFTSM is substantially less
than that of GC DM algorithm and a little greater than that
of MDAV algorithm at the same k in the interval [10,100].
For the dataset containing 480 trajectories, it is proper to
set the presupposed size of each trajectory cluster (k) within
this interval. As described in Section 7.2, the coupling

Table 6 The TSSE comparison of 3 algorithms on the synthetic dataset
(×107)

Algorithm k

20 40 60 80 100 120 140

TC MFTSM 0.0211 0.086 0.039 0.152 0.055 0.231 0.125

GC DM 0.589 1.009 1.387 0.993 2.064 1.331 1.411

MDAV 0.724 1.065 1.739 1.586 2.44 2.964 3.106

Table 7 The SI comparison of 3 algorithms on the synthetic dataset

Algorithm k

20 40 60 80 100 120 140

TC MFTSM 0.849 0.818 0.773 0.754 0.698 0.750 0.739

GC DM 0.801 0.777 0.737 0.738 0.703 0.698 0.697

MDAV 0.755 0.656 0.672 0.668 0.636 0.631 0.652

degree represents the degree of closeness within a cluster.
Therefore, Fig. 13 shows that our algorithm is effective in
terms of this metric, it outperforms GC DM algorithm and
is similar to the result of MDAV algorithm. Moreover, the
curve of our algorithm with different parameter is smoother
than those of the others.

4) The Total Sum of Squared Error

Based on (21), we calculate TSSE values of the three
algorithms on the real-life cab dataset. Table 9 shows
the comparison results. Obviously, the TSSE value of our
algorithm is far smaller than that of the other two algorithms
at the same k. It represents the priority of our algorithm in
effect and accuracy of clustering.

5) The Silhouette Index

Based on (22)–(25), we calculate SI values of the three
algorithms on the real-life dataset. Table 10 shows the
comparison results. The SI value of TC MFTSM algorithm
is obviously higher than that of GC DM algorithm at
the same k. Moreover, TC MFTSM outperforms MDAV
algorithm in the vast majority of cases.

In summary, based on most evaluation metrics, experi-
mental results on the synthetic and real-life datasets show
that the proposed TC MFTSM algorithm outperforms the
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Table 8 The distances comparison of clustering results of 3 algorithms on the real-life dataset (×10−2)

Type of value Algorithm k

10 20 30 40 50 60 70 80 90 100

The average intra-cluster distance TC MFTSM 0.264 0.303 0.303 0.286 0.264 0.280 0.284 0.291 0.293 0.300

GC DM 0.576 0.754 0.835 0.943 0.943 0.943 0.697 0.697 0.697 1.171

MDAV 0.017 0.031 0.040 0.052 0.049 0.046 0.051 0.043 0.044 0.034

The maximum intra-cluster distance TC MFTSM 0.285 0.338 0.363 0.346 0.445 0.493 0.519 0.527 0.530 0.599

GC DM 1.449 1.290 1.571 2.056 2.056 2.056 2.516 2.516 2.516 2.553

MDAV 0.018 0.034 0.045 0.064 0.058 0.082 0.069 0.082 0.082 0.100

The average inter-cluster distance TC MFTSM 0.425 0.534 0.444 0.417 0.340 0.371 0.383 0.395 0.401 0.429

GC DM 0.905 0.922 0.948 0.965 0.960 0.962 1.018 1.018 1.037 1.064

MDAV 0.084 0.163 0.237 0.314 0.333 0.376 0.439 0.474 0.480 0.117

The minimum inter-cluster distance TC MFTSM 0.202 0.228 0.188 0.187 0.193 0.201 0.192 0.201 0.202 0.220

GC DM 0.396 0.401 0.406 0.402 0.375 0.365 0.371 0.371 0.353 0.362

MDAV 0.014 0.022 0.030 0.035 0.041 0.039 0.045 0.040 0.040 0.030

existing algorithms GC DM and MDAV in terms of execu-
tion efficiency and clustering utility, and can better reflect
the multiple internal and external characteristics of the
trajectory itself. Therefore, the TC MFTSM algorithm is
feasible and effective.

7.3.3 Clustered reference dataset

In this section, we evaluate the clustering performance of
TC MFTSM vs. GC DM, MDAV and IMDTraclus based
on the calculation of Rand Index (RI) and Adjusted Rand
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Fig. 12 The four types of distances comparison of clustering results on the real-life dataset
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Fig. 13 Coupling degree comparison of 3 algorithms run on the
real-life dataset

Index (ARI) values. These two metrics are very popular for
testing the performance of clustering algorithms. The RI
(ARI) measurement result is representative in measuring the
effect of clustering, so we choose to add a set of experiments
comparing the proposed algorithm TC MFTSM with the
new algorithm IMDTraclus to this section. To calculate
RI and ARI, a clustered dataset is needed as a reference
standard. Therefore, a clustered reference dataset (denoted
as ClusDS) is generated by a trajectory generator, as
described in Seciton 7.1.

We conduct a set of experiments based on the following
3 reference datasets, which are all derived from ClusDS:

(a) ClusDS itself. That is, a generated dataset of all the
normal and abnormal trajectories without any pro-
cessing. There are 1000 normal trajectories and 50
abnormal trajectories, where the normal trajectories
are grouped into 10 clusters and there are 100 tra-
jectories in each cluster, all the abnormal trajectories
are treated as 1 cluster. In order to unify the number-
ing of 3 datasets and to facilitate the later description,
ClusDS is also denoted as ClusDS1. It is shown in
Fig. 14. The 3-dimensional effects of these synthetic
trajectories are shown in Fig. 14a, while their projec-
tions in the 2D-plane are shown in Fig. 14b. Note that

for clarity, different trajectory clusters are represented
with different colors in Fig. 14. The trajectories
marked with solid lines are labelled normal and the
trajectories marked with blue dotted lines are labelled
abnormal.

(b) A dataset of all the normal trajectories without any
locations deletion, denoted as ClusDS2, it is a subset
of ClusDS1. There are 10 clusters and 100 trajectories
in each cluster. As is shown in Fig. 14, the trajectories
within ClusDS2 are those marked with solid lines.
That is, after the trajectories marked with dotted lines
are excluded from Fig. 14, the dataset of remaining
trajectories is ClusDS2.

(c) A dataset of all the normal trajectories with random
deletion of some locations, denoted as ClusDS3. It
is shown in Fig. 15. The number of trajectories in
ClusDS3 is the same as the number of trajectories in
ClusDS2, but the number of locations in ClusDS3 is
less than the number of locations in ClusDS2. For
each trajectory, several locations have been randomly
deleted. This is a dataset that is not synchronized in
time. It can be used to better verify the performance
of our algorithm because both temporal and spatial
factors should be considered in trajectory distance
measurement.

As can be seen from Figs. 14 and 15, the clustering
results in trajectory datasets ClusDS1-ClusDS3 are perfect
for its high similarity within each cluster. It is appropriate
that we use one of these datasets as a reference/standard
to calculate the (Adjusted) Rand Index values. In order to
make comparisons on the RI and ARI values with different
parameters, in the following experiments, we change the
value numc (the number of trajectory clusters), varying it
between 5 and 40.

The experiments in this section are conducted based
on three labelled trajectory datasets with reference sig-
nificance. In order to make the proposed algorithm more
convincing, we add a new algorithm IMDTraclus to the fol-
lowing comparison experiments in addition to the above
two algorithms GC DM and MDAV. The reason for select-
ing IMDTraclus here is as follows. This algorithm is also
implemented in two steps. First, trajectory similarity mea-
surement method proposed in Literature [34] is adopted

Table 9 The TSSE comparison
of 3 algorithms on the real-life
dataset

Algorithm k

10 20 30 40 50 60 70 80 90 100

TC MFTSM 0.216 0.212 0.207 0.209 0.208 0.208 0.210 0.210 0.209 0.620

GC DM 0.912 0.960 0.991 0.988 0.985 0.991 0.993 0.995 0.993 1.00

MDAV 0.909 0.956 0.973 0.979 0.983 0.990 0.993 0.991 0.992 0.999
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Table 10 The SI comparison of
3 algorithms on the real-life
dataset

Algorithm k

10 20 30 40 50 60 70 80 90 100

TC MFTSM 0.677 0.583 0.509 0.517 0.498 0.510 0.493 0.437 0.421 0.367

GC DM 0.259 0.206 0.172 0.152 0.148 0.146 0.137 0.120 0.115 0.119

MDAV 0.586 0.513 0.547 0.452 0.494 0.505 0.499 0.403 0.486 0.362

to calculate the distance between two trajectories. Second,
being similar with the other two algorithms MDAV and
GC DM, a greedy clustering method is used to complete the
trajectory clustering process. All of the four algorithms are
two-stage methods mentioned in Section 2. So it is reason-
able to conduct the comparison among these algorithms.

1) The Rand Index

Based on (26), we respectively calculate RI values of the
four algorithms on datasets ClusDS1-ClusDS3. In calcula-
tion of RI (X, Y ), the clustering of a reference dataset is
acted as X and the clustering result of an algorithm is acted
as Y. For example, the clustering results of TC MFTSM,
GC DM, MDAV and IMDTraclus are respectively acted as
Y to calculate RI (X, Y ).

Figure 16 shows the comparison of the four algorithms
on the RI value, where Fig. 16a and c respectively represent
the running results on the trajectory datasets ClusDS1-
ClusDS3.

As can be seen from Fig. 16, the results of TC MFTSM
algorithm are slightly better than that of the other three algo-
rithms with different values of parameter numc. With differ-
ent values of numc, the average RI values of TC MFTSM,
GC DM, MDAV and IMDTraclus are respectively 0.935,
0.940, 0.939, 0.894 for ClusDS1. They are respectively

0.940, 0.938, 0.939, 0.888 for ClusDS2, and 0.900, 0.898,
0.891, 0.852 for ClusDS3. The RI values of TC MFTSM
algorithm are higher than that of IMDTraclus algorithm in
all cases. Taken together, the TC MFTSM algorithm has
higher accuracy. One of the advantages of our algorithm is
that multiple features are considered in trajectory distance
measurement. For a dataset consisting of trajectories with
standard length, the superiority of our algorithm is not very
notable. But if a dataset consisting of trajectories with dif-
ferent lengths and shapes is used, it is clear that TC MFTSM
algorithm is better than the others. As described above,
ClusDS1 is a complete dataset including all the normal and
abnormal trajectories. ClusDS2 is a subset of ClusDS1, it
includes all the normal trajectories. For each trajectory in
ClusDS1 or ClusDS2, there are 10 locations without any
deletion. On the other hand, ClusDS3 is a dataset consist-
ing of trajectories with different lengths. As is shown in Fig.
16c, the TC MFTSM algorithm outperforms the other algo-
rithms in the vast majority of cases. The reason is that the
initial trajectory centers are optimized in TC MFTSM algo-
rithm, which is applicable to irregular datasets. In real life,
the trajectories collected from various devices are heteroge-
neous, so the TC MFTSM algorithm is more applicable. In
general, we can see the priority of our algorithm in accuracy
of clustering from Fig. 16.
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2) The Adjusted Rand Index

Based on (27), we respectively calculate ARI values of
the four algorithms on datasets ClusDS1-ClusDS3. In calcula-
tion of ARI (X, Y ), the clustering of a reference dataset is
acted as X and the clustering result of an algorithm is acted
as Y. For example, the clustering results of TC MFTSM,
GC DM, MDAV and IMDTraclus are respectively acted as
Y to calculate ARI (X, Y ).

Figure 17 shows the comparison of the four algorithms on
the ARI value, where Fig. 17a and c respectively represent the
running results on the trajectory datasets ClusDS1-ClusDS3.

As can be seen from Fig. 17, with different values of
parameter numc, the results of TC MFTSM algorithm are
better than that of GC DM and MDAV algorithms in the
vast majority of cases, and are better than that of IMDTra-
clus algorithm in all cases. Just as reviewed in Section 2, the

existing similarity measurement methods cannot fully uti-
lize the specific features of trajectory itself when measuring
the distance between trajectories. Another factor is that the
selection method of initial trajectory centers is optimized
in our algorithm. The comparison results indicate the effec-
tiveness and superiority of the proposed algorithm.

Additionally, one can observe that the ARI values in
Fig. 17c are relatively smaller than the ARI values in Fig. 17a
and b. The reason is that, as described above, ClusDS3 is a
dataset of all the normal trajectories with random deletion
of some locations. In the case of clustering results being
randomly generated, the ARI value is close to zero.

Based on various evaluation metrics, the proposed algo-
rithm has been verified on 3 different datasets mentioned
in Section 7.1. According to the analysis of algorithm
complexity and experimental results, TC MFTSM algo-
rithm is stable, reasonable and effective.
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Fig. 16 The RI comparison of 4 algorithms on datasets ClusDS1-ClusDS3
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Fig. 17 The ARI comparison of 4 algorithms on datasets ClusDS1-ClusDS3

8 Conclusion

In this paper, we introduce the problem of trajectory sim-
ilarity clustering and its applications. We propose a trajec-
tory clustering algorithm based on multi-feature distance
measurement. The proposed trajectory clustering algorithm
TC MFTSM uses the characteristics of orientation, speed,
shape, location and continuity of each trajectory to achieve
more accurate clustering results. In addition, the initial
centers of trajectory clusters are optimized based on the
time interval of each trajectory. Both the intuitive visu-
alization presentation and the experimental results show
that the proposed algorithm achieves high accuracy and
efficiency. Compared to the GC DM, MDAV and IMDTr-
aclus algorithms, the TC MFTSM algorithm reduces the
negative impact of outlying trajectories when selecting the
initial centers. Furthermore, it improves accuracy and sta-
bility in clustering results. The proposed algorithm can
be used in many geographical research fields. In future
research, we first plan to develop a trajectory privacy pre-
serving method based on the proposed trajectory clustering
algorithm to achieve trajectory k-anonymity within each
cluster while maintaining higher utility of published tra-
jectory data. Second, we will explore further applications
for the TC MFTSM method, such as tourist routes rec-
ommendation and congestion prediction. Third, in order to
facilitate further research and application, we will develop
a trajectory data analysis and visualization application sys-
tem that integrates the functions of trajectory input, query,
processing, analysis, output and display. The program that
implements the proposed method will be used as a back-
ground part of the system.
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