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a b s t r a c t

The research community has proposed numerous network security solutions, each dealing with a specific
problem such as address spoofing, denial-of-service attacks, denial-of-quality attacks, reflection attacks,
viruses, orworms.However, due to the lack of fundamental support from the Internet, individual solutions
often share little common ground in their design, which causes a practical problem: deploying all these
vastly different solutions will add exceedingly high complexity to the Internet routers. In this paper, we
propose a simple generic extension to the Internet, providing a new type of information, called path
addresses, that simplify the design of security systems for packet filtering, fair resource allocation, packet
classification, IP traceback, filter push-back, etc. IP addresses are owned by end hosts; path addresses are
owned by the network core, which is beyond the reach of the hosts. We describe how to enhance the
Internet protocols for path addresses that meet the uniqueness requirement, completeness requirement,
safety requirement, and incrementally deployable requirement. We evaluate the performance of our
scheme both analytically and by simulations, which show that, at small overhead, the false positive ratio
and the false negative ratio can both be made negligibly small.

© 2012 Elsevier Inc. All rights reserved.
1. Introduction

After 30 years of accumulative development, the Internet is full
of security challenges: address spoofing, denial-of-service (DoS)
attacks, denial-of-quality (DoQ) attacks, reflection attacks, viruses,
worms, to name a few. The research community has proposed nu-
merous detection/mitigation solutions [10,19,17,11,4,25,26,5,9],
each dealing with a specific problem in its own unique way. The
vast solution space, if viewed as a whole, seems able to handle
many security problems, but deploying all these solutions can be
practically infeasible. A major obstacle is that individual solutions
often share little common ground in their design. Many solutions
heuristically work around the limitations imposed by the legacy
Internet protocols and demand orthogonal changes on routers.
Their combined complexity added to the Internet routers will be
exceedingly high. In this paper, we take a different angle to study
Internet security. We ask the following question: Can we identify
a simple extension to the Internet protocols, which will provide
certain new information that will assist us to solve many secu-
rity problems? Such information, once created inside the network,
will be made accessible at the network edge, allowing various se-
curity applications to be developed there. With most complexity
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remaining at the edge, the network core, which provides application-
independent information, can be kept simple and stable.

What is the new information that the network can provide
to assist the development of security applications at the Internet
edge? There can be many. The one we propose here is called the
path address. A host on the Internet is identified by an IP address; a
routing path on the Internet will be identified by a path address.
The big question is, can path addresses help us in ways that IP
addresses cannot? Below, we use a few examples to illustrate their
differences.

In the first example, suppose that a server under DoS attack
attempts to identify the IP addresses of flooding sources and block
the packets carrying those addresses. However, this approach
will fail if malicious packets carry forged source addresses or a
reflection attack is used to cover the true sources. In the second
example, imagine that a server under DoQ attack tries to distribute
its processing capacity fairly among the clients. It cannot perform
such distribution based on IP addresses because there are toomany
of them. A certain kind of aggregationwill be necessary. In the third
example, suppose that a victim has managed to capture an attack
packet (say, containing a virus). Based on this single packet, before
triggering lawenforcement actions, howcan the victim trace across
the Internet back to the attacker, given that the source address in
the packet may be a forged one? All the above problems cannot be
reliably solved based on IP addresses in the packet header, which
are set by the sender and may not be genuine. We need address
information that is beyond the reach of end hosts. This newaddress
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should be set and verified by the routers in the network. If each
routing path is assigned a path address, which is carried in the
header of packets routed on the path, then a server under DoS
attack can block packets based on path addresses that identify
attack paths, a server under DoQ attack can distribute its capacity
among packet groups classified based on path addresses, each
representing an aggregate of client traffic, and a victim can use the
path address to find out the attack path and therefore the attack
source at the end of the path.

We propose an incrementally deployable path address scheme
(PAS) that meets the following requirements. (1) Each routing
path to a certain destination has a unique path address (with very
high probability), which is called the uniqueness requirement. It
ensures that path addresses accurately point outwhere packets are
coming from. Blocking a path address filters out the packets from
an attack source without causing significant collateral damage.
(2) Each packet carries the address of the path it traverses; the
packet has to carry that address from the first router all the way
to the destination, which is called the completeness requirement.
It gives the flexibility of classifying or blocking packets of a given
path address anywhere along the path. (3) The path address in
a packet’s header can only be correctly set by the routers in the
network; a host will not be able to forge the path address carried
in its packets without being caught, which is called the safety
requirement. (4) Any viable path address scheme must support
incremental deployment on the existing Internet. It should bring
benefit when only some of the routers are upgraded for path
addresses,which is called the incrementally deployable requirement.

This paper describes in detail how Internet protocols can
be enhanced to include path addresses based on the above
requirements. We demonstrate that the proposed PAS satisfies
the self-completeness property for incremental deployment, so
that domains will enjoy full protection as soon as they deploy
the PAS. We address the problem of verifying the authenticity
of path addresses. The PAS incurs small maintenance overhead.
We evaluate the performance of the PAS both analytically and by
simulations, which show that the false positive ratio and the false
negative ratio can be both made negligibly small.

The addition of path addresses requires relatively small changes
in Internet protocols. On the other hand, it may potentially have a
large impact on how security systems will be designed. When a
victim’s intrusion detection system identifies malicious packets, it
may extract the path addresses from the packets and pay special
attention to future packets carrying the same path addresses,
or even block such packets. If the victim has a mapping table
between path addresses and source IP address prefixes, which can
learn from the normal packets received in the past, then it can
trace back to the source domain based on the path address of a
captured attack packet. Path addresses can alsomake the pushback
mechanism [13] more powerful. After the victim identifies a set
of path addresses from malicious packets, it may push these
addresses into the network for blocking.When the first-hop router
receives a packet from a neighbor router and finds that the packet
carries a blocked path address, it drops the packet and then pushes
that path address to the neighbor router. Eventually the addresses
will be pushed all the way back to the edge of the domains where
the attack hosts reside.

While the focus of this paper is on network security, the
path address scheme can be used in other network functions,
such as packet classification, resource reservation, and service
differentiation. For example, instead of per-flow queuing, packet
queues can be queued based on path addresses, allowing trunk
resource reservation to bemade for all flows sharing the same path
between two domains.

The rest of the paper is organized as follows. Section 2 discusses
the related work. Section 3 presents the design of our path address
scheme. Sections 4.1 and 4.2 evaluate the PAS by analysis and
simulations, respectively. Section 5 draws the conclusion.
2. Related work

The research community has proposed numerous solutions to
prevent address spoofing, mitigate DoS attacks, filter malicious
packets, control access to critical resources, and perform trackback.
While tremendous progress has been achieved, most solutions
have their own limitations. More importantly, these solutions
are designed based on vastly different mechanisms and, as an
aggregate, they will impose enormous complexity on the Internet.
Hence, to make them practically viable, we must seek ways to
reduce such complexity with new generic assistance from the
network. We believe that the path address is a good candidate for
achieving this goal. Below we survey the related work, many of
which may benefit if path-address information becomes available.

Research on preventing address spoofing has brought a number
of technical breakthroughs [14]. Ingress filtering [8] requires the
edge routers of stub networks to inspect outbound packets and
discard those packets whose source addresses do not belong to
the local networks. Realizing ingress filtering in multihomed IPv6
networks is studied in [5]. Cryptographic cookies [3] allow a server
to stay stateless until the address of a client is verified. Oneproblem
is that it ismore expensive for the server to generate/verify cookies
than the attacker to forge request packets. The client-puzzle
solutions [10,22] require clients to solve cryptographic puzzles
before their connections are established. However, significant
computation overhead is placed not only on malicious hosts
but also on legitimate clients. The route-based packet filtering
scheme [17] requires each router to drop packets that are not
supposed to pass a link. The spoofing preventionmethod (SPM) [4]
requires pairwise secure communication channels among ASes to
synchronize their keys.

Many systems have been proposed to mitigate DoS attacks.
Adaptive early packet filtering [6] is proposed for defending
firewalls against DoS attacks. QoSoDoS [9] is a protocol that
ensures delivery of time-sensitive messages over unreliable
networks, susceptible to high congestion and network flooding
DoS attacks. SOS [11] is a secure overlay service designed to
protect emergency services from DoS attacks. Mayday [1] is a
generalization of SOS. They both assume a closed group of trusted
clients. WebSOS [15] applies the SOS architecture to the web
service using graphic Turing tests.

IP traceback has been intensively studied [19,2,20,25,16]. The
goal is to find the origins of the packets with spoofed source ad-
dresses. Many traceback schemes incur considerable computation
overhead [19], storage overhead [20], or communication over-
head [2] in order to keep track of the routers that the packets tra-
verse.Moreover, they identify the attack paths but do not provide a
means for the victim to block the attack packets. Recently, entropy
variations between normal and attack traffic have been used to de-
terminewhich network flows belong to DDoS attacks [28,24]. Each
router measures the entropy variation per flow, and decides the
neighboring upstream routers from which attack packets come.

The most related work is Pi (path identifier) [27,26], which
requires each router to insert an n-bit mark in the IP identification
field, where n is typically 2. The mark inserted by Pi in the
packet header is not suitable to serve as a path address. In
particular, Pi does not satisfy the uniqueness, completeness, and
safety requirements (defined in Section 1). First, in Fig. 1(a), for
packets coming from a long path,marks inserted by remote routers
will be overwritten due to the limit size of the path identifier.
Consequently, all packets arriving at R8, even though they may
come from different paths further upstream, will have the same
path identifier when they reach the receiver. This violates the
uniqueness requirement. To block an attacker behind R9 based
on the path identifier, all normal users behind R8 will also have
to be blocked. Second, marks are inserted one at a time by the
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Fig. 1. Pi cannot be used for path addresses.
intermediate routers. Hence, a packet will not carry the same
address information in the IP identification field along its route,
which violates the completeness requirement. Third, in Fig. 1(b),
if a router (such as R8) has more than 2n links, then there will not
be enough mark values to uniquely distinguish where packets are
from. On the other hand, if a router has fewer than 2n links, it will
leave somemark values unused. Fourth, in Fig. 1(c), if a zombie host
is close to the receiver, only a few bits in the path identifier will
be marked by routers, and the remaining bits will carry arbitrary
values set by the attacker, which violates the safety requirement.
To block the attacker, the receiver has to block all path identifiers
that carry the same value in those few bits, which means that one
sixteenth of all normal traffic will be mistakenly blocked in this
example. If the zombie is one hop away from the receiver, then
one fourth of all normal traffic will have to be mistakenly blocked.
The problem is very serious because a single zombie close to the
receiver can cause such significant collateral damage.

3. Path address scheme

This section presents the detailed design of the path address
scheme.

3.1. Objectives

We are only concerned with the interdomain routing paths
at the AS level.1 Because the discussions are exclusively about
interdomain subjects, we will sometimes refer to an ‘‘interdomain
router’’ (e.g., a BGP router) simply as a ‘‘router’’ and an
‘‘interdomain routing protocol’’ (e.g., BGP) as a ‘‘routing protocol’’.
We will use ‘‘AS’’ and ‘‘domain’’ interchangeably.

We propose a path address scheme (PAS), which assigns each
path an address. There is an inherent difference between IP
addresses and path addresses. The IP addresses are owned by
the hosts, which are given the full responsibility of setting the
source addresses in their packets. The path addresses are owned
by interdomain routers and kept secret to the hosts. Therefore, only
routers are able to set path addresses appropriately in the packet
header.

1 Technically, a similar scheme of path addresses may be introduced at the
intradomain level, especially for large ASes.
Wewill answer the following questions: How do we define the
address of a routing path? How dowe extend the routing protocols
to keep track of the path addresses? What new fields should be
introduced in the packet header for path addresses? How can the
receiver verify the authenticity of the path address carried in a
packet?

A packet carrying the authentic address of its routing path
is called a normal packet; a packet carrying a false path address
is called an abnormal packet. Our goal is to enable the receiving
host, as well as the intermediate routers, to classify the packets
into these two categories. To fulfill this goal, the design of path
addresses should meet the following objectives.

• Objective 1: All legitimate packets will carry the authentic path
addresses and therefore be classified as normal packets.

• Objective 2: All malicious packets will either carry the authentic
path addresses or otherwise be classified as abnormal packets.

The second objective needs more explanation. An attack host
may injectmalicious packets into a routing path. It has two choices,
falsifying or not falsifying path addresses in the packet header. If
the attack host sets false path addresses in its packets, the false
addresses will be detected and the packets will be classified as
abnormal ones. If the attack host lets the router set the authentic
path address, all its packets will share a common characteristic,
the same path address, which can be used for traceback or packet
filtering.

3.2. Definition of path address

Each interdomain router generates a randomnumber, called the
local number, which has l bits. The path address of a routing path is
defined as the XOR of the local numbers of the routers on the path.
An example is given in Figs. 2 and 3, where only the first eight bits
of the local numbers are shown. Fig. 2 shows the AS-level topology
and the local numbers of nine interdomain routers. We denote the
local number of a router Rx, x ∈ [1 · · · 9], as Rx.loc. Fig. 3 shows
the addresses of the routing paths to AS1. We denote the address
of the routing path from Rx to a domain y as Rx.paddr(y), which is
called the path address from Rx to y.

In Fig. 3, the path from R1 to AS1 contains only one router, R1.
Hence, R1.paddr(AS1) = R1.loc = 10101101. The path from R2
to AS1 contains two routers, R2 and R1. Hence, R2.paddr(AS1) =

R1.loc ⊕ R2.loc = 10101101 ⊕ 00010111 = 10111010. The
path addresses of all other routing paths to AS1 are similarly
determined.
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Fig. 2. The local numbers of the interdomain routers.
Fig. 3. The addresses for the routing paths from the routers to AS1. For example, R8.paddr(AS1) = 01001010. It is the XOR of all local numbers on the routing path
R8 → R7 → R6 → R5 → R4 → R3 → R2 → R1. Alternatively it can be viewed as the XOR of R8’s local number and R7.paddr(AS1).
The local numbers are independent random numbers. Any
two (undirected) paths have at least one different router.2 Their
addresses have at least one different local number in the XOR
calculation. Therefore, the path addresses are also independent
random numbers. Given a destination domain, we want the path
addresses from all routers to be different with high probability, as
illustrated in Fig. 3, where R1.paddr(AS1) through R9.paddr(AS1)
are all different.

Because the path address will be carried in the packet header,
its length represents a performance/overhead tradeoff. Let p be
the number of bits in a path address. Suppose that a victim server
decides to temporarily block a path address carried by identified
malicious packets in a SYN-flood attack. Let x the number of ASes
on the Internet. The expected number of other ASes whose routing
paths to the victim happen to have the same address is bounded
by x

2p , and the expected fraction of legitimate packets that are
mistakenly blocked is 2−p, which is only related to the value of p
and not related to the number of ASes. On today’s Internet,3 x ≤

216, and the above two numbers are 2−16 and 2−32, respectively, if
p = 32. We expect the value of p to be set reasonably large.

3.3. Extending the routing protocol for path address

The interdomain routing protocol (BGP) establishes a routing
table at each router Rx, which has an entry for every reachable
domain y. A path address field is added to the routing entry,
storing Rx.paddr(y), the address of the current routing path to
y. The routing protocol can be easily extended to keep track of

2 There may be more than one communication link between two neighboring
routers. If two paths have the same sequence of routers but use different links, we
treat them as the same path.
3 The AS identifier in BGP is 16 bits long, though it has been recently proposed to

extend that to 32 bits (RFC 4893). Hence, the number of ASes on today’s Internet is
bounded by 216 .
the path addresses as the routes change. First, the routers nearest
to a destination y know the path addresses, which are simply
their local numbers. Second, consider an arbitrary router Rx, and
let Rz be the next hop on its routing path to y. If Rz knows the
correct value of Rz.paddr(y), Rx will be able to calculate its path
address to y by Rx.paddr(y) = Rz.paddr(y) ⊕ Rx.loc . Therefore,
by induction, the correct addresses for all paths will be found
after the routes stabilize, assuming that the neighboring routers
exchange their knowledge about path addresses together with
the classical BGP routing information. We also want to point out
that the above distributed computation of path addresses does not
assume symmetric routing.

The additional overhead (one integer for each routing entry) is
very small, compared with what today’s BGP already stores: the
whole interdomain path to a destination domain for each routing
entry.

Incremental deployment can be achieved as follows. Define a
new optional transitive path attribute in BGP for path address. For a
BGP router that is upgraded to support the PAS, when it advertises
its routes to neighbors via UPDATE messages, it inserts the new
transitive attribute in UPDATE to carry the path address of each
route. When a BGP router that does not support the PAS receives
such UPDATE messages, according to the protocol of BGP [18], it
will pass the received transitive attribute (i.e., path addresses) to
its neighbors when the received routes are advertised. When a
BGP router that supports the PAS receives UPDATE messages with
the new transitive attribute, it will extract the path addresses, and
update the routing table for new routes and new path addresses
(by XORing the received path addresses with the local number).
When it advertises the new routes, it inserts their path addresses
as transitive attribute. Under incremental deployment, the address
of a path calculated by the above protocol will be the XOR of the
local numbers of the routers that have been upgraded to support
th PAS. The legacy routers are left out of the distributed calculation
process.

A multi-homing domain has more than one path to each
destination. Each of its BGP routers stores a different set of routes.
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Fig. 4. The received values of the paddr and verification fields are shown beside each router. The two fields are set to 0 by the sender. The first interdomain router sets
these fields with appropriate values. The path address field stays unchanged at the subsequent hops, but the verification field is XORed by the local number at each hop. The
verification field should be 0 when the packet reaches its receiver.
The traffic from this domainmay be split among those BGP routers,
carrying different path addresses and following different routes
to a destination. If an attack (such as DoS) is launched from this
domain, the victim will identify more than one (most frequently
appearing) path address associated with the attack.

BGP stability is of primary importance to the overall stability
of the Internet [12]. Route flap damping techniques have been
proposed and implemented to stabilize interdomain routes [21].
Although route change is infrequent among BGP routers overall,
it does happen occasionally due to link failure or other reasons.
Before new routes are stabilized, some path addresses may be
temporarily out of sync, causing a burst of packets to be classified
as abnormal. Therefore, not all abnormal packets should be
dropped automatically. Only when a victim is under attack and
the need to immediately block out malicious packets outweighs
the collateral damage due to the small possibility of ongoing
interdomain route change may the victim decide to block out
all abnormal packets. Even when such misblocking happens, it is
temporary. We want to point out that route change also poses
similar challenge to Pi [27], IP trackback [19,2,20,27], and other
related work [17].

3.4. New fields in packet header and path address verification

The PAS places two new fields and one new flag in the packet
header: the paddr field, the verification field, and the P flag. The
paddr field carries the address of the routing path that the packet
traverses. For example, in Fig. 3, the packets from AS5 to AS1
will carry 01001010 in the paddr field if they are routed via R8.
To routers, the P flag indicates whether the paddr field has been
appropriately set or not. The purpose of the verification field is
to prevent a malicious host from falsifying the path addresses. In
Fig. 3, a malicious host in AS4 may forge packets with 01001010
in the paddr field and pretend that the packets are coming from
AS5. When the forged packets arrive at R6, they are mixed with
the legitimate packets from AS5, so R6 must be able to classify the
forged ones as abnormal packets. This is accomplished with the
help of the verification field. We will explain the actual operations
shortly. The problems of where to place these fields and how to
operate under incremental deployment will be addressed at the
end of this subsection.

The source host does not know the path address of its routing
path. It sets the P flag to 0, and sends the packet, which arrives
at the first interdomain router. When the router receives a packet,
if the P flag is 0, the router knows that it is the first hop on the
path and is responsible for assigning the appropriate values for
the paddr/verification fields. After that is done, the router will
change the P flag to 1, so that the subsequent routers will not
change the path address carried in the packet, which satisfies the
completeness property.

An example is given in Fig. 4, where the received packet is
shown beside the router. When the first interdomain router, R8,
receives the packet, it finds that the P flag is 0. R8 sets the paddr
field to be R8.paddr(AS1), which is the path address from itself to
the destination. It sets the verification field to be R8.paddr(AS1) ⊕

R8.loc , which gives the path address from the next hop router to
the destination. Finally it sets the P flag to 1 before forwarding
the packet. When the next-hop router, R7, receives the packet, it
keeps the path address field intact but updates the verification
field by XORing it with the local number. The new value of the
verification field is the path address from the yet next hop (R6)
to the destination. Consequently, each intermediate router Rx is
able to verify the authenticity of the path address in the paddr
field bymatching the received value in the verification field against
Rx.paddr(AS1), which can be found in the routing table. If the two
match, then the packet is a normal one. Otherwise, it is classified
as an abnormal one. The verification process must be carried out at
each hop, because forged packets may be injected anywhere.

When a packet reaches the receiver, the verification field is zero
if it is a normal packet and non-zero if it is an abnormal packet.
Because the path address should be kept secret from the end host,
the last hop router will disguise the path address by performing
a keyed hash on the paddr field. All normal packets traversed the
same routing path will have the same hash value in the paddr field
when reaching the receiver.

So far we have described normal behavior. Next, we study what
a malicious host can do. In Fig. 5, a malicious host resides in AS4.
When producing attack packets, it has two choices, either setting
the P flag to 0 or to 1. (1) If it sets the P flag to 0, R6 will insert
the path address in the packet header. Because the packets carry
the correct path address, they will be classified as normal (by
definition) all the way to the receiver. When the receiver finds
itself is under attack, it tries to mitigate the attack by filtering out
the malicious packets. Recall that the last hop router will hash the
paddr field. Without knowing the actual path address, the receiver
performs filtering based on the hashed path address carried in
those packets. (2) To hide itself, a malicious host may set the P
flag to 1 and the paddr field to an arbitrary value. However, it
does not know the correct value for the verification field, which
must be the path address from R6 to the destination. If it sets
this value incorrectly, all intermediate routers will classify the
packets as abnormal. An example is given in Fig. 5, where both
paddr and verification fields of an attack packet are initially set
to 01001010, representing a false source of AS5. The packet is
classified as abnormal by all routers on the path.

With extension headers, IPv6 is designed to allow easy
incorporation of future functions. The new path-address fields can
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Fig. 5. Amalicious host in AS4 sets the paddr/verification fields arbitrarily with the P flag being 1. As long as it does not know R6.paddr(AS1), the attack packets to AS1 will
be classified as abnormal, which is indicated by a cross below V in the figure.
be easily incorporated into IPv6 by adding an extension header. The
new fields may also be embedded in the IPv4 header for backward
compatibility by creating a new IP option or using the 16 bits from
the IP identification field, 1 bit from the flag field, and 13 bits
from the offset field, as many other works [27,19,2,20] do. The
verification field can be made shorter than the paddr field, which
provides flexibility of making a performance tradeoff under space
constraints. In this case, only a subset of paddr bits are verified.

During incremental deployment, some routers are upgraded to
support the PAS, while others are not. The former will process
the packets as described above. The latter will simply forward the
packets without PAS-related operations. Because the path address
is the XOR of the local number of the upgraded routers, the
verification process will be performed successfully.

Proving that the PAS satisfies the requirements of unique-
ness, completeness, safety, and incremental deployment is quite
straightforward, because its design is specifically constructed
based on these requirements. We omit the proof to save space.

3.5. Alternative version of path address against router compromise

A serious problem arises when the attacker compromises core
interdomain routers that route and forward traffic for many other
ASes. It is unlikely that this problem will happen frequently,
because core interdomain routers, as critical infrastructure, are
closely watched. But if an attacker gains the control of a core
interdomain router, it can do a variety of types of harm, such as
causing inconsistent routing tables, producing false routes, and
injecting forged packets. Our focus is on path address. In Fig. 5, if
the malicious host compromises R6, it knows the path addresses
from R6 to all destinations. The malicious host can instruct R6 to
forge packets with arbitrary values in the paddr field but correct
values in the verification field, which allows the packets to pass
the verification along the routing paths. Router compromise poses
similar challenge to Pi [27], IP trackback [19,2,20], and other
related work [17], even though most did not consider this issue.
There is no way one can save the legitimate packets arriving at the
compromised R6 because R6 can corrupt or even drop them. But it
is possible for us to enhance the design of path addresses so that
packets from R6 can be separated from packets forwarded on other
paths. The basic intuition is that, if the subsequent routers after R6
are not compromised, they should construct a portion of the path
address that is beyond the control of R6. If necessary, this portion
of the address can be used by the receiver to classify the packets
from R6.

The new way of constructing a path address performs shifted
XOR, instead of XOR, on the local numbers of the routers. Let the
routing path from Rx to a destination domain y be Rx → R[x − 1]
· · · → R1 → y. The distance from Rx to y is x. Let d be a small
integer. To calculate Rx.paddr(y), whenwe XOR the local numbers,
we shift R2.loc to the right by d bits, R3.loc to the right by 2d bits,
. . ., and Rx.loc to the right by (x − 1)d bits. Hence, the enhanced
version of path address is defined as follows.

Rx.paddr(y) =


i∈[1···x]

(Ri.loc ≫ (i − 1)d)

= R[x − 1].paddr(y) ⊕ (Rx.loc ≫ (x − 1)d), (1)

where ≫ is the right shift operator. It is easy for a routing protocol
to keep track of the new path address if Rx knows its distance
to a destination y and knows the path address from its next hop
(denoted as R[x−1]) to y. Below, we give a few examples based on
the local numbers in Fig. 2. Let d = 2.

R1.paddr(y) = R1.loc = 10101101 · · ·

R2.paddr(y) = R1.paddr(y) ⊕ (R2.loc ≫ 2)
= 10101101 · · · ⊕ 0000010111 · · ·

= 10101000 · · ·

R3.paddr(y) = R2.paddr(y) ⊕ (R3.loc ≫ 4)
= 10101000 · · · ⊕ 000011010011 · · ·

= 10100101 · · · ,

where the bold zeros are inserted due to right-shift operations, and
the italic bits in a path address will not change in the subsequent
computations. The leftmost d bits of a path address are determined
by the last hop (R1) on the routing path, the next d bits are
determined by the last two hops, and so on. If Ri is compromised,
it has no impact on the leftmost (i − 1)d bits in the path address.

The procedure for setting the values in the paddr/verification
fields is similar to what has been described in Section 3.4, except
that shifted XOR is used. The verification is, however, different.
When an intermediate router Ri receives the packet, it classifies the
packet as normal only if the verification field matches Ri.paddr(y)
and the leftmost (i × d) bits of the paddr field match those in
Ri.paddr(y).

If a malicious host compromises Ri, it cannot set the leftmost
(i−1)d bits in the paddr field to arbitrary values, because they have
tomatch those in R[i−1].paddr(y) in order to pass the verification
of the next hop. Consequently, all attack packets from Riwill carry
the same (i − 1)d bits in the paddr field. A defense system may
be designed based on this property. What happens if the attacker
compromises R1, the last hop router to the destination? Because
the packets from all over the Internet are fully mixed there, it
is no longer possible to separate the legitimate packets from the
malicious ones if that router is compromised, unless the legitimate
packets are protected by end-to-end cryptographic schemes.
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Shifted XOR shares superficial similarity with the operation of
Pi [27]. In Pi, each router can only set twobits in the IP identification
field. A malicious host that is one hop away from the victim can
arbitrarily set other bits in that field. In shiftedXOR, each router has
much more impact. For example, the last hop router will influence
all bits in the path address. Themalicious host onehop away cannot
set any bit in the path address without being detected.

3.6. Self-completeness of the PAS for incremental deployment

During incremental deployment, let C be the set of ASes that
have deployed a defense system and C ′ the set of ASes that have
not. The system is said to be self-complete if it is fully functional
among ASes in C even when attacks are launched from C ′. A
self-complete system must defeat both the ‘‘internal’’ attackers
from C , which are within the defense coverage, and the ‘‘external’’
attackers from C ′, which are outside the defense coverage.

Many existing defense systems are not self-complete. Take
ingress filtering [8] as an example. Suppose that all networks in C
perform ingress filtering and that those in C ′ do not. The attackers
from C ′ can forge any source addresses and pretend to be from C .
A victim cannot distinguish such attack packets from legitimate
packets from C , and has to drop both. Hence, ingress filtering is
not self-complete. SYN-dog [23] is not self-complete by a similar
analysis. It can be shown that the IP traceback systems [19,2,20,27]
are also not self-complete.

When an AS deploys a system that is not self-complete, it
essentially takes a good-citizen strategy to help in a global effort
for defeating a certain network threat. But the benefits for itself
arrive only after other organizations on the Internet are also
good citizens and, moreover, implementing the same defense.
In contrast, if an AS joins a self-complete system such as the
PAS, it immediately receives the full defense function for traffic
between itself and other ASes that also deployed the system. This
has a significant practical impact: the immediate benefit during
incremental deployment gives incentive for ASes to deploy such
a system.

An AS is PAS aware if it deploys a PAS on all its BGP border
routers; otherwise, it is PAS unaware. We are not concerned

with the uniqueness for the address of a path whose source or
destination is PAS unaware. However, for our scheme to be self-
complete, wemust ensure that the path address from a PAS-aware
source AS to a PAS-aware destination AS (denoted as x) must have
a negligibly small probability to be the same as the address from
another source AS to x, regardless of whether that source AS is PAS
aware or not. This is generally true, as illustrated in Fig. 6, where
black circles are routers supporting the PAS and white circles are
routers not supporting the PAS. The path address from AS3 to AS1
is R3.paddr(AS1) = R3.loc ⊕ R1.loc . It is different from the path
addresses from other domains to AS1, with one exception: the
address from the PAS-unaware AS6 to AS1 is also R3.loc ⊕ R1.loc .
To solve this problem, when R3 receives a packet from an external
interface (connecting AS6) with the P flag being 0, it will set the
paddr field to be R3.paddr(AS1) ⊕ R3.loc ⊕ r = R1.loc ⊕ r , where
r is a random number associatedwith the external interface. It sets
the verification field to be the paddr field XORed with r , which
ensures that the verification process will be successful down the
path. When the destination AS1 receives packets from AS6, it will
see path address R1.loc ⊕ r , instead of R3.loc ⊕ R1.loc.

There is one additional operation. Before a router forwards
a packet destined to another AS, if the router’s path address to
the destination AS is equal to its local number, the router knows
that it is the last AS-aware router on the path. In this case, it
should disguise the paddr field by hashing before forwarding the
packet.
Fig. 6. The path address between AS3 and AS1 should be artificially made different
from the address between AS6 and AS1.

4. Evaluation

We evaluate our path address scheme both analytically and by
simulations, and compare our schemewith the most related work,
Pi [27]. The results demonstrate that the PAS is able to drive both
the false positive ratio and the false negative ratio to almost zero,
while Pi cannot.

4.1. Analysis

Our analytical results reveal some interesting properties of the
PAS and Pi.

4.1.1. Analytical model
We first consider an attack involving one malicious host.

Suppose that the malicious host has launched an attack, the
intrusion detection system at the victim has identified the attack,
and it has extracted a path address (if the PAS is deployed) or a path
identifier (if the Pi scheme is deployed) from the attack packet.
Hoping to block the malicious host, the victim decides to filter all
packets carrying the path address (or path identifier). Using this
scenario, we try to quantify the false-positive probability and the
false-negative probability of the PAS (and Pi).

When a normal host sends a legitimate packet to the victim, if
the packet is mistakenly filtered, we call the event a false positive.
The probability for that to happen is called the false-positive
probability. Clearly, it is equal to the percentage of all legitimate
packets that are filtered, traditionally called the false-positive ratio.

When the malicious host launches a new attack, if the
attack packet is not filtered, we call the event a false negative.
The probability for that to happen is called the false-negative
probability. It is equal to the percentage of all attack packets that
are not filtered, traditionally called the false-negative ratio.

Let h be the number of routers that have been upgraded to
support the PAS (or Pi) on the path from the malicious host to the
victim. Letm be the number of bits used to store the path identifier
in Pi or the paddr/verification fields and the P flag in the PAS. For
Pi, let n be the number of bits in any mark inserted to the path
identifier by a router. For the PAS, let p be the number of bits in
the paddr field and v the number of bits in the verification field.
p+ v = m− 1. If v is chosen smaller than p, then only v bits in the
paddr field are verified.

4.1.2. False-positive probability and false-negative probability of the
PAS

Suppose that the victim is blocking the path address extracted
from a previously identified packet from the malicious host.
Consider a legitimate packet from a normal host. Each router
contributes a full p-bit local number to the path address. As long as
the routing path from the normal host to the victim has one router
that is not in the path from the malicious host to the victim, the
addresses of the two paths may differ in any of the p bits. Hence,
the chance for these two path addresses to be the same, i.e., the
false-positive probability, is

FPpas(p) =
1
2p

. (2)
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Next, consider an attack packet from the malicious host. To
produce a false negative, themalicious host has to falsify the values
in the paddr/verification fields and set the P flag to be 1. The chance
for a random value in the verification field to pass the verification,
i.e., the false-negative probability, is

FNpas(v) =
1
2v

. (3)

Because p+v = m−1, ifm is fixed, we can tune the values of p
and v tomake a tradeoff between the false-positive probability and
the false-negative probability. However, we are able to lower both
probabilities ifm can be increased. Ifm is large enough (e.g., 30), we
can lower both to almost zero. Finally, by (2)–(3), neither the false-
positive probability nor the false-negative probability depends on
the distance h from the malicious host to the normal host.

4.1.3. False-positive probability and false-negative probability of Pi
Suppose that the victim is blocking the path identifier extracted

from a previously identified packet from the malicious host.
Consider a legitimate packet from a normal host. Suppose that
the routing path from the normal host to the victim shares the
last c hops with the routing path from the malicious host. The
path identifier carried in the legitimate packet must share c ×

n common bits with the blocked identifier. The packet will be
mistakenly filtered if the other (m−c×n) bits happen to also have
the same value as the blocked identifier. Hence, the false-positive
probability is

FPpi(m, n, c) =

 1
2m−n×c

if n × c < m
1 if n × c ≥ m.

(4)

Next, consider an attack packet from the malicious host. This
new attack packet follows the same path as the previous one.
Hence, the path identifier carried in the packet shares h × n
common bits with the blocked identifier. The other (m−h×n) bits
are randomly set by the malicious host. Hence, the false-negative
probability is

FNpi(m, n, h) =


1 −

1
2m−n×h

if n × h < m
0 if n × h ≥ m.

(5)

Pi has two design parameters,m and n. Eqs. (4)–(5) reveal some
interesting properties of Pi. First,we showa counterintuitive result.
It is not true that a larger size for path identifier always leads to
better performance. From (4)–(5), increasing m reduces the false-
positive probability, but increases the false-negative probability
when n × h < m. Decreasing m has the opposite effect. Second,
increasing n reduces the false-negative probability, but increases
the false-positive probability. Decreasing n has the opposite effect.
Third, the false-negative probability increases exponentially as the
distance h from the malicious host to the victim decreases. We
can tune the values of m and n to make a tradeoff between the
false-positive probability and the false-negative probability, but
we cannot simultaneously drive them down.

4.1.4. Multiple malicious hosts
The analytical model can be extended to include k malicious

hosts. Suppose that the victim is blocking a path address (or path
identifier) from each identified malicious host. Through a similar
analysis, we have the following false-positive and false-negative
probabilities (with superscript k),

FPk
pas(p) = 1 −


1 −

1
2p

k

,

FNk
pas(v) = 1 −


1 −

1
2v

k
FPk
pi(m, n, c) = 1 −

k
i=1


1 − max


1

2m−n×ci
, 1


(6)

FNk
pi(m, n, h) = 1 −

k
i=1


1 − min


1 −

1
2m−n×hi

, 0


,

where ci is the number of PAS-aware/Pi-aware routers that the
routing path of a given legitimate packet shares with the path of
the ith malicious host and hi is the number of PAS-aware/Pi-aware
routers on the path from the ith malicious host to the victim.

4.2. Simulations

We use simulations to evaluate the PAS and compare it with Pi
in terms of false-positive ratio and false-negative ratio.

4.2.1. Simulation setup
The simulation network has 10,000 nodes (ASes). The nodes

are interconnected through their gateways (interdomain routers).
A node is said to be normal if it does not have an attack host; it
is malicious if it does. A certain number of nodes are randomly
selected to bemalicious. The attacker ratio is defined as the number
of malicious nodes divided by the total number of nodes (which
is 10,000). The default attacker ratio is 0.1, but we will vary it
in the simulation. A single victim is randomly selected from the
network. The network topology is generated based on the Power-
Law Internet model [7].

The simulations run on a Window 7 Professional machine of
Intel(R) Core(TM) i7 CPU 860 2.80 GHz. For each simulation, the
network topology is built first, and some nodes are randomly
chosen to be attackers. We implement both Pi and the PAS, which
run on the same environment for a fair comparison.We repeat each
simulation 1000 times and average the results (false-positive ratios
and false-negative ratios, to be elaborated shortly).

The attack model used in our simulations is similar to that
in [27]. There are two phases. The first is called the learning phase,
and the second is called the attack phase. In the learning phase,
we assume that an intrusion detection system identifies the attack
packets and extracts the path identifiers or path addresses (e.g., the
most-frequently received ones under a DoS attack) for blocking.
How to design an intrusion detection system in general is beyond
the scope of this paper. Suppose that, after this phase, the victim
learns the path address from each malicious node to the victim,
or, if Pi is used, it learns up to r path identifiers for each malicious
node. In Fig. 1(c), we have shown that there can be multiple path
identifiers from an attacker if it resides near the victim. The default
value for r is 1, but we will vary it in the simulation.

In the attack phase, the victim filters all packets carrying the
path addresses or path identifiers learned in the previous phase.
For the PAS, the malicious nodes generate attack packets with
random initial values in the paddr/verification fields and 1 for the
P flag. For Pi, the malicious nodes generate attack packets with
random initial values in the path-identifier field. We measure the
false-positive ratio, which is the fraction of legitimate packets from
all sources that are mistakenly filtered, and the false-negative ratio,
which is the fraction of attack packets that are not filtered in this
phase.

Pi uses no more than 30 bits in the packet header for its
path identifier, including 16 bits from the IP identification field,
1 bit from the flag field, and 13 bits from the offset field. For fair
comparison, we allow the same number of bits for the PAS in our
simulations. The PAS uses 16 bits for the paddr field, 1 bit for the P
flag, and 13 for the verification field. Pi uses all 30 bits for the path
identifier. We have learned from Section 4.1 that, in Pi, the number
n of bits for amark represents a tradeoff between the false-positive
ratio and the false negative ratio. We let n be 2, 3, 5, or 6 in the
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Fig. 7. Left: false-positive ratios with respect to attacker ratio. Right: false-negative ratios with respect to attacker ratio.
Fig. 8. Left: false-positive ratios with respect to the fraction of degree-one nodes. Right: false-negative ratios with respect to the fraction of degree-one nodes.
simulations. Simulations using Pi with these n values are denoted
as Pi(2), Pi(3), Pi(5), and Pi(6), respectively.

4.2.2. Performance evaluation with respect to attacker ratio
In the first simulation, we vary the attacker ratio from 0.05 to

0.3. This means that the number of malicious nodes ranges from
500 to 3000. Fig. 7 shows the false-positive ratios and the false-
negative ratios, respectively. Both the false-positive ratio and the
false-negative ratio of the PAS are near zero, varying between 0 and
0.0002. The attacker ratio has hardly any impact on the PAS. None
of Pi(2)–Pi(6) has a low false-positive ratio and a low false-negative
ratio at the same time. The false-positive ratios of Pi(2) and Pi(3)
are close to zero, but their false-negative ratios are almost 1. Note
that the simulation in [27] did not include malicious nodes close
to the victim, but the simulation in this paper does, which reveals
the above serious performance problem. Fig. 7 also confirms our
analytical result in Section 4.1 that increasing n reduces the false-
negative ratio of Pi but increases the false-positive ratio. For the
same value of n, as the attacker ratio increases, the false-positive
ratio increases while the false-negative ratio decreases. The reason
is that, the more the attackers, the more the number of blocked
path identifiers (identified in the learning phase), the higher the
chance of misblocking normal packets, and the lower the chance
of not blocking attack packets.

4.2.3. Performance evaluation with respect to network topology
In the second simulation, we study the impact of network

topology on the performance of the PAS and Pi. We change the
density in network connectivity by varying the fraction of degree-
one nodes from 0.1 to 0.5. Fig. 8 shows the false-positive ratios and
the false-negative ratios, respectively. The PAS has very small false-
positive and false-negative ratios, ranging between 0.0001 and
0.0002. Topology variation has little impact on its performance.
For Pi, however, as the fraction of degree-one nodes increases,
the false-positive ratios increase while the false-negative ratios
decrease. The reason is that increasing degree-one nodes reduces
the number of links in the network, which has two consequences.
First, it increases the lengths (denoted as c) of common subpaths
shared by attack packets and normal packets, and hence increases
the false-positive ratio due to (4) in Section 4.1. Second, it increases
the path length (denoted as h) and thus increases the false-negative
ratio due to (5).

4.2.4. Performance comparison with respect to r
In the third simulation, we vary r from 1 to 101. Recall that

r is the maximum number of path identifiers per malicious node
learned in the first phase. Fig. 9 shows the false-positive ratios and
the false-negative ratios, respectively. It is a parameter for Pi, and
thus has no impact on the PAS. The larger the value of r , the larger
the number of blocked path identifiers in the second phase, the
higher the chance of misblocking normal packets, and the lower
the chance of not blocking attack packets. Therefore, as r increases,
the false-positive ratio of Pi increases and the false-negative ratio
decreases.

4.2.5. Performance evaluation under incremental deployment
Let the deployment ratio be the fraction of all routers that

support the PAS (or Pi). In the last simulation, we vary the
deployment ratio from 0.1 to 1.0, and randomly select ASes to
be PAS-aware/Pi-aware. Fig. 10 shows the false-positive ratios
and the false-negative ratios during incremental deployment. The
false-negative ratio of the PAS is always near zero, which means
that most attack packets are filtered. The false-positive ratio of
the PAS can be high when the deployment ratio is small. The
blocked legitimate packets are mostly from PAS-unaware ASes.
The false-positive ratio for PAS-aware ASes is zero, which is the
curve under legend ‘‘PAS-aware’’. This result confirms the PAS’s
self-completeness in Section 3.6. In comparison, the false-negative
ratio of Pi is very high when the deployment ratio is small. It
can be surprising that Pi’s false-positive ratio may increase when
the deployment ratio becomes large. The reason is illustrated by
Fig. 1(a) and explained in Section 2—amalicious host behind a long
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Fig. 9. Left: false-positive ratios with respect to r . Right: false-negative ratios with respect to r .
Fig. 10. Left: false-positive ratios with respect to the deployment ratio. Right: false-negative ratios with respect to the deployment ratio.
routing path, on which many routers implement Pi, causes false
positives. A final note is that, unlike the PAS, Pi’s false-positive ratio
does not change when we only consider Pi-aware ASes.

We also run the above simulations on shifted XOR. Its
performance is very close but slightly worse than that of the PAS.
We do not plot it in the figures because it almost completely
overlaps with the curve of the PAS except for the left plot of
Fig. 9, where the false-positive ratio of shifted XOR would be half a
percentage higher than that of the PAS.

5. Conclusion

In this paper, we have proposed a novel path address
scheme (PAS) that, in an abstract and compact way, makes
topological/routing information about the Internet core available
at the network edge to assist the development of network security
systems. We discuss how to construct path addresses, how to
verify if path addresses are authentic, and how to enhance the
Internet protocols to support path addresses. Our analysis and
simulations demonstrate that the PAS can simultaneously keep the
false-positive ratio and false-negative ratio to almost zero.
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