
2274
IEICE TRANS. COMMUN., VOL.E94–B, NO.8 AUGUST 2011

PAPER

Detecting Stealthy Spreaders by Random Aging Streaming Filters

MyungKeun YOON†a), Member and Shigang CHEN††b), Nonmember

SUMMARY Detecting spreaders, or scan sources, helps intrusion de-
tection systems (IDS) identify potential attackers. The existing work can
only detect aggressive spreaders that scan a large number of distinct desti-
nations in a short period of time. However, stealthy spreaders may perform
scanning deliberately at a low rate. We observe that these spreaders can
easily evade the detection because current IDS’s have serious limitations.
Being lightweight, the proposed scheme can detect scan sources in high
speed networking while residing in SRAM. By theoretical analysis and ex-
periments on real Internet traffic traces, we demonstrate that the proposed
scheme detects stealthy spreaders successfully.
key words: network security, intrusion detection, spreader detection, port
scan, anomaly detection

1. Introduction

Cyber attacks are commonly preceded by a reconnaissance
phase that probes the target network with address scans for
live hosts, port scans for live ports, and platform scans for
software/hardware information, which leads to the identi-
fication of vulnerability to be exploited. Guarding against
cyber attacks, the first line of defense is to detect those scan
sources. It provides the list of potential offenders.

The operations of intrusion detection are expensive.
The problem becomes much more serious when real-time
traffic analysis is required for an intrusion detection system
(IDS) at the high-speed gateway of a large enterprise net-
work. In this case, it is important for the system to perform
differentiated analysis, focusing more resources on traffic
from sources that are more likely to be offenders. Scan
detection is one of the tools that provides the IDS with
the list of potential offenders before the actual attacks oc-
cur. We will use “intrusion detection,” “scan detection,” and
“spreader detection” interchangeably.

As intrusion detection systems are deployed, attackers
also invented evasive techniques. To evade scan detection,
an attacker may send packets with a long interval between
them. As the resource of detection system is limited, the
history of attack packets would be flushed periodically and
hence no alarm would be generated. The waiting time for
the attack would increase, which would bother attackers.

Manuscript received May 24, 2010.
Manuscript revised January 13, 2011.
†The author is with the Department of Computer Engineering,

Kookmin University, Seoul, Korea.
††The author is with the Department of Computer & Informa-

tion Science & Engineering, University of Florida, Gainesville,
USA.

a) E-mail: mkyoon@kookmin.ac.kr
b) E-mail: sgchen@cise.ufl.edu

DOI: 10.1587/transcom.E94.B.2274

However, recent cyber attacks pursue financial profit; the
attackers with motivation would like to endure such incon-
venience. In this paper, we tackle this problem and propose
a new defensive scheme to detect such an evasive scanning
by crafty attackers.

Consider the packet flow from the Internet side of a
gateway to the intranet side. Each packet represents a con-
tact (a, b), where a is a source on the Internet and b is a des-
tination on the intranet. The source (destination) may be de-
fined as an IP address, a port number, or an address/port pair.
We define cardinality of a source to be the number of distinct
destinations that the source contacts. Similarly, we define
destination cardinality to be the number of distinct sources
that contact the destination. A group of sources is called a
top-contact set if the cardinality of any source outside of the
group is smaller than the cardinality of any source inside the
group. The problem of spreader detection is to identify a
top-contact set. In this sense, detecting scan sources is un-
der the category of spreader detection problem [1], [2]. The
research community and industry have proposed a variety
of schemes for spreader detection, which are summarized in
Sect. 5.

We notice that current IDS’s have several limitations
in identifying spreaders. First, a complete data loss oc-
curs whenever a detection period ends and a new one be-
gins. We notice that current IDS’s use time-windows to
detect spreaders. They divide the whole monitoring time
into smaller non-overlapping time-windows (monitoring pe-
riods)∗. IDS’s approximately estimate the cardinality of any
source based on the information collected during the pre-
vious time-window. A time-window may be defined as ei-
ther a fixed length of time such as 10 seconds or 5 minutes,
or a variable length such that a time-window finishes when
the memory becomes full. In either case, when the cur-
rent time-window finishes, all stored information is erased
from the memory and a new time-window begins with a
clean state. This approach surely causes detection errors
due to the information gap between the consecutive time-
windows. Suppose that an IDS is supposed to trigger a de-
tection alarm when the estimated cardinality of any source
is above a predefined threshold. If a spreader contacted half
of the threshold destinations in one monitoring period and
the other half in the next monitoring period, it would not be
detected. In this paper, we call such a spreader a stealthy

∗“time-window” and “monitoring period” will be used inter-
changeably.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

YOON and CHEN: DETECTING STEALTHY SPREADERS BY RANDOM AGING STREAMING FILTERS
2275

spreader. Stealthy spreaders can happen accidently due to
the incompleteness of the time-window based detection, or
smart attackers can cause this problem on purpose as they
send scan packets slowly and steadily.

The second limitation is that the memory space of IDS
is quickly filled up with meaningless normal traffic rather
than scan packets. This is because the volume of normal
traffic overwhelms that of any spreader. If we can store
this less significant information about normal traffic within a
small portion of the memory, we can use the other spaces to
record more important information about the scan packets.
Note that the spreader detection should be implemented in
SRAM to catch up with the speed of a high-speed network.
As of now, SRAM is an expensive resource.

In this paper, we propose a new spreader detection
scheme to overcome all the limitations described above.
The proposed scheme can detect stealthy spreaders and
minimize the negative effects of normal packets. It is
lightweight, so it can detect scan sources in high speed net-
working while residing in SRAM.

The rest of the paper is organized as follows. Section 2
presents the design of our detection schemes. Sections 3
and 4 evaluate the proposed scheme via theoretical analy-
sis and experiments with real Internet traffic traces, respec-
tively. Section 5 discusses the related work. Section 6 draws
the conclusion.

2. Stealthy Spreader Detection

The basic unit of our system is a two-dimensional bit ar-
ray, which we call a filter or random aging streaming filter
(RAS). We first explain RAS in detail. Then, we propose a
heuristic method to configure parameters for RAS .

2.1 Random Aging Streaming Filter (RAS)

We assume that the cardinality of any spreader is above a
predefined threshold θ and the cardinality of any normal
source is below θ. The goal of RAS is to find any spreader.

The random aging streaming filter (RAS) uses an M =
n×m bit array as its main data structure, which is initialized
to be all zeros. We first give some definitions. Each bit
B(x, y) is referenced based on a row index x and a column
index y. There is a row counter c(x) for each row x, storing
the number of bits in the row that are set as one. The fullness
ratio R of the filter is defined as

∑
c(x)

n×m , the percentage of bits
in the table that are set as one. Similarly, the fullness ratio
of row x is defined as c(x)

m . We define a system parameter
α, specifying the desirable fullness. If R > α, the aging
procedure will kick in to randomly reset some bits to zeros
in order to bring R down. Figure 1 illustrates an example of
RAS.

Next we describe the operations of RAS . When re-
ceiving an input contact (a, b), the filter computes k row
indexes, x1 = h1(a), ..., xk = hk(a), and one column in-
dex, y = hk+1(b), where h1, ..., hk are hash functions whose
ranges are [0...n−1] and hk+1 is a hash function whose range

Fig. 1 An example of random aging streaming filter (k = 3).

is [0...m − 1]. The filter sets k bits, B(x1, y), ..., B(xk, y), to
be one. Note that the row indexing becomes a Bloom filter
[3], [4]. For each i ∈ [1...k], if B(xi, y) was set from zero to
one, the filter increases the row counter c(x) by one. Rows
indexed by x1 through xk are called the representative rows
of source a in the filter. Bits B(x1, y) through B(xk, y) are
called the representative bits of a. If the fullness of every
representative row of source a is above a threshold β, we
further check whether a is a spreader or not as follows. We
will show how β should be determined in the following sec-
tion.

1. Let I j be an indicator random variable for column j.
We set I j to be one if B(xi, j) = 1 for all the represen-
tative rows of a; otherwise, I j = 0. We define ar to be
ar =

∑m−1
j=0 I j.

2. Estimate the cardinality of a, denoted as âc, by using
equation 1.

âc = m × ln

(
m

m − ar

)
(1)

3. If âc is above θ, we consider source a a spreader.

Equation (1) is from [5], but we check the membership
of a against all the columns, as in step 1. Note that com-
puting I j equals the Bloom filter membership test [3]. As
some I j’s may have been set to ones due to Bloom filter er-
rors, âc may not be less than the real cardinality. There are
advantages and disadvantages in using âc as the estimator.
The first advantage is that we can detect spreaders aggres-
sively so that the number of undetected spreaders can be re-
duced. Second, the estimation process can be implemented
efficiently, which will be explained later. However, the dis-
advantage is that more false positives will be triggered. To
suppress these false alarms, we set β to be large enough,
which will be explained in the next section.

Note that we define the column index to be y = hk+1(b),
which is different from [1] that uses y = hk+1(< a, b >).
This choice helps RAS to minimize the negative effects of
normal traffic. Suppose b represents a busy webserver in
an enterprise network and billions of clients connect b. If
y = hk+1(< a, b >) is used, these clients will fill up the
whole bit table since a randomizes y. To the contrary, only
one column of the bit table will be filled up with one-bits if
y = hk+1(b) is used. We want to point out that our choice will
cause more collisions within the bit table. These collisions

2276
IEICE TRANS. COMMUN., VOL.E94–B, NO.8 AUGUST 2011

may cause more false positives. While designing RAS, we
trade the estimation accuracy for cardinality with the better
detection of spreaders. In the next section, we will show
that this estimation inaccuracy can be controlled by setting
α appropriately.

After some bits are set as one, if R becomes greater
than α, the filter performs the aging procedure as follows. It
randomly selects a column and zeros all bits in the column.
It repeats the above operations until R ≤ α. We call it ran-
dom aging. Note that column-based deletion does not break
consistency of any packet’s information in the bit table since
the packets of same contact should be programmed into the
same column.

We note that RAS detects stealthy spreaders as well as
normal spreaders. This is because only a small portion of the
bit table is cleared out when it becomes full. The temporary
bursty normal traffic cannot delete much information about
the scan sources. Additionally, the random aging just resets
one column at a time, which decreases c(x) by one at most
for each row x in the bit table. Unless the bursty traffic lasts
for a long time, RAS can persistently keep the information
about scan sources.

2.2 Parameter Configuration

Although θ and M are already determined, the perfor-
mance of RAS still depends on several parameters such as
α, β, m, n, the number of spreaders, and even traffic pat-
terns. We propose a heuristic method to configure these pa-
rameters.

We first assume the ideal case where no collision oc-
curs among the rows in the bit table. We say that a row
collision happens when two different sources map into any
same representative row in the bit table. This assumption
is not true since collisions may frequently happen in prac-
tice. However, we note that row collisions may increase only
false positives not false negatives in the bit table. Therefore,
we first determine such parameters as m and β so that false
negatives hardly happen under this assumption†. Once these
parameters are determined, we consider the next case where
collisions occur among the rows in the bit table. Under this
case, we determine α so that false positives hardly happen.
Therefore, we can reduce both false positives and false neg-
atives by appropriately setting m, β, and α, sequentially.

2.2.1 Assuming No Row Collisions

We first consider an ideal case. We assume that no row col-
lisions happen in the bit table. Then, we can detect spreader
a if all the representative rows satisfy Eq. (2). Note that θ is
the given threshold value for spreaders.

θ < m × ln

(
1

1 − ar
m

)
. (2)

We define β to be ar
m when θ = m × ln(1

1− ar
m

) holds.
The meaning of β is the ratio of one-bits in a row when the

Table 1 Parameter configuration examples (c = 9).

θ 100 200 300 400 500 600 700 800
β 0.79 0.79 0.90 0.79 0.86 0.90 0.94 0.79
m 64 128 128 256 256 256 256 512
α 0.28 0.40 0.51 0.51 0.58 0.63 0.67 0.60

estimated cardinality is equal to θ. By definition, β becomes

β = 1 − e−
θ
m . (3)

We use Eq. (3) to determine m and β. A problem is
that neither m nor β is determined yet, so the equation can
have an infinite number of solutions. However, the equation
gives a hint on how we should determine β. Note that small
m is desirable for RAS. This is because small m allows large
n, which reduces the row collisions in the bit table. How-
ever, if β is very close to one, there is a high probability
that a random aging fails the spreader detection. We ex-
plain it as follows. Suppose β ≈ 1 and a random aging hap-
pens. Then, we need another m × log(m) connections from
the same source to increase c(x) of the representative rows.
Note that m × log(m) is from the coupon collection problem
[6]. Through experiments, we confirmed that few spreaders
could be detected when β was close to one. In this paper, we
choose β to be below 0.95, but it can be adjusted according
to the specific application or environment. Once β is chosen,
m can be determined according to Eq. (3).

Alternatively, we may set m first and determine β ac-
cordingly. For example, it would be a good choice to have
m as a multiple of two, which helps to optimize memory al-
location. In this paper, we choose m to be a multiple of a
word, i.e. 32 bits, 64 bits, 128 bits, and so on. For each m,
we compute β and choose the largest β below 0.95. Choos-
ing the largest βminimizes m. Table 1 shows some examples
for parameter configuration. It shows how β and m are deter-
mined for θ from 100 to 800. We explain how to determine
α in the next subsection.

2.2.2 Assuming Row Collisions

We assumed that no row collisions occurred when determin-
ing β and m. With these parameter values, spreaders can be
caught without triggering false negatives. However, normal
sources may be mistaken as spreaders when row collisions
happen. This is because we set β to be rather loose in order
to detect spreaders aggressively. Therefore, we need to set
α appropriately so that false positives should be reasonably
suppressed. We can guess how α affects the detection by in-
tuition. If α is too small, false positives may hardly happen,
but random aging may occur aggressively. Then, informa-
tion loss causes false negatives. To the contrary, if α is too
large, RAS may trigger lots of false positives. We will use
some statistical properties to determine α.

Suppose that only normal sources have been witnessed
for a quite long period of time. Then, the bit table has been

†Once m is determined, n is also fixed because M = n × m.

YOON and CHEN: DETECTING STEALTHY SPREADERS BY RANDOM AGING STREAMING FILTERS
2277

Fig. 2 Curve of α with respective to c (β = 0.9).

populated with the normal traffic. Let Y be a random vari-
able to represent c(x) for row x in the bit table. Then, the
following equations hold for the expectation and the vari-
ance of Y , which we prove in the appendix Appendix.

E(Y) = α × m (4)

V(Y) = α × m × (1 − α) (5)

From E(Y) and V(Y), we can define a statistical upperbound
for Y as follows:

U(Y) = E(Y) + c
√

V(Y) (6)

where statistical errors become small with large c. Equa-
tion (6) means that there is a high probability that c(x) is be-
low U(Y) if x is a representative row for only normal traffic.
The probability depends on the value of c. To the contrary,
if x is a representative row for any spreader, c(x) should be
larger than U(Y). By setting U(Y) to be β × m, we have the
following equation.

β × m = α × m + c
√
α × m × (1 − α) (7)

Solving for α, we have

α =
2βm + c2

2(m + c2)
−

√(
2βm + c2

2(m + c2)

)2

− mβ2

m + c2
. (8)

Figure 2 shows how α changes with c when β is 0.9. Ta-
ble 1 shows α as a result of the proposed heuristic method
to configure β, m, and α.

3. Analysis of the Random Aging

Random aging deletes only a small portion of the bit table,
which improves the detection of stealthy spreaders. In this
section, we demonstrate it formally through a probability
model. We show that RAS with the random aging performs
better than RAS with no aging, which are denoted by RAS A

and RAS N , respectively†. Note that the whole bit table is
reset in RAS N while only one column is reset in RAS A. We
compare the numbers of 1-bits of RAS A and RAS N when an
arbitrary contact is given. The idea is that more information
about stealthy spreaders would be available if there are more
1-bits in the bit table.

In this probability model, we assume that the source

and destination of a contact is randomly chosen for simplic-
ity. We also assume that only one hash function is used for
the row index (i.e. k = 1) while k = 3 is used for the real
experiments. Although this analytical model shows why the
random aging improves the detection, it has limitations of
not reflecting real traffic distribution and not using k = 3.
To supplement this, we also did experiments and show the
results in the next section.

Suppose that enough time has passed since the detec-
tion algorithm started. Now, let’s consider a specific packet
that just arrives and is about to be programmed into the bit
table, which is denoted by pkt = (a, b). We define a ran-
dom variable U to denote the number of 1-bits in the bit
table when pkt arrives. We derive the probability P(U = i)
and compute E[U]. We first solve it for RAS N and then for
RAS A. The comparison confirms that more 1-bits are avail-
able when RAS A is used.

3.1 RAS N

For RAS N , U has the range of [0...α × n × m]. To derive
P(U = i), we define another random variable S i, which de-
notes the average number of packets required to change U
from i to i+ 1. Since the probability to set a bit from zero to
one is 1 − i

n×m , we have

S i =
1

1 − i
n×m

Assuming that packets arrive at a constant rate, we can
use the accumulated value of S i as the elapsed time. Fig-
ure 3(a) shows how U changes as the accumulated num-
ber of packets increases in RAS N . From this, we can derive
P(U = i) as the ratio of S i to the total sum of S i. Therefore,

P(U = i) =
S i∑α×n×m

j=0 S j
≈ S i

nm ln
(

1
1−α

)
where

∑α×n×m
j=t S j ≈

∫ α×n×m

t
1

1− x
nm

dx = n × m × ln(
1− t

nm

1−α) [7].
We can derive E[U] as follows:

E[U] =
α×n×m∑

i=0

i × P(U = i)

=

α×n×m∑
i=0

i × 1

(nm − i) × ln
(

1
1−α

) (9)

3.2 RAS A

Since U of RAS A has the range of [α×n×(m−1)...α×n×m],
P(U = i) and E[U] become as follows:

P(U = i) =
S i∑α×n×m

j=α×n×(m−1) S j
=

S i

nm ln
(

1− α(m−1)
m

1−α
)

E[U] =
α×n×m∑

i=α×n×(m−1)

i × 1

(nm − i) × ln
(

1− α(m−1)
m

1−α
) (10)

†Throughout this paper, RAS means RAS A except this section.

2278
IEICE TRANS. COMMUN., VOL.E94–B, NO.8 AUGUST 2011

Fig. 3 Number of 1-bits (U) in the bit table when pkt arrives. We use the accumulated number of
packets as the elapsed time for the x axis.

Fig. 4 The ratio of 1-bits in the bit table when pkt arrives. The ratio is equal to E[U]
nm . A large ratio is

helpful to detect stealthy spreaders. The default parameters are α = 0.5, n = 16, 384 and m = 256.

where α × n × (m − 1) ≤ i ≤ α × n × m.
Figure 3(b) shows how U changes as the accumulated

number of packets increases in RAS A. Note that U ranges
from α × n × (m − 1) to α × n × m.

Figure 4 shows how the ratio of 1-bits changes, which
equals E[U]

nm . The value of α, n, and m changes for each
graph. We use α = 0.5, n = 16K, and m = 256 as default
parameters. Note that the large ratio of 1-bits is desirable
to detect stealthy spreaders. In the first graph, α changes
from 0.1 to 0.9. We see that RAS A increases the ratio by
47% ∼ 97%. In the second and third graphs, n and m change
respectively. In both cases, the random aging increases the
ratio by around 80%.

4. Experiment

We evaluate RAS through experiments using real Internet
traffic traces. We implement RAS and the online streaming
module (OSM) [1] for comparison as these two streaming
filters are lightweight and can reside in SRAM. The exper-
imental results show that RAS detects spreaders better than
OSM while triggering a smaller number of false positives.

Like RAS, the data structure of OSM is based on a two-
dimensional bit array. The row index is computed the same
way with RAS, but the column index is further randomized
by using both the source and destination addresses. This
means that the bit array can be completely filled up with all

packets from only a single source. We emphasize that OSM
does not have any aging scheme; once the bit array is popu-
lated, all the contents will be lost with a reset. Actually, RAS
tackles these limitations of OSM. For more details, readers
should be referred to [1].

We use packet traces collected from the gateway router
at a campus network for 24 hours. We take only the in-
bound session from the Internet. The trace contains 751,286
distinct source IP addresses, 120,916 distinct destination IP
addresses, 445,926,847 packets and 2,427,327 distinct con-
tacts. Note that a contact is denoted by (a, b) where a/b is
the source/destination IP address of a packet. In this sense,
the goal of the experiment is to find heavy spreaders of hor-
izontal network scans [8]. Note that all of the 120,916 des-
tination IP addresses are not real servers.

We set θ to be 500. This means that we take any source
of cardinality above 500 as a spreader or scan source. In the
traffic trace, there are already 75 spreaders. We call them in-
nate spreaders. We also generate 20 artificial scan sources,
called simulated spreaders. Each simulated spreader has the
cardinality of 1.1 × θ. For this, we generate 1.1 × θ packets
to distinct destinations, called artificial packets. We spread
these packets evenly inside the original traffic trace. Let μ be
the number of packets between two artificial packets. The fi-
nal traffic trace includes all the packets of the original traffic
trace and the artificial packets scattered evenly; there are ex-
actly μ packets between two consecutive artificial packets.

YOON and CHEN: DETECTING STEALTHY SPREADERS BY RANDOM AGING STREAMING FILTERS
2279

Fig. 5 Three plots show the number of false positives, the number of total spreaders detected, and the
number of simulated spreaders detected, from left to right, respectively. The x-axis indicates the scan
interval for the simulated spreaders, denoted by μ. The system parameters are M=512KBytes, m=256,
n=214, c=9. The total number of spreaders is 95 (75 innate spreaders and 20 simulated spreaders).

Fig. 6 Three plots show the number of false positives, the number of total spreaders detected, and the
number of simulated spreaders detected, from left to right, respectively. The x-axis indicates the scan
interval for the simulated spreaders, denoted by μ. The system parameters are M=1MBytes, m=256,
n=215, c=9. The total number of spreaders is 95 (75 innate spreaders and 20 simulated spreaders).

This final traffic trace will be fed to OSM and RAS. On av-
erage, μ = 27 is equal to 0.47 seconds. Therefore, if μ = 214

is used for an experiment, each simulated spreader will send
a packet every 60.04 seconds on average.

We always allocate the same amount of memory to
OSM and RAS for fair comparison. The values of α, β, c
and m are from Table 1 for RAS. We run OSM multiple
times with different parameter values of m and n, with m× n
unchanged. Three row indices were used, k = 3, as recom-
mended an optimal value by [1]. The size of time window
is 24 hours as the traffic trace was collected for 24 hours
and the goal of experiments is to compare OSM and RAS
in terms of detecting stealthy spreaders. If the time window
had been set to a smaller value, the false positives would
have decreased; however, the false negatives would have in-
creased because the stealthy spreaders could not be detected
as well as all the simulated spreaders. We choose the best
result of OSM for comparison with RAS. Through the ex-
periments, we find that OSM works best when m=256.

The actual experiments are done as follows. We exe-
cute RAS and count the number of false positives and false
negatives. We run OSM with different parameter values. We
pick the best one that triggers slightly more false positives
than RAS. Being the best means that this OSM version de-
tects as many spreaders as possible. Note that the number of
detected spreaders decreases as the number of false positives
decreases. In this sense, the comparison is advantageous to

OSM as the number of false positives is larger than that of
RAS. We set k to 3 for both RAS and OSM as in [1].

Figures 5∼6 show the results where the memory as-
signment is 512KBytes and 1MBytes, respectively. We in-
crease the memory size by doubling n. Each figure has three
plots: left, middle, and right.

The left plot of Fig. 5 shows the number of false posi-
tives of RAS and OSM. Note that the plotted OSM is picked
because it has detected the largest number of spreaders. The
x-axis shows μ for the simulated spreaders. The middle
graph shows the numbers of spreaders detected by RAS and
OSM respectively. If the detection were perfect, 95 spread-
ers (75 innate and 20 simulated) should be detected at any x
value. It is interesting that OSM fails to detect even innate
spreaders. We can explain it in two ways. First, suppose a
source of cardinality 501. This will have a higher chance of
evading the detection if the estimated cardinality is less than
500, say 499. To the contrary, a source of cardinality 1000
will have a high chance of detection. Second, the mem-
ory reset occurs and hampers the detection. The number of
memory reset remains 3 until μ = 210. This number be-
comes 4, 7, 13, 26, 52, and 103 at μ = 211, 212, 213, 214, 215,
and 216.

From the middle graph of Fig. 5, we see that most in-
nate spreaders start and finish sending packets within a short
period of time. This is because the number of spreaders de-
tected by OSM does not decrease much as μ increases. The

2280
IEICE TRANS. COMMUN., VOL.E94–B, NO.8 AUGUST 2011

decrease of RAS is due to the increased detection failure of
simulated spreaders as μ increases. This can be confirmed
in the right plot. The right plot shows that RAS detects sim-
ulated spreaders much better than OSM. Actually, RAS de-
tects both innate and simulated spreaders better than OSM
while keeping the false positives smaller than those of OSM.

We can see the same patterns in Fig. 6 where the mem-
ory size is doubled. With the memory of 1MBytes, OSM
works quite good in detecting innate spreaders, as shown in
the middle graph of Fig. 6. However, the simulated spread-
ers still cannot be detected as μ becomes large. Contrarily,
RAS detects both spreaders perfectly even when μ is large.

5. Related Work

Snort is a world famous network-based intrusion detection
system. To detect scan sources, snort simply keeps track
of each source and the corresponding distinct destinations
during a short time-window. However, this approach is not
feasible for detecting stealthy spreaders [2], [9] due to the
small size of SRAM.

Venkataraman et al. define a heavy distinct-hitters
problem [2]. They also define a more specific problem, su-
perspreaders, and propose two techniques for the detection.
Superspreaders are heavy distinct-hitters, but they scan vic-
tims quickly. In other words, the length of time-window
should be short.

Zhao et al. propose a new spread estimator for high-
speed networks [1]. They introduce a lightweight data
structure of two-dimensional bit table, which can reside in
SRAM.

Streaming algorithms have one weakness in common;
the actual flow ID is not recorded. Therefore, we need to
keep the actual ID’s in an extra space and look up the real
values when necessary. Schweller et al. attack this problem
by introducing a novel technique based on hash functions:
modular hashing, IP mangling and reverse hashing [10]. Bu
et al. improves the performance of reverse hashing in terms
of not only accuracy but also computational overhead and
memory usage [11].

Recently, Gao et al. propose to detect stealthy spread-
ers by using online outdegree histograms in the context of
change detection [12]. Their definition of stealthy spreaders
is different from ours. In their definition, stealthy spreaders
are a group of sources that send scanning packets at a con-
stant rate together. Actually, they aim to detect scans from
botnets.

A sampling is a widely used technique to expand an
estimate range with a limited memory space. Cao et al. pro-
pose an independent sampling with multiple Bloom filters
to identify Internet hosts of a high spread value [13]. The
proposed scheme removes hosts of small spread values ef-
ficiently. Kamiyama et al. propose a simple scheme to find
superspreaders with a host table, which is a hash table with
pointers [14]. Although these schemes work well in finding
superspreaders during a short period of time, they can easily
be evaded by stealthy spreaders.

SRAM is believed to be fast enough to handle network
traffic from high-speed networking environments. As the
size of SRAM is small, compact data structures need to be
developed. Shomura et al. propose a traffic measurement
scheme and argue that the prototype system can handle up to
10 Gbps traffic. However, as is mentioned in that paper[15],
this would be possible when processing SYN packets only,
the amount of which is far less than total traffic.

6. Conclusion

In this paper, we studied the problem of stealthy spreader de-
tection and proposed a new streaming algorithm. The prob-
lem is caused by the negative effects of normal traffic and
a total loss of accumulated information in a detection sys-
tem’s memory space. The proposed scheme uses the ran-
dom aging, which enables the detection of stealthy spread-
ers. We demonstrated theoretically how the random ag-
ing elevated the detection capability. Through experiments
on real Internet traffic traces, we compared the proposed
scheme with the current state-of-the-art detection scheme.
The proposed scheme is expected to provide practical help
network/security management people to detect stealthy at-
tacks, which has been one of the difficult problems in net-
work security.

Acknowledgment

This work was supported by the research program 2010 of
Kookmin University in Korea. This research was supported
by Basic Science Research Program through the National
Research Foundation of Korea(NRF) funded by the Ministry
of Education, Science and Technology (2010-0008708).

References

[1] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evalua-
tion,” IEEE J. Sel. Areas Commun., vol.24, no.10, pp.1840–1852,
Oct. 2006.

[2] S. Venkatataman, D. Song, P. Gibbons, and A. Blum, “New stream-
ing algorithms for fast detection of superspreaders,” Proc. NDSS’05,
Feb. 2005.

[3] B.H. Bloom, “Space/time trade-offs in Hash coding with allowable
errors,” Commun. ACM, vol.13, no.7, pp.422–426, 1970.

[4] A. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Mathematics, vol.1, no.4, pp.485–509,
June 2002.

[5] K. Hwang, B. Vander-Zanden, and H. Taylor, “A linear-time proba-
bilistic counting algorithm for database applications,” ACM Trans.
Database Syst., vol.15, no.2, pp.208–229, June 1990.

[6] S.M. Ross, Introduction to Probability Models, 8th ed., Elsevier,
2003.

[7] T. Cormen, C. Leiserson, R. Rivest, and C. Stein, Introduction to
Algorithms, 2nd ed., MIT Press, 2001.

[8] S. Staniford, J. Hoagland, and J. McAlerney, “Practical auto-
mated detection of stealthy portscans,” J. Computer Security, vol.10,
pp.105–136, 2002.

[9] M. Roesch, “Snort - lightweight intrusion detection for networks,”
Proc. 13th Systems Administration Conference, USENIX, 1999.

[10] R. Schweller, Z. Li, Y. Chen, Y. Gao, A. Gupta, Y. Zhang, P. Dinda,

YOON and CHEN: DETECTING STEALTHY SPREADERS BY RANDOM AGING STREAMING FILTERS
2281

M. Kao, and G. Memik, “Reversible sketches: Enabling monitor-
ing and analysis over high-speed data streams,” IEEE/ACM Trans.
Netw., vol.15, pp.1059–1072, Oct. 2007.

[11] T. Bu, J. Cao, A. Chen, and P. Lee, “A fast and compact method for
unveiling significant patterns in high speed networks,” Proc. Info-
com’07, pp.1893–1901, May 2007.

[12] Y. Gao, Y. Zhao, R. Schweller, S. Venkataraman, Y. Chen, D. Song,
and M. Kao, “Detecting stealthy spreaders using online outdegree
histograms,” Proc. IEEE International Workshop on Quality of Ser-
vice’07, pp.145–153, June 2007.

[13] J. Cao, Y. Jin, A. Chen, T. Bu, and Z.-L. Zhang, “Identifying high
cardinality Internet hosts,” Proc. IEEE Infocom’09, April 2009.

[14] N. Kamiyama, T. Mori, and R. Kawahara, “Simple and adaptive
identification of superspreaders by flow sampling,” Proc. IEEE Info-
com’07, May 2007.

[15] Y. Shomura, Y. Watanabe, and K. Yoshida, “Analyzing the num-
ber of varieties in frequently found flow,” IEICE Trans. Commun.,
vol.E91-B, no.6, pp.1896–1905, June 2008.

Appendix: Number of One-Bits in the Bit Table

Without loss of generality, we consider the ith row in the bit
array. Let Ai, j be the event that B(i, j) remains zero when
the bit array has ρ one-bits. Let IAi, j be the corresponding
indicator random variable.

P(Ai, j) = 1 − ρ

n × m
, P(Ai, j ∩ Ai,s) =

(
1 − ρ

n × m

)2

Let Z be a random variable to represent the number of
zero-bits in the row. So, Y = m − Z. We first compute E(Z)
and E(Z2).

Z =
m∑

j=1

IAi, j

E(Z) =
m∑

j=1

P(Ai, j) = m ×
(
1 − ρ

n × m

)

E(Z2) = E

⎛⎜⎜⎜⎜⎜⎜⎝
⎛⎜⎜⎜⎜⎜⎜⎝

m∑
j=1

IAi, j)
2

⎞⎟⎟⎟⎟⎟⎟⎠
= m

(
1 − ρ

n × m

)
+ (m(m − 1)

) (
1 − ρ

n × m

)2

Note that I2
Ai, j
= IAi, j and IAi,s × IAi, j = IAi,s∩Ai, j . Since Y =

m − Z, we can derive E(Y) and V(Y) from E(Y) = m − E(Z)
and V(Y) = V(Z).

E(Y) = E(m − Z) = m − E(Z) =
ρ

n

V(Y) = E(Z2) − E(Z)2 =
ρ

n
× (1 − ρ

n × m
)

In most of the time, ρ = α × n ×m. By replacing ρ, we have

E(Y) = α × m (A· 1)

V(Y) = α × m × (1 − α). (A· 2)

Alternatively, the equations can be simply derived by
using the property of binomial distribution; Y obeys bino-
mial distribution with the probability of α and the number

of trials of m.

MyungKeun Yoon received the B.S. and
M.S. degrees in computer science from Yonsei
University, Seoul, Korea, in 1996 and 1998, re-
spectively, and the Ph.D. degree in computer
engineering from the University of Florida,
Gainesville, in 2008. He is an Assistant Pro-
fessor with the Department of Computer Engi-
neering, Kookmin University, Seoul, Korea. He
worked for the Korea Financial Telecommuni-
cations and Clearings Institute, Seoul, Korea,
from 1998 to 2010. His research interests in-

clude computer and network security, network algorithms, and mobile net-
works.

Shigang Chen received his B.S. degree
in computer science from University of Sci-
ence and Technology of China in 1993. He
received M.S. and Ph.D. degrees in computer
science from University of Illinois at Urbana-
Champaign in 1996 and 1999, respectively. Af-
ter graduation, he had worked with Cisco Sys-
tems for three years before joining University of
Florida in 2002. His research interests include
network security and wireless networks. He re-
ceived IEEE Communications Society Best Tu-

torial Paper Award in 1999 and NSF CAREER Award in 2007. He was a
guest editor for ACM/Baltzer Journal of Wireless Networks (WINET) and
IEEE Transactions on Vehicle Technologies. He served as a TPC co-chair
for IEEE IWQoS 2009 and the Computer and Network Security Sympo-
sium of IEEE IWCCC 2006, a vice TPC chair for IEEE MASS 2005, a
vice general chair for QShine 2005, a TPC co-chair for QShine 2004, and
a TPC member for many conferences including IEEE ICNP, IEEE INFO-
COM, IEEE ICC, IEEE Globecom, etc.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /FlateEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

