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Abstract—As computational clouds offer increasingly sophisticated services, there is a dramatic increase in the variety and complexity

of virtual machine (VM) placement problems. In this paper, we consider a VM placement problem with a special type of anti-colocation

requirements—disk anti-colocation—which stipulate that, for every VM assigned to a PM (physical machine), its virtual disks should be

spread out across the physical disks of the PM. Once such a requirement is met, the users of the VM can expect improved disk I/O

performance. There will also be improvement in fault tolerance and availability. For scalable solutions, we propose a method that

combines hierarchical decomposition with mixed integer programming (MIP), where the basic building blocks are independent, small

MIP subproblems. We provide experimental results to demonstrate the effectiveness of the proposed method. We show that it is

scalable and achieves high performance with respect to the optimization objective.

Index Terms—Cloud computing, datacenter, virtual machine placement, resource management, mixed integer programming

Ç

1 INTRODUCTION

OVER the last ten years computational clouds have
become widely used by large and small enterprises as

their most cost-effective means to deploy IT services. The
value proposition offered by computational clouds has
evolved to go beyond cost-effective on-demand hosting of
IT resources and elasticity. The added value now includes
the ability to offer entire IT systems as a service that can
quickly adapt to changing business environments (versus
being statically configured) and are automatically opti-
mized in response to changes in either the environment or
the workload [1], [2], [3]. These new capabilities-agility and
continuous optimization—put pressure on the resource
management component of the cloud. There is an urgent
need of effective resource management that can enable
those new capabilities while minimizing datacenter costs.
Ineffective resource management will result in wasted data-
center resources and excessive energy consumption, thus
significantly reducing the return on investment [4].

One of the important datacenter resource management
problems is virtual machine (VM) placement [5], [6], [7],
which is to assign a set of VMs requested by customers to
the physical machines (PMs) in the datacenters so that cer-
tain cost, profit or performance objective is optimized,

subject to the PMs’ resource capacity constraints and possi-
bly network bandwidth constraints. As clouds offer increas-
ingly sophisticated services with the intended agility and
performance, there is a dramatic increase in the variety and
complexity of VM placement problems. Part of the reason is
that system deployment requested by customers may con-
tain complex relationships among the system components,
such as resource grouping and hierarchy, various colocation
or anti-colocation constraints, topological relationships, and
workflow dependencies. In particular, services that contain
anti-colocation requirements have the generic form that a set
of requested resources should not be colocated in a sense
that depends on the precise specification. For instance, to
improve the availability of its service, a customer may
require some of its VMs not to be placed on the same physi-
cal server or the same server rack [3]. The anti-colocation
requirements have not been adequately addressed in the
placement solutions of any prior work.

This paper focuses on a special type of anti-colocation
requirements—disk anti-colocation. Most VM types offered
by public clouds such as Amazon EC2 [8] have multiple vir-
tual disks per VM. When a customer requests such a VM,
he may be interested in the following disk anti-colocation
requirement: No physical disk of the PM to which the VM is
assigned should contain more than one of the VM’s virtual
disks. That is, the VM’s virtual disks should be spread out
across the physical disks of the PM. There are important use
cases where disk anti-colocation is desirable, which we will
elaborate next.

Cloud users often care a great deal about disk IO perfor-
mance, as evidenced by many Internet discussions [9], [10],
[11]. Since directly attached storage (DAS)—including local
disks—has numerous advantages over network-based stor-
age, such as higher IO throughput, lower latency, more
predicable IO performance (less storage sharing), lower cost
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and lower complexity [9], [12], [13], they are the preferred
storage option for many high-valued, critical applications.
These include NoSQL databases like Cassandra and Mon-
goDB, online transaction processing systems, massively par-
allel processing (MPP) data warehousing, Hadoop/
MapReduce storage nodes, log or data-processing applica-
tions, etc. [9], [10], [13], [14].

However, even with DAS, the disk IO can still be a perfor-
mance bottleneck. This can happen even for a VM that is
assigned with a dedicated PM—in particular, if the
requested virtual disks are all mapped to a single physical
disk and the IO capacity of that disk is exceeded. Many PMs
have multiple, up to dozens of, directly attached physical
disks with very high combined IO capacity [14]. With disk
anti-colocation, the disk IO bottleneck may be avoidable.
Amazon and industry specialists recommend that multiple
virtual disks can be grouped together into a RAID configura-
tion to increase aggregate IO throughput or improve fault
tolerance [12], [13]. However, the RAID configuration can
only be fully effective if the virtual disks are mapped to dif-
ferent physical disks. Putting the requested virtual disks
onto the same physical disk makes little sense, as it does not
exploit the parallelism and redundancy provided by multi-
ple physical disks. Disk anti-colocation is also important in
another scenario that improves reliability without RAID.
Hadoop handles reliability in software through data duplica-
tion across servers and it can allow individual volumes to fail
before the node goes down [15]. However, for a Hadoop
cluster in a virtualized environment, if all the virtual disks of
a VM are assigned to the same physical disk, then the failure
of that physical disk is more serious than the failure of a sin-
gle virtual disk. It will take out all the virtual disks of the
VM, rendering the VM useless, and it will be more difficult
for the cluster to repair the damage.

To solve our VM placement problem with disk anti-
colocation, we advocate the use of mixed integer program-
ming (MIP) [16] formulations and algorithms. The MIP
approach should complement other approaches frequently
used for datacenter resourcemanagement, including special-
ized combinatorial algorithms and heuristic algorithms. The
rationales are the following. First, VM placement problems
are different for different customers; for the same customer,
the problems can change constantly since the resource
demand and performance goal can vary significantly over
time.We have to expect that our problem is not a single static
one, but a representative of a class of dynamic problems. For
continuous optimization, the resource management deci-
sions need be continuously carried out. Hence, it is not possi-
ble to design specialized algorithms for all these problem
variants in time. Second, to support the envisioned datacen-
ter capabilities, some of the problem variants can be very
complex and it is not an easy task to design good heuristic or
specialized algorithms. MIP-based formulations are general
and flexible in capturing all sorts of constraints and objec-
tives, as is well-known in related fields involving large-scale,
complex resource management or scheduling [17], [18], [19].
Once a problem is formulated, the standard MIP algorithms
can be applied directly, thus minimizing the algorithm
development time. There is no need to craft different special-
ized algorithms for different variants of the problem.
Furthermore, since the MIP algorithms look for optimal

solutions, they will out-perform heuristic solutions in terms
of the achieved objective values. The performance gain can
be significant (see experimental results in Section 4).

The main challenge for the MIP approach is that the MIP
algorithms have long computation time for large problem
instances. Typical strategies to cope with that challenge
include finding better MIP algorithms, using more powerful
computers to run the algorithms, and developing clever
problem formulations. Even with all the above, MIP algo-
rithms can only solve what might be considered small to
medium problem instances in our application setting, good
enough for several server clusters in a datacenter. To model
problems for a large datacenter in its entirety, an MIP for-
mulation may involve billions of variables and/or con-
straints, and there is no hope to solve them optimally
within acceptable time. In such cases, we observe that a
hierarchical decomposition method can be used to break a
large problem into many independent subproblems, which
can be solved in parallel by separate management servers.
Each of the subproblems will be sufficiently small and solv-
able quickly using MIP algorithms.

In this paper, we will explore such hierarchical decompo-
sition approach within the MIP framework on our VM
placement problem. The goal is to solve large instances of
the problem suitable for large datacenters. We next summa-
rize the main contributions of the paper.

1) We identify and investigate a difficult and practically
useful class of datacenter resource management
problems that involve disk anti-colocation require-
ments. We will see that the problem is very difficult,
harder than typical VM placement problems with
colocation/anti-colocation constraints among the
VMs (as apposed to among the disks). To the best of
our knowledge, there have been no systematic stud-
ies about such a problem. There are no known spe-
cialized algorithms or heuristic algorithms that are
both fast and yield high-quality solutions.

2) For scalable solutions, we propose a method that
combines hierarchical decomposition with MIP,
where the basic building blocks are independent,
small MIP subproblems. Prior studies on datacenter
resource management generally do not use MIP for-
mulations and algorithms. There exist several prior
studies that propose hierarchical resource manage-
ment [20], [21], [22]. However, they are about differ-
ent problems and for different purposes, and they
are not combined with MIP.

3) We provide experimental results to demonstrate the
effectiveness of the proposed method. We show that
it is scalable and achieves high performance with
respect to the optimization objective. The results
should be interesting to researchers who wish to
know the effectiveness and scalability of MIP-based
algorithms for VM placement problems.

The rest of the paper is organized as follows. In Section 2,
we discuss related work. In Section 3, we present an
MIP formulation for our VM placement problem with disk
anti-colocation requirements. We describe our solution
approach, which combines hierarchical decomposition
and MIP. In Section 4, we present experimental results to
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demonstrate the effectiveness of the approach. In Section 5,
we draw conclusions and discuss additional issues.

2 RELATED WORK

Prior studies on VM placement generally avoid MIP formu-
lations all together. In the cases where MIP formulations are
used, they are usually used to describe the problem; the
algorithms are not based on MIP. Instead, the effort is usu-
ally on developing specialized combinatorial algorithms
such as multi-dimensional bin-packing [23], [24], graph
algorithms [6] or sophisticated heuristics [25]. Those algo-
rithms are tailored to the special problems that the authors
study, usually relying on certain structures of the problems.
In our assessment, they cannot be adapted easily to our
problem, due to the addition of the disk anti-colocation
requirements, which pose constraints of a different kind.
Packing is still there in our problem with respect to the
vCPU and memory resources. However, at the disk level,
there is tension between packing and anti-colocation; pack-
ing too tightly may make it difficult to satisfy the disk anti-
colocation requirements.

Practical cloud systems usually adopt less sophisticated
heuristics, such as round-robin, first-fit or first-fit-decrease,
as evidenced by open-source middleware stacks [26], [27],
[28]. While simple heuristics may find solutions quickly,
they can also be underachieving in terms of performance. In
particular, when a problem is sufficiently complex or have
difficult constraints, intuitions that are needed to develop
sound heuristics may fail. The anti-colocation constraints in
our problem are difficult, since disk assignments are inter-
twined with VM assignments. It is not easy to design a heu-
ristic algorithm that always has good performance (see
Section 4.4 for more discussion).

We propose to stay with MIP as far as possible. To find
solutions for large problem instances, we propose to use a
hierarchical decomposition method to replace a flat, large
MIP problem by many much smaller problems, each of
which is far easier to solve and can be solved in parallel by
separate management servers. The authors of [20] also pro-
pose an idea of hierarchical decomposition on a VM place-
ment problem with the objective of reducing datacenter
network traffic (see also [25]). However, they do not use
MIP algorithms, but develop a specialized algorithm tai-
lored for their particular problem. Thus, their focus is quite
different from ours.

Our earlier work [29] (published as work-in-progress)
presents a hierarchical architecture for general datacenter
resource management problems. There, the main contribu-
tions are the motivations and design of the architecture,
which provides a flexible way of grouping various resource
requirements from the customers. The subject of this paper
is to solve a particular VM placement problem with disk
anti-colocation constraints. In the process, a simple version
of that architecture is used. But, the focus here is the prob-
lem itself, the design of the two-level assignment subpro-
blems, and detailed computational experiences for solving
that problem. The idea of grouping the resource require-
ments and grouping hardware resources has also been
explored in [21], [22]. However, those studies do not overlap
with our VM placement problem. Nor do they explore the
MIP approach.

We next review several marginally related recent studies.
The authors of [30] consider a VM placement problem under
traffic demandvariations in time. They formulate the problem
as to minimize the maximum network cut load while satisfy-
ing other resource constraints. They develop two heuristic
placement algorithms with different tradeoffs between solu-
tion quality and complexity. The authors of [31] present a VM
placement problem that takes into account the time-varying
resource requirements from the VMs, with the objective of
reducing the number of PMs used. A greedy heuristic algo-
rithm is proposed that places the VMs sequentially. Each VM
is placed into the PM that will become the “most fully uti-
lized” after the VM’s placement, where the utilization is aver-
aged over time and over different resource types. The authors
of [32] formulate a combinatorial optimization problem of
joint VM placement and routing in datacenters. They develop
a heuristic randomized algorithm based on the Markov chain
Monte Carlo method. In [33], a more general version of rout-
ing and VM placement problem is formulated and solved
with an online randomized algorithm. The authors of [34]
develop a stochastic control algorithm for online VM place-
ment under VM arrival and departure dynamics. The authors
of [20] study a VM placement problem with the objective of
reducing datacenter network traffic (see also [25]). They
develop a specialized hierarchical algorithm based on the
problem structure. The work in [3] describes how datacenters
can offer complex services to the cloud customers, such as
entire IT as a service with VM colocation and anti-colocation
requirements. It does not have a clearly formulated optimiza-
tion problem. For resource placement, it takes an incremental
and randomization approach with immediate random place-
ment of the requested resources at the time of the request
arrivals, followed by subsequent gradual adjustment. Overall,
the above studies are different from ours in both the problems
and solution approaches.

There is also a stream of literature on short-term dynamic
resource re-allocation based on workload monitoring, pre-
diction and adaptive control [35], [36], [37], [38], [39], [40].
The proposals in that literature typically are restricted to (1)
managing much smaller systems, e.g., a single PM with
multiple VMs or a small-scale server cluster, and (2) having
limited problem complexity, e.g., no anti-colocation con-
straints. Such restrictions make the resource allocation prob-
lems much simpler and thereby allow algorithms to re-
allocate resources more frequently based on more recent
workload information. Aspects of the ideas and algorithms
in that stream of literature may be added to our framework
to act on a shorter timescale.

3 VM PLACEMENT WITH DISK ANTI-COLOCATION

Wewill show anMIP formulation of the VMplacement prob-
lem with disk anti-colocation requirements. It illustrates that
the MIP formulation is capable of describing complex con-
straints. However, we will see that even for a basic version of
this problem, the MIP formulation has an exceedingly large
number of variables and constraints. Standard MIP algo-
rithms cannot solve large problem instanceswithin acceptable
time. One can imagine that more complicated versions will be
more difficult solve. We will provide a scalable algorithm
which combines hierarchical decomposition andMIP.
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3.1 Problem Formulation

We consider a problem of assigning N VMs to M PMs with
disk anti-colocation requirements. Here, N and M can both
be fairly large, e.g., thousands or more. Each VM has the fol-
lowing resource requirements: memory, number of vCPUs,
number of local disk volumes (virtual ones) and their
respective sizes.

Each PM has certain memory capacity, number of vCPUs
that it can support, and number of local disks and their
respective sizes. These local disks may be in the PM or
directly attached (either by local disk interface or fast, dedi-
cated network interface such as fiber channels). Recall that
the physical disks that we are considering are high-perfor-
mance disks, e.g., local or directly attached SSDs (denoted
as lssd). They can be quite expensive, not in great abun-
dance, and therefore, need to be managed for efficient use.

3.1.1 Constraints

We first give an overview of the constraints for our problem.

� There are the usual capacity constraints for each
resource: With respect to each resource (vCPUs,
memory), the total amount of resource required by
all the VMs assigned to any PM cannot exceed the
resource capacity of the PM.

� The next set of constraints is quite special, which
make our problem different from the usual VM
placement problems. When a requested VM i has
multiple virtual disks, there is a disk anti-colocation
constraint: No physical disk of the PM (to which VM
i is assigned) can contain more than one of VM i’s
requested virtual disks. The motivations for such a
constraint have been given in Section 1.

� A final set of constraints is that the capacity of each
physical disk must be no less than the aggregate size
of all virtual disks assigned to it.

We next give the details. Let the sets of VMs and PMs be
denoted by V and P, respectively. Without loss of general-
ity, let V ¼ f1; 2; . . . ; Ng and P ¼ f1; 2; . . . ;Mg. For each VM
i, let ai be the number of vCPUs required and let bi be the
memory requirement (in GiB).1 For each VM i, a set of vir-
tual disks is requested and the set is denoted by
Ri ¼ f1; . . . ; jRijg. For each of the requested virtual disks
k 2 Ri, let nik be the requested disk volume size (in GB).

For each PM j, let Cj be the number of vCPUs it can sup-
port, Mj be the amount of memory (in GiB), and Dj ¼
f1; . . . ; jDjjg be the set of available physical disks. The sizes
of the physical disks are denoted by Sjl (GB) for l 2 Dj.

For each i 2 V and each j 2 P, let xij be the binary assign-
ment variable, which takes the value 1 if VM i is assigned to
PM j and 0 otherwise. The binary variables yikjl are used for
disk assignment: yikjl is set to 1 if VM i is assigned to PM j

and the requested virtual disk k, where k 2 Ri, for VM i is
assigned to the physical disk l of PM j, where l 2 Dj; it is set
to 0 otherwise. The following constraints are required:

yikjl � xij; i 2 V; j 2 P; k 2 Ri; l 2 Dj (1)

X

j2P

X

l2Dj

yikjl ¼ 1; i 2 V; k 2 Ri (2)

X

j2P
xij ¼ 1; i 2 V (3)

X

k2Ri

yikjl � 1; i 2 V; j 2 P; l 2 Dj (4)

X

i2V

X

k2Ri

nikyikjl � Sjl; j 2 P; l 2 Dj: (5)

X

i2V
aixij � Cj; j 2 P (6)

X

i2V
bixij � Mj; j 2 P: (7)

The following explains some of the constraints:

� (1) ensures that the requested virtual disks for VM i
may be assigned to the physical disks of PM j only if
VM i is assigned to PM j.

� (2) ensures that every requested virtual disk must be
assigned to exactly one physical disk.

� (3) ensures that every VM is assigned to exactly one
PM.

� (4) ensures that VM i cannot have more than one of
its virtual disks assigned to the same physical disk;
(1) and (4) together enforce the disk anti-colocation
constraints.

� (5) is the disk capacity constraint.
� (6) and (7) are the resource capacity constraints

posed by the number of vCPUs and the total mem-
ory size of each PM j.

We will check some subtler implications. Suppose
yikjl ¼ 1. By (1), we have xij ¼ 1; hence, VM i must be
assigned to PM j. Suppose VM i requests more than one vir-
tual disk. Suppose k0 6¼ k. Then, the virtual disk k0 cannot be
assigned to a PM other than j; otherwise, xij0 ¼ 1 for some

j0 6¼ j, which violates (3). Furthermore, by (4), k0 must be
assigned to one of PM j’s disks other than l.

Remark. VM placement problems encountered in practice
will likely contain many different performance-cost con-
siderations. One of the key points is that MIP formula-
tions can capture subtle or complex requirements quite
easily, such as the disk anti-colocation requirements,
VM/storage colocation and anti-colocation constraints,
resource grouping and hierarchy, other topological con-
straints, network constraints, and workflow dependen-
cies. Multiple performance or cost objectives can be
handled either by optimizing a linear combination of the
objectives or by selecting one objective to optimize and
putting the rest as constraints. Practical VM placement
problems may contain several sets of difficult constraints,
each of which may require a different technique to
cope with. Our problem formulation contains one such
difficult component, disk anti-colocation, and we will
provide one set of techniques to address it. The research
community has examined several other difficult compo-
nents, such as network constraints. The techniques in this

1. 1 GiB (gibibyte) is equal to 230 bytes, which is 1,073,741,824 bytes;
1 GB (gigabyte) is equal to 109 bytes.
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paper may serve as a building block for a complete solu-
tion to practical problems.

3.1.2 Costs and Optimization Objective

The optimization objective will ultimately be decided by the
cloud provider. For concreteness, we assume that a fixed
operation cost is incurred for a PM as long as the PM is
used by some VMs (that is, some VMs are assigned to the
PM). Specifically, when a PM j is turned on to serve some
VMs, there is a fixed cost ĉj associated with running the
PM; when the PM is off, there is zero cost. The operation
cost may include the average energy cost when a machine is
running and typical maintenance cost. The optimization
objective is to minimize the total operation cost.

Let zj be a 0-1 variable indicating whether PM j is used
by some VMs. To ensure that zj ¼ 1 if and only if xij ¼ 1 for
some i 2 V, we add the following two constraints, where B
is a large enough constant (it is enough to take B ¼ N)

zj �
X

i2V
xij; j 2 P (8)

Bzj �
X

i2V
xij; j 2 P: (9)

In normal situations, an assignment should be feasible so
that no VMs will be rejected; otherwise, the cloud provider
will usually increase its datacenter capacity. When no VMs
are rejected, the total payment by the customers is fixed. In
that case, a sensible optimization objective is to minimize
the total operation cost, which leads to profit maximization.
Thus, our optimization objective is the following:

min
x;y;z

X

j2P
ĉjzj: (10)

3.1.3 Possible Extensions of the Model

The model can be enriched in many ways. Variants and
refinements are the subject of ongoing work. With
respect to the optimization objective, we can consider
maximizing the profit under complex revenue and cost
structures. On the revenue side, a customer’s payment
may depend on the received performance level of his
workload, on the types of PMs his VMs are placed at, or
on the degree of isolation of his VMs from other custom-
ers’ VMs. The costs may include load-dependent costs
(e.g., the energy cost is higher for higher CPU load) and
the costs of other equipments such as networking devi-
ces. Multiple objectives from both the provider and the
customers (e.g., thermal dissipation, customers’ perfor-
mance objectives) can be incorporated into the formula-
tion by either forming a weighted sum of all the
objectives or by treating all but one of the objectives as
constraints (see [5] for a related treatment).

The model can clearly be extended to include network
storage of various types. It can also be extended to include
local and network bandwidth constraints. Those additional
constraints depend on the customers’ needs and the cloud
provider’s policies, and they vary across customers/pro-
viders and change over time. Given the absence of the
details, we do not include those additional constraints in
this paper. We expect that disk anti-colocation is a class of

distinct constraints. It is worthwhile to single it out for a
focused investigation.

3.1.4 Problem Complexity

As is typical for MIP problems, we will measure the com-
plexity of the problem by the number of variables and the
number of constraints, which can be counted easily. For
simplicity, suppose each VM requests R virtual disks and
each PM provides D physical disks. Then, the number of y
variables is N �M �R�D and the number of x variables
is N �M. The number of constraints of the form in (1) is
N �M �R�D. To make the matter more concrete, sup-
pose 1,000 VMs are to be assigned to 1,000 PMs, i.e.,
N ¼ 1;000 andM ¼ 1;000. Suppose each VM requests R ¼ 2
virtual disks and each PM provides D ¼ 4 physical disks.
Then, the number of y variables is 1;000� 1;000� 2 � 4 ¼
8;000;000 and the number of x variables is 1,000,000. The
number of constraints of the form in (1) is 8,000,000. This is
a very large MIP problem, exceeding what typical MIP soft-
ware can handle. A large datacenter may have 1,000,000
PMs servicing more than 1,000,000 VMs. Even if at each
assignment instance, only 10 percent of them participate
in the assignment, the number of y variables exceeds

100;000� 100;000� 2� 4 ¼ 8� 1010 and the number of con-
straints also exceeds that number. Thus, a different kind of
algorithm is needed for large problem instances. The exam-
ples also show that the disk anti-colocation requirements
are the main source of difficulty.

3.2 Two-Level Hierarchical Decomposition
Algorithm

For large problem instances, we propose a hiearchical
decomposition algorithm to break a large problem into
many small independent MIP subproblems that can be
solved in parallel by different management servers. The
outline of our decomposition algorithm is given in Algo-
rithm 1, which may be viewed as a framework capturing a
class of algorithms. The choice for the first-level assignment
problem is one of the major factors that distinguish different
algorithms within that framework. In the subsequent
detailed explanation, we will describe our choice.

Algorithm 1. Outline of Two-Level Decomposition
Algorithm

1: divide the VMs intoKv packs; divide the PMs intoKp swads
2: assign the packs to the swads by solving an MIP problem

# first-level assignment
3: for each swad with assigned packs do
4: perform a VM-to-PM assignment by solving the MIP

problem in Section 3.1 # a second-level assignment
5: end for

3.2.1 Divisions into Packs and Swads

The algorithm first divides the VMs into Kv groups and the
PMs into Kp groups (line 1). Using the terminologies intro-
duced in [29], a VM group is called a pack; a PM group is
called a swad. The parameters Kv and Kp should be chosen
such that (i) each of the swads should have plenty of resour-
ces to accommodate at least one pack, and (ii) the sizes of
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the packs and swads are not too large (each having less than
several hundred VMs or PMs, respectively) so that each sec-
ond-level assignment problem can be solved quickly. Con-
ditions (i) and (ii) are basic, necessary conditions for the
two-level decomposition algorithm to work.

There are many ways to make the divisions. For concrete-
ness, we recommend evenly and randomly divide the VMs
into packs and the PMs into swads. That is, each pack is
formed by selecting N=Kv VMs randomly and each swad is
formed by selecting M=Kp PMs randomly. This is the strat-
egy we took for our experiments. Each pack or swad should
be sized so that each second-level assignment problem can
be solved quickly, for instance, 20-100 VMs per pack and
20-100 PMs per swad. Our computational experiences have
shown that this recommended approach works well (see
Section 4.4). See Sections 3.2.4, 4.3.3 and 4.4.4 for more com-
ments. If there are other constraints or requirements that
lead to packs/swads of different sizes, for the purpose of
solving our VM placement problem, we can still make logi-
cal packs/swads of the sizes that we are considering here,
and add extra constraints to represent the needed relation-
ship (e.g., colocation) between some logical packs or
between some logical swads.

3.2.2 First-Level Pack-to-Swad Assignment (Line 2)

In the first level of assignment, we assign the Kv packs to the
Kp swads by solving an MIP problem described below. For
each swad, we aggregate the total number of vCPUs, the total
amount of memory, the total number of disks (lssd) and
the total amount of disk storage space over all the PMs in the
swad; we also record the maximum number of vCPUs,
themaximumamount ofmemory, and themaximumnumber
of disks of anyPM in the swad. For eachpack,we also tabulate
the same requested quantities. In particular, the maximum
amount of a resource requested by a pack is defined to be the
maximumamount requested by anyVM in the pack.

Then, we solve an MIP problem that minimizes the num-
ber of swads used, subject to the following constraints with
respect to the vCPU, memory and disk space resources: For
each swad, (i) the total usage of a resource is no greater than
the total capacity of the same resource in the swad; (ii) the
maximum amount of a resource requested by any pack
assigned to the swad is no more than the maximum capacity
of the same resource provided by any PM in the swad.

For instance, for each swad j, let Ctot
j be the total number

of vCPUs of all the PMs in the swad, and let Cmax
j be the

maximum number of vCPUs of any PM in the swad. For

each pack i, let atot
i be the total number of vCPUs requested

by all the VMs in the pack, and let amax
i be the maximum

number of vCPUs requested by any VM in the pack. Let x̂ij

be a 0-1 assignment variable that takes the value 1 if and
only if pack i is assigned to swad j. Then, the constraints
with respect to the vCPU resource are

XKv

i¼1

atot
i x̂ij � Ctot

j ; j ¼ 1; . . . ; Kp (11)

max
1�i�Kv

amax
i x̂ij � Cmax

j ; j ¼ 1; . . . ; Kp: (12)

There is a similar set of constraints for the memory resource,
and there is another set for the total disk space.

The constraints associated with the requested number of
disks are somewhat different. We define a safety margin,
0 < u � 1, and we require that the total number of disks
requested by all the packs assigned to a swad is no more
than u times the total number of disks provided by the
swad. The reason for doing so is that the disk anti-coloca-
tion constraints can be difficult to satisfy in the second-
level assignment problems. By reducing u in the first-level
assignment (if needed), we can spread out the packs more
across the swads to gain more room for maneuver. The
constraints associated with the maximum number of
requested disks are as usual. That is, the maximum of the
number of disks requested by any pack assigned to a swad
is no more than the maximum number of disks provided
by any PM in the swad.

3.2.3 Second-Level VM-to-PM Assignments

A second-level assignment is performed for each of the
swads that has some packs assigned to it by the first-level
assignment (line 4). For each such swad, we collect all the
VMs in all the packs that are assigned to the swad, and we
collect all the PMs in the swad. We then find optimal assign-
ments of the VMs to the PMs using the MIP formulation
provided in Section 3.1, with the same objective of minimiz-
ing the total operation cost of the PMs. For each of the
swads, the minimum cost is given by the MIP solution. The
cost is equal to zero if no packs are assigned to the swad.
The overall cost of the entire decomposition algorithm is the
sum of all the minimum costs for all the swads.2

3.2.4 Discussion

There is a single MIP problem to solve in the first-level
assignment. There are up to Kp MIP problems to solve for
the second-level assignments. However, the second-level
problems are completely independent from each other.
They can be solved by different computing servers in paral-
lel. Thus, the two-level decomposition method is scalable.
The first-level assignment problem is far less difficult than
each of the second-level problems, since there are no disk
anti-colocation constraints in the first level. For instance, we
can solve a 1;000� 1;000 pack-to-swad assignment problem
very quickly (see Section 4.4). If further scalability is needed
for very large datacenters, the two-level decomposition
algorithm can be extended naturally to more levels of
decomposition. For instance, the Kv �Kp pack-to-swad
assignment problem can be solved using a two-level decom-
position algorithm.

By varying Kv and Kp, there is a trade-off between the
computation time and the total achievable cost. As the sizes
become larger, the two-level decomposition algorithm will
achieve a lower cost, whereas the computation time for the
second-level problems will be longer. Conversely, the

2. There is still a possibility that some of the second-level assign-
ments are infeasible for some swads, even after we require the resource
usage constraints are satisfied in the aggregate and in the maxima
when we conduct the first-level pack-to-swad assignment. One remedy
is to put safety margins on all the stringent resources (like the use of u)
and find suitable values for the margins by binary search. When the
constraints are violated by small amounts, one can simply move some
of the VMs to unused swads. For the experiments that we will present,
all the second-level assignments turn out to be feasible.
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smaller the pack/swad sizes are, the shorter the computa-
tion time is; however, the achievable cost will be higher,
because the boundaries between the swads or packs put
extra restrictions on where each VM can be placed. Also, for
a given swad size, there is a maximum pack size beyond
which the first-level assignment problem becomes infeasi-
ble. To get substantial cost reduction and acceptable compu-
tation time, the pack size should not be too small either. For
our problem, computational experiences have shown that it
works well when Kv and Kp are comparable in values,
taken in the range from 20 to 100.

4 SOLUTION AND SIMULATION RESULTS

This section presents experimental results to demonstrate
the effectiveness of the proposed two-level decomposition
algorithm in terms of scalability and performance improve-
ment. The proposed algorithm is compared with an aggres-
sive heuristic algorithm.

4.1 Setup

We follow the VM and PM setup in Amazon’s EC2 as close
as we can [8]. We take a subset of the allowed VM types
(classes) of Amazon’s EC2. Their resource requirements are
shown in Table 1. We use a subset of the PM types in Ama-
zon EC2, which are listed in the first column of Table 2.
Cloud providers generally don’t disclose the detailed capa-
bilities of all their PMs. The amount of resources that each
type of PMs is equipped with (shown in Table 2) is largely
our guess based on the information revealed on Amazon’s
web site. Given the diversity of physical hardware that ven-
dors offer, the amount of resources listed in Table 2 can also
be understood as a plausible sample (see the remark below).
The operation costs (in the 5th column) are not exactly
known, but are based on our estimate.3 The costs are nor-
malized with the lowest operation cost chosen to be 100.

Since the problem is linear, it doesn’t matter what the cho-
sen normalization base cost is. If the base cost is chosen to
be k instead of 100, the optimal cost is simply k=100 times of
the optimal cost under the base cost 100.

Remark. There is a diverse array of server and storage sys-
tems for datacenters in the market. Different cloud pro-
viders use different systems, ranging from simple, low-cost
servers to specially-designed systems for datacenters, and
they may use a combination of them. A low-cost server
may be only slightly more powerful than a high-end con-
sumer machine, such as a 4-core, single processor machine,
with 16 GiB or memory and 1512-GB SSD drive (and 1
Gbps networking interface). On the other end of the spec-
trum, a Cisco UCS B460 M4 server has four Intel Xeon E7-
8800 v2 processors, which provides 60 processor cores, 96
DDR3 memory DIMM slots (total 6.0 TiB of memory using
64-GiBmemory modules), four drive bays for hard disks or
SSDs (up to 4.8 TB of internal storage), and 320 Gbps of
overall Ethernet throughput. The number of disk drives
that can be installed inside a server is usually quite limited,
e.g., up to 4.However, servers can be attached to disk arrays
using some form of “direct” connections, such as the SAS
interface or direct fiber channel connections. Such directly
attached storage (DAS) can provide storage-access perfor-
mance at the level of internal disks. Thus, DAS can be con-
sidered as a form of local storage. With DAS, each server
can have 16, 24, 128 local disks, depending on the system
setup and cost.

For Amazon EC2, each vCPU corresponds to a hyper-
thread of a physical core [41]. In our experiments, we assume
the PMs all support two hyperthreads per physical core.
Hence, each physical core counts as 2 vCPUs. As an example,
Amazon EC2 uses Intel Xeon E5-2680 processors for the c3
class of VMs. Each Xeon E5-2680 processor has 8 cores and
supports a total of 16 threads. A PMwith one such processor
offers 16 vCPUs. As another example, the aforementioned
Cisco UCS B460M4 server offers 120 vCPUs.

All the experiments were done on a machine with 2 cores
at 2.13 GHz and 4 GB memory. One can expect a speedup
by a factor of 5-10 if a more powerful machine is used.

TABLE 1
VM Types

VM Type vCPU Memory (GiB) Storage (all SSD; GB)

m3.medium 1 3.75 1 � 4
m3.large 2 7.5 1 � 32
m3.xlarge 4 15 2 � 40
m3.2xlarge 8 30 2 � 80

c3.large 2 3.75 2 � 16
c3.xlarge 4 7.5 2 � 40
c3.2xlarge 8 15 2 � 80
c3.4xlarge 16 30 2 � 160
c3.8xlarge 32 60 2 � 320

r3.large 2 15.25 1 � 32
r3.xlarge 4 30.5 1 � 80
r3.2xlarge 8 61 1 � 160
r3.4xlarge 16 122 1 � 320
r3.8xlarge 32 244 2 � 320

i2.xlarge 4 30.5 1 � 800
i2.2xlarge 8 61 2 � 800
i2.4xlarge 16 122 4 � 800
i2.8xlarge 32 244 8 � 800

TABLE 2
PM Types

PM Type vCPU Memory
(GiB)

Storage
(all SSD; GB)

Operation Costs
(normalized)

s1 8 16 1 � 256 100
s2 8 32 1 � 512 120
s3 8 64 2 � 512 200
s4 8 64 4 � 512 300

m1 16 32 2 � 512 600
m2 16 64 4 � 512 700
m3 16 128 4 � 1,000 900
m4 16 256 8 � 1,000 1,500
m5 16 256 16 � 512 1,800

l1 32 256 4 � 1,000 2,500
l2 48 512 8 � 1,000 3,500
l3 64 1,024 4 � 1,000 5,000
l4 80 2,048 16 � 1,600 7,000
l5 120 4,096 4 � 1,000 9,000
l6 120 4,096 24 � 1,600 12,000

3. The large cost increase when the number of disks exceeds 4
reflects the cost of running separate DAS (directed attached storage)
devices.
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4.2 Target of Comparison: Randomized Heuristic
Algorithm

Since we are not aware of prior studies on exactly our prob-
lem (due to the disk anti-colocation requirements), we
developed our own heuristic algorithm as a target for per-
formance comparison. In order for it to be a useful bench-
mark for comparison, we make it aggressive in the sense
that it sacrifices speed for better performance in the achiev-
able cost. By doing so, its cost performance can serve as a
lower bound for a class of other possible heuristic algo-
rithms that put speed at a higher priority.

Our heuristic algorithm is motivated by the general
ideas of online randomized algorithms [3], [42], [43] but
should achieve much lower costs than the latter due to
two exhaustive search steps. The algorithm is summa-
rized in Algorithm 2.

Algorithm 2. Randomized Heuristic Algorithm

1: permute the VM_list
2: for each VM in VM_list do
3: scan used_PM_list to find a PM that can accommodate

the VM
4: if such a PM is found then
5: assign the VM to the PM
6: else
7: scan unused_PM_list to find a PM that can

accommodate the VM
8: if such a PM is found then
9: assign the VM to the PM; move the PM to

used_PM_list

10: else
11: exit # the problem is infeasible
12: end if
13: end if
14: end for

The algorithm first randomly permutes the list of all the
requested VMs; this emulates the random arrival order of the
VM requests. For each VM in the permuted list, an attempt is
made to assign the VM to a PM. The PMs are organized into
two lists—the list of used PMs, which are those PMs already
with some assignedVMs, and the list of unused PMs.

To place a VM, the list of used PMs is searched exhaus-
tively first. If no PM in the used list can accommodate the
VM, then the list of unused PMs is checked.4 Note that, in
our model, a PM incurs a constant operation cost regardless
of howmany VMs are assigned to it. The algorithm’s greedy
behavior of checking used PMs first matches the assump-
tion of constant operation costs.5 Before scanning a PM list,

the PM list is randomly permuted to add some load-balanc-
ing aspect. The first PM in the list that can accommodate the
VM is selected. This aspect is known as the the first-fit heu-
ristic, which is an often used heuristic [3], [42], [43].

For each scanned PM (in lines 3 and 7), our heuristic algo-
rithm checks whether it is possible to assign the currently
consideredVM to that PM. For vCPUormemory, it is enough
to check whether the remaining number of vCPUs or the
remaining memory is sufficient for the VM. For disk assign-
ment, the algorithm exhaustively enumerates different disk
assignment possibilities and uses the first one that is feasible.
As discussed earlier, the disk anti-colocation constraints are
the difficult ones to satisfy. Our heuristic algorithm is aggres-
sive in finding a feasible disk assignment. Other practical
heuristic algorithms are unlikely to conduct an exhaustive
search, since the number of possible disk assignments can
sometimes be very large. With exhaustive search, our algo-
rithmwill achieve a lower total operation cost.

Remark. One can consider several other alternative algo-
rithms. There is a popular heuristic algorithm known as
first-fit-decrease. The VMs are sorted in a decreasing order
of the resource requirements. For each VM in the list, the
PM list is searched. A VM is placed in the first PM that can
accommodate it. Such an algorithm makes sense if the
objective is to be able to place all the VMs. On the other
hand, if the number of PMs is abundant and the objective
is to minimize some cost, then the sorting of the VMs is not
necessarily helpful. The results depend on the order in
which the PM list is scanned. Another heuristic idea is to
sort each PM list in an increasing order of the operation
costs and scan the PMs according to that order instead of a
random order. This way, cheaper PMs are used with a
higher priority.Whether such sorting is beneficial depends
on the details of the problem instance, i.e., all the parame-
ters, such as the costs, the resource configurations of the
PMs and the requested configurations of the VMs.

4.3 Comparison between Flat Optimization and
Randomized Heuristics

In this part of the experiments, we will show problem
instances that can be solved by directly using the MIP
solver Gurobi [44] without hierarchical decomposition, an
approach that we call flat optimization. We will compare flat
optimization with our randomized heuristic algorithm. The
intention is to demonstrate that (1) the optimization
approach achieves much lower costs than sophisticated
heuristics; (2) however, the size of solvable instances is
rather limited. Later in Section 4.4, we will show how hier-
archical decomposition can help to solve large instances
while maintaining the advantage over the heuristic algo-
rithm in the achievable cost.

The results for experiments 1 and 2 are summarized in
Table 3.6

4.3.1 Experiment 1-70 VMs and 50 PMs

We experimented with a problem of assigning 70 VMs to 50
PMs. The 70 VMs are of the following mix of types—m3.

4. For a large datacenter, a scalable online algorithm cannot afford to
search through all the used PMs or unused PMs for each VM request. A
typical strategy is to sample a few used PMs and, if that does not work
out, pick a unused PM with sufficient resources randomly. Our heuris-
tic algorithm should do better in the achievable objective value. A more
sophisticated algorithm is to keep track of an ordered list of all the PMs
according to certain criterion and assign the VM to the first one on the
list that fits. In that case, exhaustive search is needed and scalability is
limited, as in our heuristic algorithm.

5. The discussion also suggests that, if the cost model is different, the
current heuristic algorithmmay not work well. For instance, if the oper-
ation costs of the PMs depend on the load placed on the PMs in some
complicated way, then trying to pack VMs to used PMs first may not be
the right approach.

6. Since the heuristic algorithm is not sufficiently scalable, there is no
need to collect the computation time. See later comment in Section 4.4.1.
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medium: 36; m3.large: 14; m3.xlarge: 10; m3.2xlarge: 10. The
50 PMs are of the following mix—s1: 7; s2: 7; s3: 10; s4: 7;
m1: 5; m2: 5; m3: 5; m4: 2; m5: 2. Judging by the VM and PM
numbers, this is a small instance. However, the MIP formu-
lation involves 17,950 binary variables and 26,120 con-
straints, which make it non-trivial for any MIP software.
The instance is solved by Gurobi in 106 seconds, yielding
the optimal cost 4,540.

The randomized heuristic algorithm can solve the prob-
lem more quickly. Since it involves randomization, we col-
lected the results of 50 runs, which all together took several
seconds. The average cost of the 50 runs is 9,913, more than
twice the optimal cost. The minimum, maximum and stan-
dard deviation of the costs are 6,980, 12,000, and 1,074,
respectively. As we argued, when compared with other pos-
sible randomized heuristics, our heuristic algorithm is
designed to do quite well in terms of the achievable cost.
The gaps from the optimal cost are expected to be wider for
other randomized heuristic algorithms.

4.3.2 Experiment 2-77 VMs and 70 PMs

In this experiment, 77 VMs are to be assigned to 70 PMs (see
Table 4). Although the numbers of VMs and PMs are not so
different from the previous instance, the mixes of the VM
and PM types are quite different. Here, we have a fuller mix
of almost all types of VMs and PMs. The instance has 55,380
binary variables and 80,825 constraints, quite a bit larger

than the previous instance. The problem took Gurobi about
3,756 seconds (about 63 minutes) to solve, which is much
longer than for the previous instance. The optimal assign-
ment has a cost of 45,300.

We ran the heuristic algorithm 50 times. The resulting
average cost is 65,105 and the standard deviation is 3,683.
The minimum and maximum costs are 58,400 and 76,200,
respectively. On average, the heuristic algorithm results in
44 percent higher cost than the optimal algorithm. Percent-
age-wise, the heuristic algorithm is doing better here than
for the previous instance. Part of the reason is that, even in
the optimal algorithm, 38 out of the 70 PMs are used and
there is not a lot of room for cost saving, in terms of percent-
age of improvement. Nevertheless, the cost saving in value
by the optimal algorithm is still much more than that for the
previous instance.

4.3.3 Additional Results and Comments

Table 5 summarizes the computation time for flat optimiza-
tion on several other instances with various VM and PM
mixes. The computation time depends on all the parameters
of a problem instance, including the numbers of VMs and
PMs, the resource specifications of different VM and PM
types, and the mixes of the types. It is difficult to give a con-
cise characterization of that dependency. But, generally
speaking, the standard MIP algorithms cannot solve prob-
lems with more than several hundred VMs and PMs in
under an hour on ordinary computers. Improvement in the
computation speed is possible with the use of more clever
problem formulations, customized algorithms, and more
powerful computers.

4.4 Main Results: Two-Level Hierarchical
Decomposition

The major experiments are to assign 1,000 VMs to 1,000 PMs
of different types using our two-level decomposition algo-
rithm.7 We split the VMs into Kv ¼ 25 packs and the PMs
into Kp ¼ 25 swads randomly. Each pack has 40 VMs and
each swad has 40 PMs. The results of the experiments are
summarized in Table 6.

4.4.1 Mix 1

The mixes of the VMs and PMs are described in Table 7. The
safety margin is chosen to be u ¼ 0:7. The two-level decom-
position algorithm achieves a total cost 82,540. This number

TABLE 3
Summary of Results: Flat Optimization versus Heuristics

Experiments Flat Optimization Heuristics

1
Cost 4,540 9,913

Run Time (s) 106

2
Cost 45,300 65,105

Run Time (s) 3,756

TABLE 4
VM and PM Setup

VM Type No. of VMs PM Type No. of PMs

m3.medium 5 s1 5
m3.large 5 s2 5
m3.xlarge 5 s3 5
m3.2xlarge 5 s4 5

c3.large 5 m1 5
c3.xlarge 5 m2 5
c3.2xlarge 5 m3 5
c3.4xlarge 5 m4 5
c3.8xlarge 5 m5 5

r3.large 5 l1 5
r3.xlarge 5 l2 5
r3.2xlarge 5 l3 5
r3.4xlarge 5 l4 5
r3.8xlarge 5 l5 5

16 0

i2.xlarge 2
i2.2xlarge 2
i2.4xlarge 3
i2.8xlarge 0

TABLE 5
Flat Optimization Computation Time

Num. of VMs Num. of PMs Average Run Time (seconds)

20 20 7.8
40 40 75
70 50 106
77 70 3,756
90 75 4,885

7. Although the numbers of VMs and PMs are chosen to be identical,
not all the PMs are used in the results of the experiments, and therefore,
VM consolidation still occurs.
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should be compared with the randomized heuristics, which
has an average (over 50 runs) total cost 150,573, a standard
deviation 4,951, a minimum cost 140,060 and a maximum
cost 165,840. The two-level decomposition algorithm
achieves about half the cost as that of the randomized heu-
ristics. We conclude that the cost improvement can be sig-
nificant. As explained earlier, our target of comparison—the
randomized heuristics—is quite aggressive and other ran-
domized heuristics will likely do worse than it.

We next discuss the algorithm running time. A total 17
swads are used after the first-level pack-to-swad assign-
ment. A used swad is assigned 1 to 2 packs. The computa-
tion for the first-level assignment takes very little time, on
the order of a few seconds, due to the small problem size at
this level. In general, the first-level assignment does not
pose scalability challenges.

For the second-level VM-to-PM assignments, the total
running time is 1,281 seconds, which is the aggregate for 17
different computations for the 17 used swads. The average
running time is therefore 75 seconds per swad. Note that
the 17 different assignment problems are completely inde-
pendent and can run in parallel on different computers.
There is variability in the running times for different swads,
due to different problem sizes and the inherent variability
of how the feasibility set is explored by the MIP algorithm.

The running times are shown in Fig. 1, sorted in increasing
order. Overall, we see that the second-level assignments are
where the computation complexity lies. To get a solution
within a prescribed time budget, the size of each such MIP
problems needs to be limited, which can be achieved by
controlling the pack/swad sizes.

The heuristic algorithm takes a fairly long time, hun-
dreds of seconds per run. At the minimum, the computation
time scales as OðNMÞ, where N is the total number of VMs
and M is the total number of PMs. The disk anti-colocation
requirements pose greater scalability challenges as the num-
ber of disks involved increases. For instance, a type-l6 PM
has 24 physical disks and a VM of type i2.8xlarge needs 8
virtual disks. The number of disk assignment possibilities is

24!
ð24�8Þ! ¼ 29;654;190;720. For that case, the enumeration strat-

egy becomes impractical.8 The precise situation depends on
how disk assignments are implemented in the heuristic
algorithm. For instance, one may formulate and solve MIP
problems for disk assignments. However, there is a large
number of such problems, up to N �M of them, since there
is one whenever a VM is checked against a PM for possible
placement. Overall, the heuristic algorithm is not a suffi-
ciently scalable algorithm.9 But, whenever it works, it
should achieve good performance with respect to the opti-
mization objective.

We next make additional comments about the experi-
mental results. Fig. 2 shows the utilization of various
resources by the optimal solution for the first-level assign-
ment. The four curves correspond to four different types of
resources: vCPU, memory, the number of disks (lssd) and
the total disk size. The utilization of the ‘number of lssd’ is
the highest, ranging from 40 percent to close to 70 percent.
Given that the safety margin is set at u ¼ 0:7, we see that the
optimal solution tends to saturate that constraint. The next
highest utilization is that of the vCPU, ranging from 25 to 50
percent. The total lssd size and the memory are under-
utilized, at around 10 and 20 percent, respectively. Thus,

TABLE 6
Summary of Results: Two-Level Decomposition

versus Heuristics

Experiments Two-Level Decomp. Heuristics

Mix 1 Cost 82,540 150,573
Run Time (s) 1281;75 per swad

Mix 2 Cost 487,840 601,914
Run Time (s) 3,366;280.5 per swad

Mix 1; Smaller Cost 98,040 150,573
Pack/Swad Sizes Run Time (s) 202;7.8 per swad

TABLE 7
1,000 VMs and 1,000 PMs-Mix-1

VM Type No. of VMs PM Type No. of PMs

m3.medium 500 s1 150
m3.large 200 s2 150
m3.xlarge 150 s3 150
m3.2xlarge 150 s4 150

c3.large 0 m1 100
c3.xlarge 0 m2 100
c3.2xlarge 0 m3 100
c3.4xlarge 0 m4 50
c3.8xlarge 0 m5 50

r3.large 0 l1 0
r3.xlarge 0 l2 0
r3.2xlarge 0 l3 0
r3.4xlarge 0 l4 0
r3.8xlarge 0 l5 0

16 0

i2.xlarge 0
i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

Fig. 1. Sorted running times for VM-to-PM assignments for different
swads; mix-1.

8. The disk numbers in our experiments are chosen such that cases
with a large number of disk assignment possibilities are avoided.

9. It is possible to make the heuristic algorithm a parallel one by
dividing the problem into many smaller ones. Doing so will reduce the
computation time but at the expense of yielding a higher operation
cost. For the purpose cost comparison, the non-parallel version is more
appropriate.

1370 IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 28, NO. 5, MAY 2017



the vCPUs and the total number of disks tend to be the
resource bottleneck whereas the memory and disk space
tend to be abundant.

The low utilization of some resources is in part due to the
chosen pack and swad sizes. For instance, while the
resource utilization at a swad may be low, bringing in
another pack to it causes a big jump in the total resource
requirements, likely exceeding the total amounts provi-
sioned by the swad. The other part of the reason is the
imbalance in the supply and demand of various resources.
For instance, the disk-size-to-vCPU ratios of many VM
types are relatively low, compared with the same ratios of
most PM types. However, the imbalance may change as cus-
tomers request different mixes of VM types.

4.4.2 Mix 2

The mixes of the VMs and PMs are described in Table 8. The
safety margin is set to u ¼ 0:7.

The two-level decomposition algorithm achieves a total
cost 487,840. Out of the 25 swads, 12 of them are used. The
total algorithm running time is 3,366 seconds, or 280.5

seconds per swad. The running time for each of the second-
level VM-to-PM assignments (for the used swads) is shown
in Fig. 3. The resource utilization results are shown in Fig. 4.

We ran the randomized heuristics 50 times, which took
hours. The average cost of the heuristic algorithm is 601,914
and the standard deviation is 5,079; the minimum and the
maximum costs are 589,900 and 613,520, respectively. The
heuristic algorithm is about 23 percent more costly than the
decomposition algorithm.

4.4.3 Mix 1 with Smaller Pack/Swad Sizes

Here, we want to show that decreasing the sizes of the
packs and swads can reduce the computation time drasti-
cally. The mixes of the VMs and PMs are as described in
Table 7. The safety margin is u ¼ 0:7. The 1,000 VMs are
divided into 50 packs and the 1,000 PMs are divided into
50 swads. Each pack has 20 random VMs and each swad
has 20 random PMs.

The first-level assignment attempts to assign the 50 packs
to the 50 swads. The result shows that 26 swads are used.
The computation time is negligible.

Each second-level assignment attempts to assign 20 or
more VMs (on average, 1;000=26 � 38) to 20 PMs. The total
running time is 202 seconds. The average running time is
therefore 7.8 seconds per swad. We see that the running
times are much smaller than the case in Section 4.4.1 (where
the total is 1,281 and the average is 75 seconds, respectively).

Fig. 2. Resource utilization for different swads; mix-1.

TABLE 8
1,000 VMs and 1,000 PMs-Mix-2

VM Type No. of VMs PM Type No. of PMs

m3.medium 200 s1 100
m3.large 100 s2 100
m3.xlarge 100 s3 100
m3.2xlarge 100 s4 100

c3.large 50 m1 100
c3.xlarge 50 m2 100
c3.2xlarge 50 m3 50
c3.4xlarge 50 m4 50
c3.8xlarge 50 m5 50

r3.large 50 l1 50
r3.xlarge 50 l2 50
r3.2xlarge 50 l3 50
r3.4xlarge 50 l4 50
r3.8xlarge 50 l5 50

16 0

i2.xlarge 0
i2.2xlarge 0
i2.4xlarge 0
i2.8xlarge 0

Fig. 3. Sorted running times for VM-to-PM assignments for different
swads; mix-2.

Fig. 4. Resource utilization for different swads; mix-2.
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The total cost achieved by two-level decomposition is
98,040, still a big improvement over the randomized heuris-
tics, which leads to a cost of 150,573.

4.4.4 Effects of the First-Level Assignment

There is a complex relationship between the assignment
problems at the two levels. The resulting total cost
depends crucially on how the MIP problem is formu-
lated at the first level (for pack-to-swad assignment). For
instance, it may appear reasonable that, in order to
reduce the total operation cost, the first-level assignment
problem should aim at reducing the number of swads
used. We can control that number by varying the param-
eter u. The results after the first and second-level assign-
ments are shown in Table 9. As u decreases, the
constraints associated with the number of disks become
more stringent in the first-level assignment and conse-
quently, each swad is assigned fewer packs on average
and more swads are used. However, after the second-
level assignments, the total cost in fact decreases as u

decreases. Also, the number of PMs used after the sec-
ond-level assignments increases as u decreases. One
explanation is that, as more swads are used, there are
more second-level assignment instances (one for each
used swad), and hence, there are more opportunities to
improve the total cost. Although more swads and more
PMs are used as u decreases, cheaper PMs tend to be
used and more expensive PMs tend to be avoided,
resulting in a lower total cost. As u continues to
decrease, the first-level assignment problem will eventu-
ally become infeasible.

The above observations hold for the particular perfor-
mance objective and cost structure. It should not be general-
ized without rigorous reasoning or extensive experiments.
For instance, if every PM has the same operation cost, the
total cost will be proportional to the number of PMs used.
Then, based on the data in Table 9, the total cost would
have increased as u decreases.

In the end, u needs to be tuned based on computational
experiences. For instance, given a single instance of the
VM placement problem, the two-level decomposition algo-
rithm can be invoked multiple times under different values
of u. The u value that gives the lowest total cost may be
selected and the VM and disk placement will be made
accordingly. In a real operating environment, the manager
of the datacenter may also pick a suitable value for u based
on past experiences.

How to define the first-level assignment problem is a
tough issue, which requires further research. On the posi-
tive side, there is an easy practical approach to address the
issue, which is to experiment with different formulations
and look at the total cost achieved. This approach is possible
because the hierarchical decomposition method is scalable
and the result for each experiment can be computed
quickly.

4.4.5 Scalability

The two-level decompositionmethod is scalablewith the help
of parallelism. Suppose the basic building blocks of two-level
decomposition are 100� 50 VM-to-PM assignment problems
and suppose each takes 2 minutes to solve. A system with 2
million VMs and 1 million PMs has 20,000 100� 50 such
assignment problems, which takes 40,000 minutes computa-
tion time. If 400 management servers are used to manage the
datacenter, the running time on each is 100 minutes. Over a
24-hour day, there can be 14 rounds of complete re-assign-
ment. The 400 management servers represent an overhead of
400=1;000;000 ¼ 0:04 percent, which is low.

It is unlikely that every VM needs to be re-assigned
every 100 minutes. The numbers of VMs and PMs that
need to be considered at each assignment period are
likely to be drastically smaller than 2 or 1 million, respec-
tively. Even a reduction by a factor of 10, i.e., 200,000
VMs and 100,000 PMs, can bring the total computation
time down to 4,000 minutes or 10 minutes per manage-
ment server. In practical systems, the variability of the
problem sizes at the second level can be exploited. Some
VM-to-PM assignment problems may be small, e.g.,
40� 20, which can be solved in seconds. On the other
hand, larger VM-to-PM problems (e.g., 100� 50) can be
computed less frequently, such as once every few hours.

With smarter algorithms, it is hopeful that the computa-
tion time of each 100� 50 VM-to-PM assignment problem
can be cut down to sub-minutes. A factor of 10 reduction
will have significant overall impact. Finally, we can always
make most of the second-level problems smaller to speed
up the overall computation. But, the achievable cost will
be higher.

5 CONCLUSION AND DISCUSSION

In this paper, we study a new VM placement problem with
difficult disk anti-colocation constraints. For solutions, we
propose a hierarchical decomposition method combined
with MIP formulations and algorithms. With simulation and
numerical experiments, the proposed approach is shown to
be effective. It achieves lower costs than an aggressive heu-
ristic algorithm, and it is scalable with the help of parallel
management servers. The proposed approach is extensible
to other datacenter management problems. It can help to
enable complex and system-oriented cloud services, enhance
customer agility, and at the same time, improve datacenter
resource efficiency or costs.

Customers’ requests for VMs arrive at the datacenter
dynamically. To handle the dynamic arrivals, we propose
to wrap the two-level decomposition algorithm with an
outer algorithm that combines periodic re-optimization
with immediate placement. If the request is for a batch of

TABLE 9
Controlling Number of Swads Used by u

u No. of Swads Used No. of PMs Used Total Cost

Mix 1
0.5 24 346 71,720
0.6 19 336 78,980
0.7 17 326 82,540
0.8 12 306 95,740

Mix 2
0.5 22 438 443,260
0.6 13 361 474,440
0.7 12 346 487,840
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VMs, e.g., 1,000 VMs, as is often the case for enterprise cus-
tomers, the two-level decomposition algorithm is executed
immediately to place the set of requested VMs. If the
request contains one or several VMs, it will be immediately
placed using a simple online heuristic algorithm, such as a
first-fit algorithm or a randomized algorithm. Periodically,
a collection of VMs that have already been placed is
selected to participate in periodic re-optimization. Their
new placement is computed based on the two-level decom-
position algorithm, subject to the consideration of migra-
tion constraints or costs.

We have seen that, in the two-level decomposition algo-
rithm, the first-level assignment does not take much compu-
tation time. The computation challenge comes from the
second-level VM-to-PM assignment problems. Ultimately,
the sizes of these second-level problems need to be limited.
Any future research that can improve that limit will be
worthwhile. Improvement may come from more clever
problem formulations, customization of the MIP algorithms,
or new classes of algorithms.
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