
Toward Hierarchical Mixed Integer Programming
for Pack-to-Swad Placement in Datacenters

Ye Xia∗, Mauricio Tsugawa†, Jose A. B. Fortes† and Shigang Chen∗
∗Department of Computer and Information and Engineering

†Department of Electrical and Computer Engineering
University of Florida, Gainesville, Florida, USA

Abstract—In this paper, we introduce a pack-centric approach
to datacenter resource management by abstracting a system
as a pack of resources and considering the mapping of these
packs onto physical datacenter resource groups, called swads.
The assignment of packs/VMs to swads/PMs is formulated as
an integer optimization problem that can capture constraints
related to the available resources, datacenter efficiency and
customers’ complex requirements. Scalability is achieved through
a hierarchical decomposition method. We illustrate aspects of
the proposed approach by describing and experimenting with a
concrete and challenging resource allocation problem.

Keywords-cloud computing; datacenter; virtual machine place-
ment; resource management; integer programming

I. INTRODUCTION

Over the last ten years computational clouds have become
widely used by enterprises as their most cost-effective means
to deploy IT services. However, the value proposition offered
by computational clouds has evolved to go beyond cost-
effective on-demand hosting/management of IT resources and
elasticity [1]. The added value now includes the ability to
offer entire IT systems as a service (versus isolated resources
that the customer needs to build into a system) that can
quickly adapt to changing business environments (versus be-
ing statically configured) and are automatically optimized in
response to changes in either the environment or the workload.
These new capabilities - agility and continuous optimization
- are enabled by building datacenters where resources and
environments can be (re)configured programmatically on the
basis of monitoring information and predictive models of
behavior and workload. Industry has recently coined the term
“software-defined” to refer to these new types of datacenters
[1]–[3], built on the foundation of virtualization of computing,
network, storage, software and all other datacenter resources.

The above-mentioned evolution of datacenters introduces
new challenges in management as well as new opportuni-
ties. The challenges are scalability, system-orientation, and
optimization supporting both datacenter efficiency and cus-
tomer system agility and performance. The opportunities are
in considering systems as units of management therefore
creating hierarchical structure in resource management which
contributes to scalability. In this paper, we pursue these
opportunities by abstracting a system as a pack of (virtual)
resources and considering the mapping of these packs onto
physical datacenter resource groups (called swads) subject
to constraints related to the physical datacenter topology
and available resources, datacenter efficiency and customers’
complex requirements. This is a major departure from most
previous datacenter management approaches which rely on

a VM (virtual machine)-centric view [4]–[6] rather than a
system/pack-centric approach (hereon, pack-centric approach).

The main contributions of this paper are: (1) We propose
a pack-centric approach to datacenter resource management,
which is capable of supporting system-oriented services. (2)
We adopt mixed integer programming formulations and al-
gorithms for datacenter resource management problems since
they are capable of capturing and solving complex, changing,
sometimes vague requirements and constraints, thus provid-
ing the envisioned agility of the next-generation datacenters.
Since optimization is involved, such formulations will lead
to improved performance with respect to the datacenter’s and
customers’ objectives. (3) For scalable solutions, we pro-
pose hierarchical decomposition of each resource management
problem in accordance with the pack and swad hierarchies that
are often natural in system-oriented, pack-centric datacenters.

Prior studies generally focus on smaller-scale, flat VM-to-
PM assignment problems with simpler objectives and con-
straints. They generally avoid integer programming formula-
tions all together. In the cases where integer programming is
used, attention is usually on developing specialized combina-
torial algorithms such as multi-dimensional bin-packing [7],
[8], graph algorithms [5] or sophisticated heuristics [9], which
are only applicable to special problems with the structures
required by those algorithms. Practical cloud systems usually
adopt less sophisticated heuristics, such as first-fit and round-
robin, as evidenced by open-source middleware stacks [10],
[11]. While they are highly scalable, simple heuristics can also
be underachieving in the performance objective. The authors
of [12] also propose an idea of hierarchical decomposition, but
on a specific problem with the specific objective of reducing
datacenter network traffic by intelligent placement of the VMs.

II. PACK-CENTRIC DATACENTER MANAGEMENT

A. Definitions and Examples of Pack and Swad

Pack Hierarchy: We propose a new abstraction called pack,
which is a set of VMs, smaller packs and other (virtual)
resources that should be placed as a group in a datacenter for
the purpose of resource sharing or performance enhancement.
This recursive definition allows a customer to organize its
resource requirement in a hierarchical structure, as illustrated
by Fig. 1, which shows a scenario of a multinational cor-
poration outsourcing its IT infrastructure to the cloud. The
corporation has a branch in London, a branch in Shanghai,
and its headquarters in San Jose, corresponding to three packs.
The headquarters pack further consists of a firewall VM and
three lower-level packs, describing the resource requirement
by the management, finance and engineering departments,

2015 IEEE 12th International Conference on Autonomic Computing

978-1-4673-6971-8/15 $31.00 © 2015 IEEE

DOI 10.1109/ICAC.2015.23

219



respectively. Suppose the London pack requires 100 VMs for
various databases and other computing tasks. The workload
on these VMs and the resource requirement cannot be fully
predicted since the VMs may be assigned to different tasks as
needed in the future. Instead of committing a fixed amount of
each resource to each VM, it makes more sense to specify the
combined requirement for each resource for the whole pack
and let the VMs share the common pool of resources dynam-
ically as needed. A natural way to facilitate resource sharing
is to place these VMs as a group in a cluster of colocated
PMs (physical machines). A controller can be implemented
to monitor in real time the resource usage by the pack and
dynamically adjust the resource distribution among the VMs.
Swad Hierarchy: We define a swad as a set of PMs, other
physical resources (e.g., network storage) or lower-level swads
in a cloud system. The resource capacity of a swad is equal to
the sum of the capacities of its components, possibly excluding
a certain percentage of resources that are set aside to support
elasticity (which allows a VM or pack to dynamically scale
up its resources in real time). In the example of Fig. 2 with
a fat-tree topology [13], a swad corresponds to all the servers
of a rack, shown by the nodes labeled with “swad” in the
right figure. Some lower-level swads are grouped into a higher-
level swad, labeled as “SWAD”, giving rise to a hierarchical
structure (tree), with the whole cloud system as the root swad.

The swad hierarchy is established by the cloud provider
according its resource management policies, proximity of
physical resources and various other constraints. The pack
hierarchy is established by combining the customers’ pack
specifications and the cloud provider’s considerations. A cus-
tomer’s request may be already in the form of a smaller pack
hierarchy, such as the example in Fig. 1. The cloud provider
collects such pack requests from the customers and establishes
the final pack hierarchy (see Fig. 4). There is a great deal of
flexibility in constructing both hierarchies. A comprehensive
study is outside the scope of this paper. Subsequently, we
assume both hierarchies are given, with each forming a tree.
The depth of a node in a tree is called the level of the node,
with the root node at level 0 by convention. The leaves of the
pack hierarchy can be VMs or packs; the leaves of the swad
hierarchy can be PMs or swads.

B. Hierarchical Decomposition - Pack-to-Swad Assignments

Besides the benefits of allowing system-oriented cloud ser-
vices and increased customer agility, the other main use of the
pack/swad hierarchies is to break a large resource allocation
problem of enormous complexity into a series of much smaller
subproblems that are far easier to solve and can be solved
in parallel1. There is an assignment subproblem associated
with each swad on the swad hierarchy, which assigns some
packs/VMs to the child swads/PMs of the focal swad.

Starting from the root of the swad hierarchy, the assignment
is performed recursively. First, the root of the pack hierarchy
is assigned to the root of the swad hierarchy. The next step is
to assign the children of the root pack to the children of the
root swad. The assignment process continues downward along
the swad hierarchy, in either depth-first or breath-first traversal
order. In general, consider a swad at level i, where i = 0, 1, . . ..

1All subproblems at the lowest levels can be solved independently from
each other. As the experimental results show, the computation time for these
subproblems dominates the overall computation time.

Fig. 3. An example of a swad hierarchy prepared by the cloud provider.
Circles are swads; squares are PMs.

Fig. 4. An example of a final pack hierarchy. Circles are packs; squares are
VMs. Enterprise customers A and B specified their own pack hierarchies, as
shown in dashed boxes. Packs 11 to 20 are created by the cloud provider;
each aggregates a set of VMs requested by individual customers.

Assume that some level-i packs have been assigned to the
swad in question. For that swad, the assignment decision is to
assign the child packs/VMs of those level-i packs to the child
swads/PMs of the focal swad.

Example: Consider the assignment associated with the pack
hierarchy in Fig. 4 and swad hierarchy in Fig. 3. The first
step is trivial: Pack 1 is assigned to swad 1. The next step
is to assign packs 2, 3 and 4 to swads 2 and 3. Suppose the
result of the assignment (by solving an optimization problem
chosen by the provider) is that packs 2 and 3 are assigned to
swad 2, and pack 4 is assigned to swad 3. Next, for swad 2,
the assignment problem is to assign packs 5 − 20 to swads
4 − 13; for swad 3, the problem is to assign packs 21 − 27
to swads 14 − 23. Suppose packs 11 − 14 are assigned to
swad 13 in the assignment step associated with swad 2 (based
on solving another optimization problem). The assignment
problem associated with swad 13 is to assign all the VMs
in packs 11− 14 to the PMs in swad 13.

C. Periodic Re-Optimization by Integer Programming

Another key idea of our datacenter management framework
is to perform periodic re-optimization and, based on that result,
update the assignment of packs/VMs to swads/PMs. The
optimization problems are formulated as integer programming
problems to capture complex constraints and customer re-
quirements, such as various colocation or anti-colocation con-
straints, topological relationship among components, or even
workflow precedence relationship. Periodic re-optimization
may be triggered by timers or by events (e.g., when the
resource efficiency is below a threshold).

When re-optimization is due: The following actions are taken.

• A subset of packs/VMs is selected and a subset of
PMs/swads is selected to participate in re-optimization.
The selection depends on the provider’s policy and the
states of the packs/VMs and swads/PMs, e.g., whether a

220



Shanghai

...

London

...

Headquarters

...
...

...

Finance
Engineering

Management

Firewall
Headquarters pack

Shanghai pack London pack

Management FinanceEngineering
Firewall

VM VM

Corporation

...
VM VM

...
VM VM

...

Fig. 1. VMs and other virtual resources can be organized through a recursive, hierarchical pack structure determined by administrative boundaries, locations
and resource sharing requirement.

swad swad swad swad
SWAD SWAD

Fig. 2. Swad-based hierarchical abstraction of a cloud system

PM is running a workload that cannot be interrupted.
• A large integer optimization problem is formulated for

optimal assignment of the packs/VMs to swads/PMs,
taking into account both the customers’ and the provider’s
objectives and constraints. The formulation covers all
the packs/VMs and all the swads/PMs selected in the
previous step.

• A pack hierarchy and a swad hierarchy are constructed,
and the assignment subproblems in hierarchical decompo-
sition are solved by integer programming algorithms. The
packs/VMs are placed according to the solution, which
may involve VM migration.

In-between re-optimization events: Customer requests for new
or additional resources are handled immediately upon arrival.
If a request is simple (e.g., for a set of non-interacting VMs),
it is handled by some online heuristic algorithm such as first-
fit or the randomized algorithm in [3]. If a request is complex
(e.g., a pack with its own hierarchy and dependencies among
its components), a small-scale integer optimization problem is
formulated to allocate the requested resources, involving only
the current request(s) and a small set of physical resources.

III. AN EXAMPLE AND EXPERIMENTAL RESULTS

The following sample problem serves to illustrate the capa-
bilities of the integer programming formulation in describing
complex constraints. In this case, it easily captures a subtle
anti-colocation constraint of disks. The example also demon-
strates the enormous scale and complexity of datacenter man-
agement problems in general. We will show how hierarchical
decomposition provides a scalable solution framework.
Constraints: The problem is to assign N VMs to M PMs with
disk exclusivity constraints, where N and M can both be fairly
large, e.g., thousands or more. Each VM has the following
resource requirement: memory, vCPU, number of local disk
volumes (virtual ones) and their sizes. Each of the M PMs
has certain memory, a number of vCPUs, and a number of
local disks and their sizes. These local disks may be in the
PM or directly attached. With respect to each resource (e.g.,
vCPUs or memory), the constraints are that the total amount of

resource required by all the VMs assigned to each PM j cannot
exceed the resource capacity of PM j. When a VM i requests
multiple local disks, there is often an exclusivity requirement:
no physical disk of the PM (to which VM i is assigned) can
contain more than one of VM i’s requested virtual disks2. A
final set of constraints is that the capacity of each physical
disk must be greater than or equal to the aggregate size of all
virtual disks assigned to it.

Let the sets of VMs and PMs be denoted by V and P ,
respectively. For each VM i, let αi be the number of vCPUs
required and let βi be the memory requirement (in GiB).
Suppose for each VM i, a set of virtual disks is requested and
the set is denoted by Ri. For each of the requested virtual disks
k ∈ Ri, let νik be the requested disk volume size (in GB). For
each PM j, let Cj be the number of available vCPUs, Mj be
the amount of memory (in GiB), and Dj be the set of available
physical disks. The sizes of the physical disks are denoted by
Sjl (GB) for l ∈ Dj . For each i ∈ V and each j ∈ P , let xij

be the binary assignment variable from VM i to PM j, which
takes the value 1 if i is assigned to j and 0 otherwise. The
binary variables yikjl are used for disk assignment: yikjl is
set to 1 if VM i is assigned to PM j and the requested virtual
disk k, where k ∈ Ri, for VM i is assigned to the physical
disk l of PM j, where l ∈ Dj ; it is set to 0 otherwise. The
problem’s constraints can be written as follows:

yikjl ≤ xij , i ∈ V, j ∈ P, k ∈ Ri, l ∈ Dj (1)
∑

j∈P

∑

l∈Dj

yikjl = 1, i ∈ V, k ∈ Ri (2)

∑

j∈P
xij = 1, i ∈ V (3)

∑

k∈Ri

yikjl ≤ 1, i ∈ V, j ∈ P, l ∈ Dj (4)

∑

i∈V

∑

k∈Ri

νikyikjl ≤ Sjl, j ∈ P, l ∈ Dj . (5)

2Separate physical disks allow the end-user of the VM to enjoy higher total
disk throughput and/or more fault tolerance.

221



∑

i∈V
αixij ≤ Cj , j ∈ P (6)

∑

i∈V
βixij ≤Mj , j ∈ P. (7)

Costs and Optimization Objective: We assume that, when
a PM j is turned on to serve some VMs, there is a fixed
cost ĉj associated with running the PM; when the PM is off,
there is zero cost involved. The operation cost may include the
average energy cost when a machine is running and typical
maintenance cost. Let zj be a 0-1 variable indicating whether
PM j is used by some VMs. To ensure that zj = 1 if and
only if xi,j = 1 for some i ∈ V , we add the following two
constraints, where B is a large enough constant, e.g., B = N .

zj ≤
∑

i∈V
xi,j , j ∈ P (8)

Bzj ≥
∑

i∈V
xi,j , j ∈ P. (9)

The optimization objective is to minimize the total operation
cost: minx,y,z

∑
j∈P ĉjzj .

Experimental Results: For brevity, we only show one set of
results3. The experiments are to assign 1000 VMs to 1000 PMs
using our hierarchical decomposition method. We take subsets
of the allowed VM and PM types in Amazon’s EC2 [15]. To
solve the optimization subproblems in the decomposition, we
use the integer programming software Gurobi. The results of
three experiments are summarized in Table I. Mix 1 and mix
2 have different mixes of VM and PM types.

For the first two experiments, we split the VMs into 25
packs and the PMs into 25 swads randomly. In this case,
the pack and swad hierarchies have similar structures, each
having two levels. Take the pack hierarchy as an example.
The root pack has 25 child packs, each of which has 40
VMs as children. In the first level of assignment, we assign
the 25 packs to the 25 swads by solving an optimization
subproblem. A second-level assignment is performed for each
of the swads that has some packs assigned to it. For each
such swad, we collect all the VMs in all the packs that are
assigned to the swad, and we collect all the PMs in the swad.
We then perform optimal allocation of the VMs to the PMs
using the formulation provided earlier. For each of the swads,
the minimum cost is given by the optimization solution. The
overall cost is the sum of those minimum costs.

Take mix 1 as an example. The two-level decomposition
algorithm achieves a total cost 82, 540 (normalized). This
number should be compared with a sophisticated randomized
heuristics that we used for cost comparison, which has an
average (over 50 runs) total cost 150, 573. The result suggests
that the cost improvement of our scheme can be significant.
The computation time for the first-level assignment is several
seconds. A total 17 swads are used after the first-level pack-
to-swad assignment. For the second-level VM-to-PM assign-
ments, the total running time is 1281 seconds, which is the
aggregate for 17 different computations for the 17 used swads.
The average running time is 75 seconds per swad. Note that
these 17 assignment subproblems are completely independent

3See [14] for more results and details.

TABLE I
SUMMARY OF RESULTS: TWO-LEVEL DECOMPOSITION V.S. HEURISTICS

Experiments Two-Level Decomp. Heuristics
Mix 1 Cost 82540 150573

Run Time (s) 1281;75 per swad

Mix 2 Cost 487840 601914
Run Time (s) 3366;280.5 per swad

Mix 1; Smaller Cost 98040 150573
Pack/Swad Sizes Run Time (s) 202;7.8 per swad

and can be solved in parallel on different computers. In
general, the bottom-level VM-to-PM assignment subproblems
dominate in computation time. To get a solution within a
prescribed time budget, the size of each such subproblem
needs to be limited, which can be achieved by sufficient
decomposition. For instance, the third experiment is mix 1
with smaller pack/swad sizes (20 VMs or PMs); both the total
and per-swad running times are drastic reduced. Finally, the
heuristic algorithm has fairly long running times, hundreds
of seconds per run. It is not sufficiently scalable for larger
problems, whereas the decomposition algorithm is.

REFERENCES

[1] C.-S. Li, B. L. Brech, S. Crowder, D. M. Dias, H. Franke, M. Hogstrom,
D. Lindquist, G. Pacifici, G. Kandiraju, H. Franke, M. D. Williams,
M. Steinder, and S. M. Black, “Software defined environments: An
introduction,” IBM Journal of Research and Development, vol. 58, no.
2/3, March/May 2014.

[2] G. Kandiraju, H. Franke, M. D. Williams, M. Steinder, and S. M.
Black, “Software defined infrastructures,” IBM Journal of Research and
Development, vol. 58, no. 2/3, March/May 2014.

[3] W. C. Arnold, D. J. Arroyo, W. Segmuller, M. Spreitzer, M. Steinder, and
A. N. Tantawi, “Workload orchestration and optimization for software
defined environments,” IBM Journal of Research and Development,
vol. 58, no. 2/3, March/May 2014.

[4] J. Xu and J. Fortes, “Multi-objective virtual machine placement in
virtualized data center environments,” Proceedings of IEEE Online
Green Communications Conference (GreenCom), 2010.

[5] M. Wang, X. Meng, and L. Zhang, “Consolidating virtual machines
with dynamic bandwidth demand in data centers,” Proceedings of IEEE
INFOCOM, pp. 71–75, 2011.

[6] J. Xu and J. Fortes, “Optimization in autonomic data center resource and
performance management,” Technical Report, Department of Electrical
and Computer Engineering, University of Florida, 2012.

[7] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang, and K. Yoshihira,
“Effective VM sizing in virtualized data centers,” Proc. of IFIP/IEEE
Integrated Network Management (IM), 2011.

[8] Y. Ajiro and A. Tanaka, “Improving packing algorithms for server
consolidation,” Proc. of Computer Measurement Group Conference
(CMG), 2007.

[9] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “VMPlanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Computer Networks, vol. 57,
no. 1, pp. 179–196, 2013.

[10] “Apache CloudStack Project,” http://cloudstack.org/.
[11] “OpenStack Project,” http://www.openstack.org/.
[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of

data center networks with traffic-aware virtual machine placement,” in
Proceedings of IEEE INFOCOM, 2010.

[13] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” Proc. of ACM SIGCOMM, 2008.

[14] Y. Xia, M. Tsugawa, J. A. B. Fortes, and S. Chen, “Hierarchical
mixed integer programming for pack-to-swad placement in datacenters:
Concept and analysis,” In Preparation, http://www.cise.ufl.edu/%7Eyx1/
publications/cloudlong.pdf.

[15] Amazon, “Amazon EC2 Instances,” http://aws.amazon.com/ec2/
instance-types/.

222


