
Lightweight Flow Distribution for Collaborative
Traffic Measurement in Software Defined

Networks
Hongli Xu1,2 Shigang Chen3 Qianpiao Ma1,2 Liusheng Huang1,2

Email: xuhongli@ustc.edu.cn, sgchen@cise.ufl.edu, maqiu@mail.ustc.edu.cn, lshuang@ustc.edu.cn
1School of Computer Science and Technology, University of Science and Technology of China, China

2Suzhou Institute for Advanced Study, University of Science and Technology of China, China
3Department of Computer & Information of Science & Engineering, University of Florida, USA

Abstract—Many important functions in software defined
networks can benefit from fine-grained traffic measurement
at flow level. Because TCAM-based flow entries only provide
aggregate traffic statistics, prior research has suggested to
perform flow-level measurement in SRAM and balance the
measurement load across the network through collaborative
traffic measurement. The key problem of collaborative mea-
surement is to provide a mechanism to distribute flows to
switches such that each switch can identify its subset of flows
to measure. We observe that the prior work has focused on
optimizing flow distribution among switches, but overlooked
their high space and per-packet processing overhead intro-
duced to the data plane, which becomes a serious issue in large
SDN systems. In this paper, we propose a new lightweight
solution to the flow distribution problem. It follows the design
principle of alleviating complexity of the data plane by mini-
mizing the data-plane space and processing overhead. At the
control plane, we formulate flow distribution as optimization
problems under two scenarios that implement collaborative
measurement by edge switches only and by edge/core switches
together, respectively. Our extensive simulations demonstrate
that, comparing with the best existing work, the proposed
lightweight solution achieves a comparable performance in
terms of load balancing, while drastically reducing both
space overhead and per-packet processing overhead, making
it more practical in real-world systems that are sensitive to
the additional overhead introduced by flow distribution.

Index Terms—Flow Distribution, Collaborative Traffic Mea-
surement, Software Defined Networks, Overhead.

I. INTRODUCTION

Software defined networking (SDN) makes network
management flexible and improves network resource uti-
lization compared to traditional non-SDN networks [1]
[2]. Many essential network functions rely on fine-grained
traffic measurement at flow level to take full advantage
what SDN can potentially offer in load balancing [3],
attack/anomoly detection [4] [5], and traffic engineering [6].
For a few examples, data centers implement dynamic flow
scheduling using flow-level traffic statistics [7]; SDN path
selection uses traffic measurement to find large flows for
re-routing [8] [9]; flow-level traffic statistics can help in
detecting network intrusions and identifying the attackers
[10]; DDoS detection can benefit from analyzing changes or

entropy in flow traffic [5]; for stealthy attacks, fluctuations
in flow distribution including the small flows are also
important clues [11].

Although the TCAM-based flow table in OpenFlow
[12] contains statistic counters for traffic measurement,
the table size is very limited, e.g., 1,500 entries on HP
5406zl switches [7] and 4,000 entries on Broadcom Trident
switches [13], due to TCAM’s cost and power consumption.
To accommodate a large number of flows (e.g., 106 flows in
a moderate-sized data center [14]), wildcard rules are rou-
tinely used in the flow table, each of them matching many
individual flows. Consequently, the counters only provide
aggregate statistics of all matching flows, instead of individ-
ual flows. To circumvent this problem, researchers propose
to perform flow-level traffic measurement in SRAM [15].

However, SRAM is also limited on commodity SDN
switches. Even for the high-end Trinder2 switch with a
link rate of 960GB per second, its SRAM size is only
16MB, which is shared by all online network functions for
routing, management, performance and security purposes
[16]. For example, a forwarding information database (FIB)
alone takes 10MB in practical use [17]. Hence, the SRAM
memory available for traffic measurement will be small.
Moreover, to keep up with the line rate, the per-packet
processing overhead for traffic measurement must also
be minimized in order to avoid introducing a throughput
bottleneck.

One promising approach to relieve the space and pro-
cessing overhead constraints is called collaborative traffic
measurement, with the observation that each flow may
traverse multiple switches on its routing path and its
measurement can be performed by any one of them. In
fact, we do not have to require each switch to measure all
its flows because otherwise flows with multiple hops will
be unnecessarily measured multiple times. By assigning
each flow to a single switch for measurement, every switch
only measures a subset of passing flows, which reduces
not only memory requirement but also processing overhead.
The key problem for collaborative traffic measurement is
called flow distribution that is to distribute all flows among

11108

the switches so that each flow is measured only once and
a certain global performance criteria is optimized, e.g., a
possible load balance goal is to minimize the maximum
number of flows measured by any switch.

Any solution to the problem of flow distribution consists
of a control-plane component and a data-plane component.
The former runs by the SDN controller to decide how to
distribute flows to switches, while the latter runs by each
individual switch to decide, on a per-packet basis, whether
packets should be recorded locally. The switch may record
the selected packets in a compact data structure called
sketches as does in [7] [9]. There is a vast literature on
sketches for traffic measurement, which is able to provide
per-flow statistics in tight memory averaging 1 bit per
flow or less [18] [19] [20] [21]. We stress that traffic
measurement itself is not the subject of this paper. Our
focus is on the problem of flow distribution.

The prior work [22] on flow distribution emphasizes
on balancing the number of flows measured by differ-
ent switches across the network, while lacking adequate
consideration on the additional space overhead and per-
packet processing overhead introduced by the function of
flow distribution to the data plane, which we believe is
critical to the viability of collaborative traffic measurement.
cSamp [22] requires every switch v to maintain an auxiliary
table to support flow distribution, where there is one entry
for each pair of ingress/egress routers (or edge switches)
as long as v sits on a routing path between the two. In
a data center with a Fat-tree topology, a top-level core
switch sits between most edge-switch pairs. Hence, its
table size will be O(n2) where n is the number of edge
switches. That means millions of table entries if n is in
thousands. In addition, the lookup of this table causes
significant extra per-packet processing overhead. A more
recent work called DCM [23] requires each switch to store
two Bloom filters (produced by the controller), with the
first one encoding the set of flows to be measured locally
and the second one helping remove false positives from
the first filter. The memory overhead is significant because
it takes a Bloom filter 10 bits per flow on average to
ensure a false positive ratio less than 1%, considering that
sketch-based traffic measurement itself may take 1 bit per
flow on average [18] [19]. More importantly, the lookup of
each Bloom filter takes k hash operations and k memory
accesses, where k is 7 for an optimal Bloom filter with
1% false positive ratio. This is again much larger than the
overhead of sketch-based traffic measurement [20] [21],
for which the function of flow distribution serves as a
pre-processing step (determining which packets to record).
Therefore, lightweight flow distribution that minimizes its
own space/processing overhead remains an open problem
in collaborative traffic measurement.

Following the general principle of alleviating complexity
of the data plane in SDN design, we explore a new
approach for lightweight flow distribution that minimizes
the memory/space overhead on each switch to a single

sampling probability value p. The processing overhead is at
most one hash operation per packet to implement sampling
if the packet is not recorded by one of the preceding
switches on the routing path — if the packet is recorded
earlier, the hash operation will not be performed. The
controller will decide the optimal sampling probabilities of
all switches in two implementation scenarios. In the first
scenario, we push the task of traffic measurement away
from core switches to edge switches. By distributing flows
among all ingress/egress switches, we optimally balance
the load of traffic measurement among them. In the second
scenario, we consider collaborative traffic measurement
among all (core and edge) switches as the prior art [22]
[23] does. While a single sampling probability per switch
is a limiting factor in our flow distribution formulation,
we propose an iterative optimization approach to overcome
the constraints imposed by the traffic statistics available
from the switches. We compare our lightweight solution
to the existing works [22] [23] and demonstrate that it
achieves a slightly worse but comparable performance in
terms of load balancing, while drastically reducing space
overhead and per-packet processing overhead, which makes
our new solution more practical in real-world systems that
are sensitive to the additional space/processing overhead
introduced by flow distribution to the data plane.

The rest of this paper is organized as follows. Section
II introduces the network/flow models and problem state-
ment. Section III presents the lightweight flow distribution
framework. We design efficient probability assignment for
edge switches in Section IV. Probability assignment among
edge/core switches is studied in Section V. Simulation
results are reported in Section VI. We conclude the paper
in Section VII.

II. PROBLEM STATEMENT

A typical SDN consists of a logically-centralized con-
troller and a set of switches, V = {v1, ..., vn}, with
n = |V|. The controller is responsible for managing
the whole network, including route selection/update and
flow distribution for collaborative traffic measurement. The
switches, comprising the data plane, are responsible for
packet forwarding and actual traffic measurement. For
convenience, Vi, Ve, and Vd denote the sets of ingress
switches, egress switches, and edge switches, respectively.

Network traffic is modeled as flows. Each flow is com-
posed of packets that share a common flow identifier, con-
sisting of several selected fields from the packet header. A
typical flow identifier is the 5-element tuple, containing the
fields of source address, source port, protocol, destination
address and destination port.

The problem of flow distribution is for the controller to
decide how to distribute flows to switches for measurement
and for the switches to perform the traffic measurement,
such that each flow is measured by one and only one switch
and the measurement load is balanced among switches. In
particular, we want to minimize the maximum number of

21109

flows that are measured by any switch. A key desirable
property for a flow distribution solution is that it introduces
minimum space and processing overhead to the switches.

The controller makes its decision on flow distribution and
download such a decision (in a form that differs in each
prior solution [22] [23] and ours) to switches periodically.
The controller has full knowledge about the routing struc-
ture and how flows will be forwarded in the network [3]
[24]. We also assume that the following information about
recent network traffic is available to the controller [25] [26]
[27]: the number Sij of flows from any ingress switch vi to
any egress switch vj , which can be measured at the ingress
switches by counting the first packets (e.g., SYN packets)
of its flows. Note that any edge switch in a data center
serves both as an ingress switch and as an egress switch.

III. LIGHTWEIGHT FLOW DISTRIBUTION FOR
COLLABORATIVE TRAFFIC MEASUREMENT

As a typical solution of flow distribution, cSamp [22]
maintains a hash range table for ingress-egress switch
pairs, thus requiring a massive SRAM resource overhead.
Moreover, DCM needs to maintain two bloom filters, whose
memory sizes depend on the number of flows passing
through this switch. To be more scalable, each switch vi
will be assigned a sampling probability, denoted as pi, in
our framework. To support the efficient flow distribution,
adapting the traditional packet processing requires some
extra lightweight operations.

Packet
State=1? N Egress

Switch?

Y

Traffic Measurement, state=1

Y

N

Y

Packet Forwarding

N

Hash <pi?

Fig. 1: Illustration of real-time packet processing for flow distri-
bution

We maintain a state bit on each packet head, initially as
0, which indicates that this packet has not been measured.
The real-time packet processing framework is illustrated in
Fig. 1. Specifically, on arriving at switch vi, there are two
cases:

1) If this packet has not been measured, or its state bit
is 0, there are two sub-cases.
a) If switch vi is the egress switch of this packet, it

will measure this packet.
b) Otherwise, the switch will generate a hash value ω,

with 0 ≤ ω < 1, using its 5-element tuple. If ω is
less than its assigned probability pi, switch vi will
measure this packet and modify its state to 1.

2) If the state bit is 1, it is no need to measure this packet.
Under our flow distribution framework, each flow will

be distributed to a switch along its routing path. Note that

it will not significantly increase the overhead by adding
some state information to the packet header, which has been
widely used in various applications, such as middlebox
routing [28] and segment routing [29].

By Fig. 1, sampling probability plays an important role
for measurement load. In the following, we will assign
the optimal sampling probabilities for all switches in two
different scenarios. First, traffic measurement is performed
only on ingress/egress switches (Section IV). Second, we
consider collaborative traffic measurement among all (core
and edge) switches (Section V).

IV. TRAFFIC MEASUREMENT ON INGRESS/EGRESS
SWITCHES

In many practical topologies, e.g., VL2 [30] or HyperX
[31], (almost) all switches will act as ingress and/or egress
switches. Thus, this section considers how to efficiently
distribute flows only to ingress and egress switches through
sampling probability assignment.

V3 V4 V5

V1 V2

36 48 36

4
16

4

32 32

32

24 96

Fig. 2: A Network Example of Flow Distribution

TABLE I: Comparison of Measurement Load on Switches

Solutions v1 v2 v3 v4 v5 Max.
IO 24 96 0 0 0 96
EO 0 0 36 48 36 48

I-0.5 12 48 18 24 18 48
Ours 24 24 24 24 24 24

A. Three Baseline Solutions and Observations

To motivate our design, we first introduce three baseline
solutions, and illustrate them using a network example. As
shown in Fig. 2, an SDN network consists of a switch set,
including two ingress switches {v1, v2} and three egress
switches {v3, v4, v5}. The value attached with each switch
denotes the number of flows through this switch. The
number of flows passing from an ingress switch to an
egress switch is associated with each dotted line. We use
the number of measured flows as its measurement load on
a switch. The comparison of measurement load on switches
by different solutions is given in Table I. When traffic is
measured on ingress or/and egress switches, according to
our proposed flow distribution framework in Fig. 1, we
only need to assign sampling probabilities for those ingress
switches.

31110

The first solution, called Ingress-Only or IO, is that all
traffic (or flows) will be measured by ingress switches.
Under this scenario, p1 = p2 = 1. As a result, the
measurement loads of v1 and v2 are 24 and 96, respectively.

The second solution, called Egress-Only or EO, means
that all traffic will be measured by egress switches. Under
this scenario, p1 = p2 = 0. Then, the measurement loads
on three egress switches v3, v4, and v5 are 36, 48, and 36,
respectively.

Different from the above two solutions, the following
two solutions belong to collaborative traffic measurement,
which distributes flows to both ingress and egress switches.
For a natural way, each ingress switch is assigned with
a sampling probability of 0.5, i.e., p1 = p2 = 0.5. For
convenience, this solution is denoted as I-0.5. Specifically,
ingress switch v2 measures 48 flows, while other 48 flows
will be measured by three egress switches. Switch v4 will
measure 24 flows (including 8 flows from v1 and 16 flows
from v2). Consequently, the maximum measurement load
is 48 (on switch v2).

The fourth solution is that we assign sampling proba-
bilities p1 = 1 and p2 = 0.25 for switches v1 and v2,
respectively. As a result, the measurement load on each
switch is 24. Specifically, all flows arriving at v1 will be
measured by this ingress switch. So, each egress switch just
measures the flows from v2. Then, the measurement load
of each egress switch is 32 · (1− 0.25) = 24.

From this example, we can make one important con-
clusion. Efficient flow distribution helps to balance the
measurement load among all switches, provided with ap-
propriate sampling probability assignment for switches
(e.g., the fourth solution). On the contrary, the maximum
measurement load may not be improved without proper
probability assignment (e.g., the third solution I-0.5 for
this example). Thus, it is of great importance to design
efficient sampling probability assignment for switches so
as to minimize the maximum measurement load among all
switches.

B. Probability Assignment for Ingress Switches (PAIS)

To efficiently distribute flows among ingress and egress
switches, we will assign a sampling probability, denoted as
pi, for an ingress switch vi ∈ Vi. Let Sij be the number
of flows from ingress switch vi to egress switch vj from
measured traffic matrix [26] [27], which is also known to
the controller. We consider the measurement load of edge
switch vi ∈ Vd with two cases:

1) On arriving at an ingress switch vi, each flow will be
measured with probability pi. The number of flows,
whose ingress switch is vi, is denoted as Ii, which can
be derived as Ii =

∑
vj∈V\{vi} S

i
j . Thus, the number

of measured flows on vi, as an ingress switch, is pi ·Ii.
2) On arriving at an egress switch vi, this packet/flow will

be measured by vi, if it has not been measured by one
of the preceding switches on the routing path. From
the view of each ingress switch vj , the measurement

load on an egress switch vi is (1−pj) ·Sji . As a result,
the expected total number of measured flows on vi, as
an egress switch, is

∑
vj∈V\{vi} (1− pj) · S

j
i .

Hence, the measurement load on an edge switch vi ∈ Vd

is li = pi ·Ii+
∑

vj∈V\{vi} (1− pj) · S
j
i . We formulate the

PAIS problem as follows:

min max{li, vi ∈ Vd}

S.t.

Ii =

∑
vj∈V\{vi} S

i
j , ∀vi ∈ Vi

li = pi · Ii +
∑

vj∈V\{vi} (1− pj) · Sj
i , ∀vi ∈ V

d

0 ≤ pi ≤ 1, ∀vi ∈ Vi

(1)
The first set of equations computes the number of mea-

sured flows whose ingress switch is vi. The second set
of equations respects the expected measurement load on
each switch. Our objective is to minimize the maximum
number of measured flows among all edge switches, that
is, min max{li, vi ∈ Vd}.

Since Eq. (1) is a linear program, we can optimally
solve it in polynomial time using the linear program solver,
e.g., pulp [32]. The solution for Eq. (1) determines a
sampling probability for each ingress switch. To cope with
traffic dynamics, we divide the time into fixed-size periods
(e.g., 5 min). At the start of each period, the controller
updates the sampling probabilities of ingress switches.
Since each switch only maintains one probability, its update
(or control) overhead is much smaller compared with that
for both cSamp [22] and DCM [23].

V. NETWORK-WIDE TRAFFIC MEASUREMENT

In some structured networks, e.g., Fat-tree [33], some
core switches act neither ingress switches nor egress
switches. Thus, to further balance the measurement load
among switches, this section considers a more general
version, in which traffic will be measured by any switch
along its routing path. We will define the network-wide
switch probability assignment (NSPA) problem, and present
the algorithm for NSPA.

A. Network-wide Switch Probability Assignment (NSPA)

Similar to PAIS, we consider the measurement load of
switch vi ∈ V , consisting of two components:

1) Switch vi is the non-egress switch of this packet.
According to Fig. 1, if this packet has been measured
(or the state is 1), it will not be measured by switch
vi. Let Qi

j denote the number of unmeasured flows,
whose egress switch is vj , through switch vi. The mea-
surement load on switch vi, as a non-egress switch, is∑

vj∈V\{vi} pi · Q
i

j .
2) Otherwise, on arriving at the egress switch vi, if this

packet has not been measured, it will be measured
by vi. The number of all flows, whose egress switch
is vi, is denoted as Ei, which can be derived as
Ei =

∑
vj∈V\{vi} S

j
i . Let Qj

i denote the number
of unmeasured flows, whose egress switch is vi,

41111

through switch vj . As a result, the total number of
measured flows on switch vi, as an egress switch, is
Ei −

∑
vj∈V\{vi} pj · Q

j

i .
Hence, the number of measured flows (or the measure-

ment load) on switch vi is expressed as li =
∑

vj∈V\{vi} pi·
Qi

j + Ei −
∑

vj∈V\{vi} pj · Q
j

i . How to derive the value of

variable Qi

j will be discussed in Section V-C. We formulate
the NSPA problem as follows:

min max{li, vi ∈ V}

S.t.

Ei =
∑

vj∈V\{vi} S
j
i , ∀vi ∈ V

li =
∑

vj∈V\{vi} pi · Q
i
j+

Ei −
∑

vj∈V\{vi} pj · Q
j
i , ∀vi ∈ V

Ei −
∑

vj∈V\{vi} pj · Q
j
i ≥ 0, ∀vi ∈ V

0 ≤ pi ≤ 1, ∀vi ∈ V

(2)

The first set of equations computes the number of flows
whose egress switch is vi. The second set of equations
respects the expected measurement load on each switch.
Since we only estimate the value of variable Qj

i (or Qi

j),
the third set of inequalities guarantees that the number of
measured flows on vi, as an egress switch, should not be
negative. The objective of NSPA is to balance the measure-
ment load, or minimize the maximum number of measured
flows, among all switches, that is, min max{li, vi ∈ V}.

V3V1 V2 V4

1/4 1/3 1/2 1/2

Fig. 3: Illustration of the NSPA problem. The sampling probability
of each switch is attached. Assume that 800 flows will be for-
warded from the ingress switch v1 to the egress switch v4. Under
this sampling probability assignment scenario, the measurement
load on each switch is 200.

B. An Example of NSPA

We give an example to illustrate the NSPA problem. In
Fig. 3, assume that 800 flows will be forwarded from the
ingress switch v1 to the egress switch v4, and the sampling
probability of each switch is attached. 800 flows will arrive
at switch v1. As its sampling probability p1 is 1

4 , v1 will
measure 800 × 1

4 = 200 flows. Consequently, there are
remaining 600 flow unmeasured, arriving at switch v2. As
the sampling probability of switch v2 is 1

3 , it will measure
600 × 1

3 = 200 flows too. Similarly, 400 unmeasured
flows will arrive at switch v3, which also measures 200
flows, for its sampling probability is 1

2 . All the remaining
200 unmeasured flows will be measured by switch v4.
As a result, the maximum measurement load among these
switches is 200.

C. Algorithm Description for NSPA

Since each switch may sit on different routing paths P
of many flows, and the measurement load of a switch is
relative with the probabilities of the preceding switches on

Algorithm 1 Network-Wide Probability Assignment
1: Step 1: Algorithm Initialization
2: for vi ∈ V do
3: for vj ∈ V\{vi} do
4: Qj

i =
∑

vi′∈V\{vi} α
j
i,i′ · Si

′

i

5: Qj

i = Q
j
i

6: Step 2: Assigning Sampling Probability
7: t = 1
8: while t ≤ m do
9: Solve Eq. (2), and the solution for sampling proba-

bility of switch vi is denoted as pi
10: for each ingress switch vk and egress switch vi do
11: Compute the number of flows unmeasured on

switch vj , as T j
i,k, by visiting all paths from vk

to vi
12: for vi ∈ V do
13: for vj ∈ V\{vi} do
14: Update variable Qj

i =
∑

vk∈V\{vi} T
j
i,k

15: t = t+ 1

each path in P , it becomes difficult to explicitly give the
closed form of variable Qj

i . Though Eq. (2) is a linear
program, we can not optimally solve it. In the following,
we propose an iterative optimization approach to assign
probabilities for all switches using the traffic statistics
available from the switches.

The algorithm consists of two main steps. In the first step,
we give an approximate value for each variable Qj

i . For
simplicity, we use Qj

i to estimate Qj

i , where Qj
i denotes the

number of flows, with egress switch vi, passing through vj .
Note that we can derive Qj

i by the applied routing strategy,
which is known to the controller. For example, if all the
flows follow the ECMP (or WCMP [34]) paths between
switches, the controller knows the fraction of flows on
switch vj from an ingress switch vi′ to an egress switch vi,
denoted as αj

i,i′ . As a result, Qj
i =

∑
vi′∈V\{vi} α

j
i,i′ · Si

′

i .
The second step consists of an iterative procedure. After

obtaining the estimation value of each variable Qj

i , we can
solve Eq. (2) in polynomial time. The solution for Eq. (2)
provides a sampling probability pi for each switch vi in
an SDN. Then, we update the estimation of each variable
Qj

i using the derived switches’ probabilities. Specifically,
given the number of passing flows through a path and the
sampling probabilities for switches on this path, we are
able to obtain the number of flows unmeasured on each
switch along this path. For each pair of ingress switch vk
and egress switch vi, we can determine the number of flows
unmeasured on each switch vj , denoted as T j

i,k, by visiting
multi-paths from switches vk to vi (Line 11). Based on
this, we also obtain the number of unmeasured flows, whose
egress switch is vi, through vj using the current probability
assignment, as the new estimation of variable Qj

i (Line 14).
The algorithm will terminate after a certain number (e.g.,

51112

m) of iterations. Our simulation results show that 3 itera-
tions are enough to assign efficient sampling probabilities
for switches. The algorithm is formally described in Alg.
1.

D. Discussion

In this paper, flow distribution is studied under the
scenario of collaborative traffic measurement to balance
the measurement load among all switches. In fact, flow
distribution can also be applied in other applications. For
example, in the middlebox-based SDN network [28] [35],
if a middlebox processes all passing flows, it may be
overloaded and increase the processing delay. Thus, the
controller usually expects to (1) handle all flows by the
middleboxes; and (2) balance the processing load among
these middleboxes. We can efficiently distribute each flow
to only one middlebox for processing using our proposed
flow distribution solutions, so that the processing load
balancing among these middleboxes can be achieved.

VI. PERFORMANCE EVALUATION

In this section, we first introduce the metrics and bench-
marks for performance comparison (Section VI-A). We then
evaluate our proposed algorithms by comparing with some
benchmarks through extensive simulations (Section VI-B).

A. Performance Metrics and Benchmarks

In this paper, we design lightweight flow distribution
solutions in an SDN so as to balance the measurement load
among different switches with minimum space/processing
overhead. Thus, we use the following four metrics in our
numerical evaluations: (1) the maximum measurement load
among all switches; (2) the maximum space overhead
for auxiliary information among all switches to support
flow distribution; (3) the average processing overhead per-
packet in flow distribution; (4) the running time. After
sampling probability assignment, we can determine the
number of flows measured by each switch, and use their
maximum one as the first metric. For the second metric,
we measure the space overhead for auxiliary information
to distribute flows by different algorithms. For example,
our proposed NSPA and PAIS solutions only maintain a
sampling probability for each switch. Different solutions
may perform different operations, e.g., hash operation,
memory access, packet-head reading/writing, etc., for flow
distribution. Note that memory access refers to operations
(e.g., lookup and update) on a memory list, e.g., a table of
hash ranges and a bloom filter. It is trivial to consider all
operations together, for different operations lead to various
processing overheads. By testing on our platform with CPU
3.7GHz and OVS version 2.5.3 [36], we find that average
processing overheads (e.g., about 10-30 CPU cycles) of
hash and memory access are usually more than that (e.g.,
about 1-5 CPU cycles) of packet-head reading/writing.
Thus, we analyze the average number of hash operations
and memory accesses per-packet in flow distribution. Since

our solutions only require a sampling probability on each
switch, the controller just updates a probability for each
switch periodically. Its control overhead is extremely low,
and we do not compare the control overhead of different
flow distribution solutions.

To evaluate the proposed flow distribution solutions, we
compare them with the most-related, state-of-the-art works
through extensive simulations. For traffic measurement
among edge/core switches, we choose cSamp [22] and
DCM [23], introduced in Section I, as two benchmarks.
Specifically, we set false positive ratio as 1% in DCM.
For traffic measurement among ingress and egress switches,
we compare PAIS with three benchmarks, IO, EO, and I-
0.5, respectively. These solutions have been explained in
Section IV-A.

TABLE II: Illustration of Memory Overhead from OVS [36]
Item Size Item Size

Destination IP 32b Hash Range 64b
Switch IP 32b - -

B. Simulation Evaluation

1) Simulation Settings: In the simulations, as running
examples, we select two typical and practical topologies
for data center networks. The first topology, called VL2
[30], contains 240 switches (including 200 edge switches,
20 aggregation switches, and 20 core switches) and 1000
terminals. In this topology, most switches (or 200 out of 240
switches) are ingress/egress switches. The second one is the
Fat-tree topology [33], which has been widely used in many
data center networks. The Fat-tree topology has in total
320 switches (including 128 edge switches, 128 aggregation
switches, and 64 core switches) and 1024 terminals. Only
those 128 edge switches (or about 40% of all switches)
are ingress/egress switches. By default, there contains 1M
flows on both topologies. For the flow size, the authors of
[7] have shown that less than 20% of the top-ranked flows
may occupy more than 80% of the total traffic. Thus, we
allocate the size for each flow according to this distribution.
Moreover, each flow contains 200 packets on average. In
the simulations, we adopt ECMP for flow routing. We
execute each simulation 100 times, and take the average
of the numerical results.

To make the comparison of space overhead more reason-
able, we give the space/memory overhead of each item in
Table II. Specifically, we adopt the memory overhead from
the OVS implementation [36]. For example, the memory
overhead for ingress switch IP is 32 bits, while that for
a hash range (including two float numbers) is 64 bits.
By Table II, the space overhead for each ingress-egress
switch entry in cSamp includes ingress switch IP (32 bits),
egress switch IP (32 bits) and its hash range (64 bits).
Thus, the space overhead for each ingress-egress switch
pair is 128 bits (or 16 Bytes). Though the space overhead

61113

 0

 5

 10

 15

 20

 25

 1 2 3 4 5

M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Iterations in NSPA

1M

600K

200K

Fig. 4: Maximum Measurement Load vs.
Number of Iterations on VL2

 0

 5

 10

 15

 20

 1 2 3 4 5

M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Iterations in NSPA

1M

600K

200K

Fig. 5: Maximum Measurement Load vs.
Number of Iterations on Fat-tree

 0

 5

 10

 15

 20

 1 2 3 4 5

R
u

n
n

in
g

 T
im

e
(s

)

Number of Iterations in NSPA

Fat-tree

VL2

Fig. 6: Running Times vs. Number of
Iterations in NSPA

 0

 2

 4

 6

 8

 10

 2 4 6 8 10M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Flows (×10
5
)

NSPA
DCM

cSamp

Fig. 7: Maximum Measurement Load
among Edge/Core Switches on VL2

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Flows (×10
5
)

NSPA
DCM

cSamp

Fig. 8: Maximum Measurement Load
among Edge/Core Switches on Fat-tree

Fig. 9: Space Overhead for Auxiliary
Information in Flow Distribution

can be reduced using encoding, it increases the per-packet
processing overhead.

2) Simulation Results: We run four groups of simu-
lations to check the effectiveness of the proposed flow
distribution algorithms through probability assignment.

The first set of three simulations observes the perfor-
mance (e.g., maximum measurement load and running
time) of our NSPA algorithm. Figs. 4 and 5 show the
maximum measurement load by changing the number of
iterations on VL2 and Fat-tree, respectively. With more
iterations, the algorithm can decrease the maximum mea-
surement load in the network through efficient sampling
probability assignment. However, the decreasing ratio is
much slower with more iterations in NSPA. Especially
for VL2, we find that the NSPA algorithm just requires
one iteration to achieve the measurement load balancing.
For the Fat-tree topology, three iterations are enough to
obtain a good probability assignment for measurement load
balancing. On the other hand, with more iterations, the
running time of the NSPA algorithm is linearly increasing,
as shown in Fig. 6. The running time on Fat-tree is more
than that on VL2, since the Fat-tree topology contains more
switches than VL2. To achieve a better trade-off between
measurement load balancing and running time, the NSPA
algorithm runs three iterations for both topologies in the
following simulations.

The second set of five simulations observes the per-
formance of flow distribution among core/edge switches.
Figs. 7 and 8 show that the maximum measurement load is
almost linearly increasing with more flows from 200K to
1M on both two topologies. Two figures show that the gap
of maximum measurement load among three algorithms
(i.e., cSamp, DCM and NSPA) is not more than 10%. In

other words, our proposed NSPA algorithm can achieve a
slightly (< 5% on average) worse performance in terms
of measurement load balancing compared with cSamp and
DCM. However, these two methods lead to high mem-
ory/space overhead and per-packet processing overhead
for flow distribution. Fig. 9 shows that cSamp requires a
massive space overhead for auxiliary information, while
our NSPA algorithm only requires 32 bits to record a
sampling probability on each switch. Specifically, cSamp,
DCM and NSPA require the space overheads of 2.56Mb,
0.48Mb, and 32b, respectively, on VL2. NSPA reduces the
space overhead almost 100% compared with other two
solutions. Figs. 10 and 11 show the per-packet process-
ing overheads of different algorithms on VL2 and Fat-
tree, respectively. Per-packet processing overhead mainly
includes hash operations and memory accesses. By Fig. 10,
we observe that cSamp and DCM require the numbers of
per-packet hash operations 2.3 and 2.8 times as NSPA on
VL2. Similarly, the numbers of per-packet hash operations
of cSamp and DCM are 2.2 and 2.7 times as that of NSPA
on Fat-tree. Moreover, cSamp and DCM require 2.7 and
7 memory accesses per-packet while our proposed NSPA
algorithm needs no memory access. By Figs. 9-11, NSPA
is a lightweight flow distribution solution compared with
both cSamp and DCM .

The third set of two simulations observes the maximum
measurement load among ingress and egress switches for
traffic measurement by changing the number of flows from
200K to 1M. Fig. 12 shows that the maximum measurement
load is almost linearly increasing with more flows in the
network for all four algorithms. The increasing ratio of both
I-0.5 and PAIS is slower than that of IO and EO, which
shows efficiency of collaborative traffic measurement on

71114

 0

 2

 4

 6

 8

 10

Hash Operation Memory Access

P
er

-p
ac

k
et

 P
ro

ce
ss

in
g

 O
v

er
h

ea
d

NSPA
cSamp
DCM

2.4

0

5.8

2.8

7 7

Fig. 10: Per-packet Processing Overhead
on VL2

 0

 2

 4

 6

 8

 10

Hash Operation Memory Access

P
er

-p
ac

k
et

 P
ro

ce
ss

in
g

 O
v

er
h

ea
d

NSPA
cSamp
DCM

2.6

0

5.9

2.9

7 7

Fig. 11: Per-packet Processing Overhead
on Fat-tree

 0

 5

 10

 15

 20

 2 4 6 8 10M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Flows (×10
5
)

EO

IO

I-0.5

PAIS

Fig. 12: Maximum Measurement Load
of Edge Switches on VL2

 0

 5

 10

 15

 20

 25

 30

 35

 2 4 6 8 10M
a
x

.M
e
a
su

re
m

e
n

t
L

o
a
d

 (
×103

)

Number of Flows (×10
5
)

EO

IO

I-0.5

PAIS

Fig. 13: Maximum Measurement Load
of Edge Switches on Fat-tree

 0

 20

 40

 60

 80

 2 4 6 8 10

R
u

n
n

in
g

 T
im

e
(s

)

Number of Flows (×10
5
)

cSamp
NSPA
PAIS

Fig. 14: Running Time vs. Number of
Flows on VL2

 0

 20

 40

 60

 80

 2 4 6 8 10

R
u

n
n

in
g

 T
im

e
(s

)

Number of Flows (×10
5
)

cSamp
NSPA
PAIS

Fig. 15: Running Time vs. Number of
Flows on Fat-tree

both two topologies. Meanwhile, PAIS significantly reduces
the maximum measurement load compared with I-0.5,
which shows high efficiency of our proposed probability as-
signment solution. For example, when there are 800K flows
in the VL2 topology, the maximum measurement loads of
IO, EO, I-0.5, and PAIS are 16.0K, 16.0K, 12.9K, and 8.6K,
respectively, by Fig. 12. While in the Fat-tree topology, the
maximum measurement loads of IO, EO, I-0.5, and PAIS
are 25.7K, 25.7K, 22.1K, and 13.3K, respectively. In other
words, PAIS reduces the maximum measurement load by
47.2%, 47.2%, and 36.6% compared with IO, EO, and I-
0.5, respectively. By analyzing these algorithms, since IO
(or EO) deterministically measures flows on ingress (or
egress) switches, hash operation and memory access can
be avoided. Moreover, both I-0.5 and PAIS require only
one hash operation per-packet for flow distribution. Thus,
the additional overhead of these algorithms is extremely
low.

By Figs. 7-8 and 12-13, we observe that NSPA can
achieve better measurement load balancing than PAIS.
That is because NSPA performs traffic measurement on
edge/core switches, while PAIS performs traffic measure-
ment only on edge switches. In VL2, the gap of maximum
measurement load between NSPA and PAIS is about 15-
20%, for 200 out of 240 switches will measure traffic. Thus,
PAIS can perform well in those topologies, in which most
switches are edge switches like VL2.

The fourth set of two simulations observes the running
time of probability (or range) assignment algorithms, in-
cluding cSamp, PAIS and NSPA. Figs. 14 and 15 show
that the running time of cSamp is much more than that
of both PAIS and NSPA. That’s because cSamp needs
to solve a linear program with much more variables for

determining the hash range of each edge switch pair, while
both PAIS and NSPA solve the linear program only with n
variables, where n is the number of switches in an SDN,
for determining switches’ probabilities. Specifically, the
running times of both PAIS and NSPA are only about 1/20-
1/6 times as that of cSamp, which shows high scalability
of our algorithms for flow distribution.

From the simulation results in Figs. 4-15, we can make
the following three conclusions. First, by Figs. 7-11, our
NSPA solution can achieve a slightly worse but comparable
performance (< 5% on average) in terms of measurement
load balancing, while drastically reducing space overhead
and per-packet processing overhead, which makes our
solution more practical in applications. Second, by 12-13,
efficient probability assignment for ingress switches helps
to balance the measurement load among all edge switches.
For example, PAIS reduces the maximum measurement
load by 47.2%, 47.2%, and 36.6% compared with IO, EO,
and I-0.5, respectively. Third, Figs. 14 and 15 show that
both PAIS and NSPA can achieve lower time complexity
compared to cSamp.

VII. CONCLUSION

Flow distribution is a key problem for collaborative traf-
fic measurement to balance the measurement load. We have
proposed a lightweight flow distribution framework, and
designed several solutions for switch sampling probability
assignment. Our evaluations have demonstrated that the
proposed solutions can achieve much lower space overhead
and per-packet processing overhead, while achieving almost
measurement load balancing, compared with the best exist-
ing works. In the future, we will further study the impact of
traffic dynamics on measurement load, and implement the

81115

proposed solutions on the SDN platform. Moreover, some
network metrics, such as end-to-end delay and throughput,
can only be measured by involving multiple switches. Thus,
we will also study a more general problem, in which each
flow will be measured by a given number (e.g., 1 or 2) of
switches, for measurement load balance.

ACKNOWLEDGEMENT

This search of Xu, Ma and Huang is supported by the Na-
tional Natural Science Foundation of China (NSFC) under
Grant 61822210, Grant U1709217, Grant 61472383, Grant
61728207, and Grant 61472385; NSF of Jiangsu in China
under No. BK20161257; by Anhui Initiative in Quantum
Information Technologies under No. AHY150300; and also
by Guangdong Province Key Laboratory of Popular High
Performance Computers 2017B030314073. The research of
Chen is supported by NSF under No. NSF CNS-1719222.

REFERENCES

[1] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nanduri,
and R. Wattenhofer, “Achieving high utilization with software-
driven wan,” in ACM SIGCOMM Computer Communication Review,
vol. 43, no. 4. ACM, 2013, pp. 15–26.

[2] H. Xu, X.-Y. Li, L. Huang, H. Deng, H. Huang, and H. Wang,
“Incremental deployment and throughput maximization routing for a
hybrid sdn,” IEEE/ACM Transactions on Networking (TON), vol. 25,
no. 3, pp. 1861–1875, 2017.

[3] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu et al., “B4: Experience
with a globally-deployed software defined wan,” in ACM SIGCOMM
Computer Communication Review, vol. 43, no. 4. ACM, 2013, pp.
3–14.

[4] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing network-wide
traffic anomalies,” in ACM SIGCOMM Computer Communication
Review, vol. 34, no. 4. ACM, 2004, pp. 219–230.

[5] Q. Yan, F. R. Yu, Q. Gong, and J. Li, “Software-defined net-
working (sdn) and distributed denial of service (ddos) attacks in
cloud computing environments: A survey, some research issues, and
challenges,” IEEE Communications Surveys & Tutorials, vol. 18,
no. 1, pp. 602–622, 2016.

[6] S. Agarwal, M. Kodialam, and T. Lakshman, “Traffic engineering in
software defined networks,” in IEEE INFOCOM, 2013, pp. 2211–
2219.

[7] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee, “Devoflow: Scaling flow management for high-
performance networks,” in ACM SIGCOMM Computer Communi-
cation Review, vol. 41, no. 4. ACM, 2011, pp. 254–265.

[8] A. Wang, Y. Guo, F. Hao, T. Lakshman, and S. Chen, “Scotch: Elas-
tically scaling up sdn control-plane using vswitch based overlay,” in
Proceedings of the 10th CoNEXT. ACM, 2014, pp. 403–414.

[9] H. Xu, H. Huang, S. Chen, and G. Zhao, “Scalable software-
defined networking through hybrid switching,” in IEEE Conference
on Computer Communications (INFOCOM). IEEE, 2017, pp. 1–9.

[10] T. Xing, Z. Xiong, D. Huang, and D. Medhi, “Sdnips: Enabling
software-defined networking based intrusion prevention system in
clouds,” in Network and Service Management (CNSM), 2014 10th
International Conference on. IEEE, 2014, pp. 308–311.

[11] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “Ddos attack protection
in the era of cloud computing and software-defined networking,”
Computer Networks, vol. 81, pp. 308–319, 2015.

[12] O. S. Specification-version, “1.5.0,” 2015.
[13] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter, “Past:

Scalable ethernet for data centers,” in Proceedings of the 8th
international conference on Emerging networking experiments and
technologies. ACM, 2012, pp. 49–60.

[14] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken,
“The nature of data center traffic: measurements & analysis,” in
Proceedings of the 9th ACM SIGCOMM conference on Internet
measurement conference. ACM, 2009, pp. 202–208.

[15] T. Li, S. Chen, and Y. Ling, “Fast and compact per-flow traffic
measurement through randomized counter sharing,” Proc. of IEEE
INFOCOM, pp. 1799–1807, April 2011.

[16] “Resource monitoring usage computation overview,”
https://www.juniper.net/documentation/en US/junos/topics/concept/
resource-monitoring-usage-calculation.html.

[17] J. Scudder, “Routing/addressing problem solution space,”
in 2009-07-281. http..//www.arin.net/meetings/minutes/ARIN
XX/PDF/wednesday/SolutionSpace Scudder. pdf, 2007.

[18] G. Cormode and S. Muthukrishnan, “An improved data stream
summary: the count-min sketch and its applications,” Journal of
Algorithms, vol. 55, no. 1, pp. 58–75, 2005.

[19] Q. Xiao, S. Chen, M. Chen, and Y. Ling, “Hyper-compact virtual
estimators for big network data based on register sharing,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 43, no. 1.
ACM, 2015, pp. 417–428.

[20] Q. Xiao, Y. Zhou, and S. Chen, “Better with fewer bits: Improving
the performance of cardinality estimation of large data streams,” in
INFOCOM 2017-IEEE Conference on Computer Communications,
IEEE. IEEE, 2017, pp. 1–9.

[21] M. Chen, S. Chen, and Z. Cai, “Counter tree: A scalable counter
architecture for per-flow traffic measurement,” IEEE/ACM Transac-
tions on Networking (TON), vol. 25, no. 2, pp. 1249–1262, 2017.

[22] V. Sekar, M. K. Reiter, W. Willinger, H. Zhang, R. R. Kompella,
and D. G. Andersen, “csamp: A system for network-wide flow
monitoring.” in NSDI, vol. 8, 2008, pp. 233–246.

[23] Y. Yu, C. Qian, and X. Li, “Distributed and collaborative traffic
monitoring in software defined networks,” in Proceedings of the third
workshop on HotSDN. ACM, 2014, pp. 85–90.

[24] H. Xu, Z. Yu, C. Qian, X.-Y. Li, Z. Liu, and L. Huang, “Minimizing
flow statistics collection cost using wildcard-based requests in sdns,”
IEEE/ACM ToN, vol. 25, no. 6, pp. 3587–3601, 2017.

[25] V. Sekar, A. Gupta, M. K. Reiter, and H. Zhang, “Coordinated sam-
pling sans origin-destination identifiers: algorithms and analysis,” in
Communication Systems and Networks (COMSNETS), 2010 Second
International Conference on. IEEE, 2010, pp. 1–10.

[26] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, J. Rexford,
and F. True, “Deriving traffic demands for operational ip networks:
Methodology and experience,” IEEE/ACM Transactions on Network-
ing (ToN), vol. 9, no. 3, pp. 265–280, 2001.

[27] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast accu-
rate computation of large-scale ip traffic matrices from link loads,” in
ACM SIGMETRICS Performance Evaluation Review, vol. 31, no. 1.
ACM, 2003, pp. 206–217.

[28] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in ACM
SIGCOMM computer communication review, vol. 43, no. 4. ACM,
2013, pp. 27–38.

[29] R. Bhatia, F. Hao, M. Kodialam, and T. Lakshman, “Optimized
network traffic engineering using segment routing,” in Computer
Communications (INFOCOM). IEEE, 2015, pp. 657–665.

[30] N. Spring, R. Mahajan, and D. Wetherall, “Measuring isp topolo-
gies with rocketfuel,” ACM SIGCOMM Computer Communication
Review, vol. 32, no. 4, pp. 133–145, 2002.

[31] J. H. Ahn, N. Binkert, A. Davis, M. McLaren, and R. S. Schreiber,
“Hyperx: topology, routing, and packaging of efficient large-scale
networks,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis. ACM, 2009, p. 41.

[32] S. Mitchell, M. OSullivan, and I. Dunning, “Pulp: a lin-
ear programming toolkit for python,” The University of Auck-
land, Auckland, New Zealand, http://www. optimization-online.
org/DB FILE/2011/09/3178. pdf, 2011.

[33] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity
data center network architecture,” in ACM SIGCOMM Computer
Communication Review, vol. 38, no. 4. ACM, 2008, pp. 63–74.

[34] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh,
and A. Vahdat, “Wcmp: Weighted cost multipathing for improved
fairness in data centers,” in Proceedings of the Ninth European
Conference on Computer Systems. ACM, 2014, p. 5.

[35] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic mid-
dlebox actions using flowtags.” in NSDI, vol. 14, 2014, pp. 543–546.

[36] “Open vswitch,” http://openvswitch.org/.

91116

