
Load Balancing with Multiple Hash Functions in Peer-to-Peer Networks

Ye Xia, Shigang Chen and Vivekanand Korgaonkar
Computer and Information Science and Engineering Department

University of Florida
Gainesville, FL 32611-6120

Email: {yx1, sgchen, vk2}@cise.ufl.edu

Abstract

Peer-to-peer(P2P) networks have grown in popu-
larity in recent years. One of the typical applications
of P2P networks is file-sharing. Effective load balanc-
ing in such applications is important since the distribu-
tion of the number of requests for individual files can be
heavily skewed. In the basic design of these networks
each file is stored at a single node (i.e., server) which
will become a hotspot if the file is popular. In this paper,
we focus on the file-replication strategy that utilize mul-
tiple hash functions. Such a strategy typically sets aside
a large number of hash functions. When the demand for
a file exceeds the overall capacity of the current servers,
a previously unused hash function is used to obtain a
new server ID where the file will be replicated. The cen-
tral problems are how to choose an unused hash func-
tion when replicating a file and how to choose a used
hash function when requesting the file. Our solution to
the file-replication problem is to choose the unused hash
function with the smallest index, and our solution to the
file-request problem is to choose a used hash function
uniformly at random. Our main contribution is to de-
velop a set of distributed algorithms that implement the
above solutions and to evaluate their performance. In
particular, we analyze a random binary search algo-
rithm and random gap-removal algorithm.

1. Introduction

Peer-to-Peer (P2P) networks have been popularized
by file-sharing networks such as Napster [8], Gnutella
[4] and Kazaa [7]. Such a network is typically over-
layed on top of the IP network, or the Internet, where
each node of the network is typically an ordinary com-
puter and each (virtual) link is an end-to-end IP net-
work path. Virtually all existing P2P networks have
no specific requirement on how nodes are connected to

each other, and therefore, are said to be unstructured.
File searching in these networks requires either query
flooding or establishing file directories in advance. In
the past few years, researchers have proposed several
structured networks such as CAN [12], Chord [15], Pas-
try [13], Tapestry [17], and Plaxton-type networks [9].
These networks establish the routing tables at the time
of network construction or as nodes join or leave the
network, and hence, eliminating the need of a rout-
ing protocol. Each network implements a distributed
hash table (DHT), distributed in the sense that different
pieces of the table are stored separately across different
nodes. Publishing a file is to insert the file into the hash
table. More specifically, a hash function is first applied
to the file and the returned hash value becomes the file
ID. The file is then published at a node that owns the the
range of hash values containing the file ID. Searching
for a file or locating a node is to obtain the hash value
of the file or the node and to route a query with the hash
value as the destination address. Thus, the combination
of hashing and structured routing remove the need of
query flooding or establishing file directories.

In this paper, we consider a scenario of data re-
trieval or file download in a structured P2P network
with a large number of users. Large file-sharing P2P
networks (i) should have build-in resiliency or fault tol-
erance to combat the problem of single point of failure,
that is, when a node fails, files at the node will no longer
be accessible; (ii) should have load-balancing mecha-
nism to solve the hotspot problem, that is, all requests
for a particular file are directed to one node, causing
overload to that node or the network paths leading to
the node; and (iii) preferably, should replicate the file
content to increase the lifetime of each file.

The subject of the paper is on data or file replica-
tion techniques using multiple hash functions. The idea
is that, if k replicas of a file are needed, we will hash
the original file with (at least) k hash functions, obtain
k file IDs, and publish copies of the file in k nodes. One

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

of the challenges is that it is not easy to decide the num-
ber of hash functions needed, which is file dependent.
The strategy in this paper is to set aside a large number,
m, hash functions, large enough for the most demanded
file (e.g., m = 232). Without loss of generality, suppose
each hash function has a unique ID from 1, 2, ..., m.
How many of these functions are actually used depends
on the popularity of each particular file. We expect that
most of them are not used for the majority of the files.
The central problems are how a node chooses one of
the unused hash functions when replicating a file, or
one of the used hash functions when requesting a file.
Our solution to the former problem is to choose the first
unused hash function for file replication. As a result,
when k hash functions are being used, they must have
IDs 1, 2, ... k. Our solution to the latter problem is to
choose a used hash function uniformly at random. Our
main contribution is to develop a set of distributed algo-
rithms that implement the above solutions and to eval-
uate their performance. In particular, we analyze a ran-
dom binary search algorithm and random gap-removal
algorithm. We stress that using multiple hash functions
for load balancing has been proposed and discussed in
several previous studies (See Section 1.1.) The contri-
bution of this paper is, therefore, not in re-discovering
the idea of using multiple hash functions, but in solving
the technical problems related to the use and manage-
ment of the hash functions.

The mechanisms for hash function usage and man-
agement must be efficient and simple, and in addition,
must cope with the characteristics of the P2P network
we envision. For instance, the network is highly dy-
namic with nodes freely joining and leaving, node fail-
ure may be frequent, and the level of security may be
low. In such a highly dynamic network, it is difficult
to run complicated protocols or to maintain consistency
of state information kept at different nodes. Our so-
lution to the file replication problem relies on fully dis-
tributed algorithms with minimum protocol support and
without keeping any state information. We also make
an assumption that the files are much larger than pro-
tocol control messages. This implies that each node
can process much more request messages than the num-
ber of file downloads it can serve per unit of time. We
therefore make the distinction between access to a node
by the control messages and the actual selection of the
node as a downloading server.

1.1. Existing Load-Balancing Techniques

Relevant file-replication strategies that have been
proposed previously can be summarized into three cat-
egories: (i) caching, (ii) replication at neighbors or

nearby nodes, and (iii) replication with multiple hash
functions. A file can be cached at nodes along the route
of the publishing message when it is first published, or
more typically, at nodes along the routes of query mes-
sages when it is requested. In approach (ii) above, when
a node is overloaded with the requests to a file, it repli-
cates the file at its neighbors, i.e., the nodes to which
it has direct (virtual) links, or at nodes that are close
in the ID space such as the successors or neighbor’s
neighbors. CAN and Chord mainly use strategy (ii),
complemented by (i) and (iii). Tapestry uses strategy
(ii) and (iii). Following the suggestions in Chord, CFS
[2] replicates a file at k successors of the original server
and also caches the file on the search path. PAST [14],
which is a storage network built on Pastry, replicates a
file at k numerically closest nodes of the original server
and caches the file on the insertion and the search paths.
In the Plaxton network in [9], the replicas of a file are
placed at directly connected neighbors of the original
server and it is shown that the time to find the file is
minimized.

Each of these strategies has its advantages and dis-
advantages, and in real systems, they can be used in
combination to complement each other. Caching is of-
ten simple and can improve the response time of the
queries if done properly. However, a naive caching
algorithm cannot be a complete solution to the load-
balancing problem, because even a good cache hit ra-
tio, say 80%, still leaves 20% of the requests going to
the original server for the file, which may overload the
server many times beyond its capacity. Replication-at-
neighbors does not have the cache-miss problem, if the
file is replicated at all neighbors of the original server.
However, in most proposed structured P2P networks,
the load to each of the neighbors is not evenly distrib-
uted. In general, it is difficult to achieve truly balanced
load with this approach because the assignment of re-
quests to nodes depends on many factors and is not
tightly controlled. Furthermore, even after the nodal
hotspot is removed, the routing hotspot may still remain
because all requests are directed to some neighborhood
of the original server.

The main advantage of replication with hash func-
tions is that, with uniform hash functions, copies of the
file are uniformly distributed over the network, and with
uniform use of the hash functions, file requests are also
uniformly distributed over the set of replication servers
for the file. The disadvantage is that the response time
for queries is increased, as we will see later.

In [6], [1], and [10], file replication is performed
through multiple hash functions, which are organized
in a tree. This results in the cache servers being orga-
nized into a tree. One drawback of this approach is that

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

some servers retrieve and copy the file but do not serve
it, leading to inefficient use of resources. A more seri-
ous problem is that the servers in the tree are not equal.
Those at a higher level of the tree have more “power”
than those at a lower level. This opens the possibility
that one or a small number of malicious users attack
and compromise the most important servers in the tree
and bring down a large portion of the network.

All aforementioned approaches achieve the load-
balancing objective through file replication/caching.
There is a complementary approach suggested in [2]
and studied in [11] and [5] that monitors the server load
as a whole. Instead of replicating the files in a heav-
ily loaded server, some of its files are moved to lightly
loaded servers. This can be done by dividing a real
server into multiple virtual servers with different IDs.
Deleting a virtual server most likely will move its files
to other real servers.

2. Basic File Replication and Access Algo-
rithms

2.1. Replication with Multiple Hash Functions

Our goal is to replicate a popular file into multiple
copies and store them in different nodes, with the help
of m uniform hash functions, denoted by h1,h2, ...,hm,
where m is a large enough number, say 232, so that
no file will ever need more than m copies. It is not
hard to have a family of such functions. One way is
to use one hash function, h, but append a number i to
the argument of the hash function, where i = 1,2, ...,m.
For instance, if the argument is the file name, foo, then
h(f oo1),h(f oo2), ...,h(f oom) gives m hash values for
the file. The number i is called the “salt” value in [17].
For an in-depth discussion on creating proper hash func-
tions, the readers are referred to [6].

Since m is a very large number, we do not want
to replicate every file m times. Instead, we will take
the popularity-based file-replication strategy, which has
been proposed in previous studies such as [6] [16]. The
basic idea is that, every node keeps track the popular-
ity of each file and replicates the file when the num-
ber of requests exceeds a threshold. As a result, the
number of replicas produced depends on the popularity
of the file. The focus of the paper is on hash function
usage and management under this file-replication strat-
egy. One must consider two important questions. First,
when requesting a file, how does the client quickly find
a used hash function? Second, when the overall request
rate increases, threatening to overload the servers that
currently contain the file, how does the network repli-
cates the file to other severs, with the help of the unused

hash functions? This sub-section gives an answer to the
second question.

With respect to a fixed file, let us call a node (i.e.,
server) that already contains a copy of the file a filled
node. Otherwise, the node is called an empty node. In
the so-called push strategy, file replication is initiated by
the overloaded filled node: it attempts to push a copy of
the file to an empty node. Alternatively, upon seeing
many requests, an empty node can locate a filled node
and make a copy of the file. This is called the pull strat-
egy. We will only discuss the push strategy in this paper.

The goal of our file-replication algorithm is that, if
k hash functions are used for replication, they must be
h1,h2, ...,hk. The rationale for this will become appar-
ent when we discuss how to use the hash functions to
access the file in Section 2.2. With this goal, in order to
push a file to an empty node, the overloaded filled node
must first find an unused hash function. Again, assume
k hash functions are currently used, h1, ...,hk. The filled
node must discover the number k and use the hash func-
tion hk+1. It can do so by executing binary search for
k between 1 and m, which takes O(logm) steps. More
specifically, the node runs the find k(f, 1, m) al-
gorithm, to find the number k, where f is the file. Recall
that the binary search algorithm maintains the current
search interval s,s + 1, ...,t, where, in the first search
step, s = 1 and t = m. In each step, the algorithm tries
to find out if hi is used, where i = �(s+ t)/2� 1. This is
accomplished by routing the query with the hi(f) as the
destination address in the P2P network. If the result of
the query indicates that hi is not used (I.e., file f is not
present at the node that owns hi(f).), the original node
calls find k(f, s, i) and t is set to be i. On the
other hand, if the result of the query indicates that hi is
used, the original node calls find k(f, i, t), and
s is set to be i.

There are a number of ways for a node to decide
if it is overloaded (with respect to a fixed file). For
instance, it can measure the backlog of file requests,
i.e., the number of received requests that are being or
to be served. Alternatively, it can measure the av-
erage request arrival rate over some measurement in-
terval. A filled node can then compare the measured
value against some pre-defined threshold, θ , and decide
whether it should replicate the file. The measurement-
based file replication share many common features with
other types of measurement-based control in areas such
as congestion control, queue management and admis-
sion control, which have all been studied extensively.
Even though the ideal operation of the measurement-
based control typically requires delicate tuning of the

1�z� is the floor of the real number z, i.e., the largest integer not
exceeding z.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

control parameters or more complex adaptive control
scheme, we will show in Section 3.1 by simulation that
simple schemes often suffice. Finally, if the request rate
is below a threshold ζ < θ , the node removes the file
(or simply marks the file as being deleted).

2.2. File Access: Random Binary Search Based
Hash Function Usage

We propose the following hash function usage
scheme. First, the file replication algorithm ensures that
the hash functions are used in increasing order of their
indices. With this and assume that hash functions
h1, ...,hk are used for f , the goal of the file request algo-
rithm is to choose one of the k used hash functions uni-
formly at random. Assuming each hash function maps
the file f to a distinct node, then each filled node sees
the same number of requests on average. To achieve
this objective, the requesting node calls search f(f,
m), shown in Algorithm 1, which is a random version
of binary search. The function uniform random(l,
u) returns an integer between l and u, inclusive, uni-
formly at random. The function query nd(v) returns
the node that contains the hash value v.

Algorithm 1 search f(f, u)
u ⇐ uniform random(1, u);
nd ⇐ query nd(hu(f));
if f exists at node nd then

return nd
else if u == 1 then

f cannot be found
else

search f(f, u)
end if

The idea of search f(f, u) is that we first
pick a random number between 1 and m, say i1. If hi1 is
not used, in the next iteration, we pick another number
between 1 and i1 randomly, say i2. If hi2 is again not
used, in the next iteration, we pick another number be-
tween 1 and i2 randomly. The algorithm goes on until a
used hash function is returned or until it discovers that
none of the hash functions is used.

3. Performance Evaluation of the Basic Al-
gorithms

3.1. Simulation Experiments

In the simulation, each filled node measures the av-
erage request rate for a fixed file on each measurement
interval. Figure 1 (a) and (b) show the request rates

measured on 60-second and 10-second intervals, re-
spectively. The total request rate for the file is set at 2.5
per second. If the request rate measured by a filled node
exceeds 1.0 per second, the node starts to push a copy of
the file to another node. In these simulation runs, each
hash function maps the file to a distinct node, hence,
each hash function corresponds to a distinct node. For
ease of description, we will index the nodes by their
corresponding hash function indices. That is, node i
corresponds to the hash function hi. At time 0, the file
resides only at the node 1, and the node experiences a
high request rate. As the file-replication algorithm pro-
ceeds, copies of the file are pushed to other nodes expo-
nentially fast. For instance, for the case with 60-second
measurement interval, the file is pushed by node 1 to
node 2 at time around 60 second. At time around 120
second, it is pushed by node 1 to node 3 and by node 2
to node 4. Eventually, each of the four filled nodes ex-
periences the same long-run request rate of about 0.64
per second. Comparing Figure 1 (a) and (b), in the case
with 10-second measurement interval, the request rate
measured by each node has much larger fluctuation than
in the case with 60-second measurement interval, due to
smaller number of samples collected on a smaller time
interval in the former case. In the 10-second case, the
file is eventually pushed to 7 other nodes, as compared
to 3 other nodes in the 60-second case. Each of the 8
nodes sees a long-run request rate around 0.3 per sec-
ond.

The simulation results for file replication presented
here are brief because they are as expected and are not
the main focus of the paper. We also mention in passing
that, in the more complicated situation with many-to-
one mapping from the hash functions to the nodes, the
request rate seen by each filled node is proportional to
the number of hash functions the node corresponds to. It
may be desirable that the replication threshold is scaled
properly with the number of hash functions. This pre-
vents the situation that some nodes are replicating the
file and others are not and that replication stops only
when the most loaded node experiences a request rate
lower than the threshold value. Alternatively, the pull
strategy for replication also prevents the above scenario
from occurring.

3.2. Analysis on the Random Binary Search Al-
gorithm

3.2.1. Hash function selection. Let T (m) be the num-
ber of steps taken before a used hash function is re-
turned. By conditioning on T (m), it is easy to see that
the returned function from the algorithm is chosen uni-
formly at random from h1 to hk.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 200 400 600 800 1000

R
eq

ue
st

 R
at

e

Time (Seconds)

Hash Func 1
Hash Func 2
Hash Func 3
Hash Func 4

(a)

 0

 0.5

 1

 1.5

 2

 0 100 200 300 400 500 600

R
eq

ue
st

 R
at

e

Time (Seconds)

Hash Func 1
Hash Func 2
Hash Func 3
Hash Func 4

(b)

Figure 1. Request rate seen by filled servers.
(a) measurement interval = 60 seconds; (b)
measurement interval = 10 seconds

In addition, the expected number of tries to find a
used function and the variance are both O(log m

k). The
following theorems give the precise statements. For
brevity, we omit the proofs.

Theorem 3.1

ET (m) =

{
1 if m = k,

1+ 1
k + ...+ 1

m−1 if m > k.
. (1)

By comparing the above sum with integral, we get the
following bounds for ET (m) for 1 < k < m,

1+ ln
m
k
≤ ET (m) ≤ 1+ ln

m−1
k−1

. (2)

Let Var(X) denote the variance of the random vari-
able X . We can show

Theorem 3.2 For m > k,

Var(T (m)) =
1
k2 +

1
(k +1)2 + ...+

1
(m−1)2

+
1
k

+
1

k +1
+ ...+

1
m−1

.

(3)

For 1 < k < m, reasonable bounds for Var(T (m)) are

ln
m
k

+
1
k
−

1
m

≤Var(T (m))≤ ln
m−1
k−1

+
1

k−1
−

1
m−1

.

(4)
For large m and k � m, Var(T (m)) ≈ ln m

k .

3.2.2. Access to all hash functions. In the load-
balancing application on P2P networks, we wish to
load-balance the file servers by choosing one of them
uniformly for downloading. We also wish not to over-
load other nodes corresponding to the unused hash func-
tions with excessive query traffic. We have just es-
tablished that each used hash function is selected with
equal probability. However, the access pattern to the
unused hash functions by the random binary search al-
gorithm is not uniform. Therefore, our next question is,
by the end of the algorithm, how many times the hash
function i has been accessed, where k < i ≤ m.

To answer this question, we work with a continuous
version of the algorithm for ease of analysis. In this
version, consider the interval [0,1] on which the interval
[0,a] is marked, where 0 < a ≤ 1. The algorithm works
similarly as Algorithm 1. Given the initial interval [0,1],
it performs random binary search until the region [0,a]
is hit. Let the random variable T be the number of steps
taken before the algorithm returns some y ∈ [0,a]. It is
possible to compute the distribution of T and its first
and second order statistics. Let Zi be the position of the
ith jump in the algorithm, i = 1,2, Let us consider
the stopped process, Z1,Z2, ...,ZT . For each 0 ≤ y ≤ 1,
let N(y) be the number of Zi’s less than or equal to y in
the stopped process. That is

N(y) = |{i : Zi ≤ y, i = 1,2, ...,T}| =
T

∑
i=1

1(Zi≤y).

where the indicator function 1(Zi≤y) is equal to 1 when

Zi ≤ y, and equal to 0 otherwise. Let n(y) = dEN(y)
dt ,

and call it hit density. It is a kind of “density” in the
sense that the expected number of hits (access) on [y,y+
Δy] is n(y)Δy. It can be shown that

Theorem 3.3

n(y) =

{
1
a for 0 ≤ y ≤ a
1
y for a < y ≤ 1

. (5)

From the above theorem, we see that the un-marked
region is hit less than the marked region per unit length.
Translating this observation to the load-balancing appli-
cation, we conclude that even though the unused hash
functions are not accessed uniformly, each of them is
accessed less than any of the used hash functions.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

Due to the fact that the continuous version of the
algorithm approximates the discrete version, Theorem
3.3 should also approximately apply to the discrete case.
In Figure 2, we plot the simulation results of hit counts
to each hash function for the discrete algorithm, that is,
the expected number of hits to each hash function by
the time the algorithm finishes. In the same figure, we
also show the function 1/n, for 1 ≤ n ≤ m and 1/k. We
see that Theorem 3.3 applies very well here.

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.040

0.045

0.050

 1 10 100 1000 10000

E
xp

ec
te

d
N

um
be

r
of

 H
its

n

Simulation
1/n
1/k

Figure 2. Expected number of hits to each hash
function, for m = 10000 and k = 100.

4. The Compacting Problem

4.1. Motivation

The hash function usage scheme presented in Sec-
tion 2 is adequate if no node ever leaves the P2P net-
work unexpectedly. If a node leaves the network with-
out running the proper protocol for leaving, the files it
contains will not be moved to appropriate neighboring
nodes to ensure their continued availability. From the
point of view of the hash functions, unexpected node
departure creates gaps in the sequence of used hash
functions. Without proper repair, the number of gaps
will accumulate over time and will likely cause the bi-
nary search algorithm to fail, undermining the effective-
ness of the load-balancing scheme. For instance, imag-
ine the case where the hash functions h2 and h4 are in
use and h1 and h3 are no longer in use. Suppose, when
applied to the file f , they each correspond to a differ-
ent node. Then, there is a non-negligible probability
that search f(f, m) fails to return a replica server.
In another example, suppose h1 and h4 are in use and
h2 and h3 are not. Then, the node corresponding to h1

will take a higher load than the one corresponding to h4.
This discussion suggests we should remove the gaps in

the sequence of used hash functions.

4.2. Gap Removal: The Compacting Scheme

We will consider the following simple gap removal
algorithm. Let us focus on a particular file, say, f . For
ease of discussion, let us also assume each hash func-
tion corresponds to a distinct node, and hence, the rel-
evant nodes h1(f), h2(f), ..., hm(f) are all different.
Every once in a while, each filled node randomly checks
an earlier node to see if the corresponding hash function
is in use. If not, that function will be put to use and the
hash function corresponding to the checking node is re-
moved from usage. More specifically, the filled node
h j(f) draws a number I randomly from 1,2, ..., j − 1,
then sends a query message for f to hI(f). If hI is no
longer in use, indicated by the fact that node hI(f) does
not contain f , then a replica of f is created at node hI(f)
and the replica at h j(f) is removed. With the filling of
the gap corresponding to the missing function hI and
the removal of the hash function h j from the used list,
it appears that h j is moved to hI . This is illustrated in
Figure 3, where h6 is removed and the gap at h2 is filled.

Let us now specify how often a filled node should
attempt such a check. For every filled node, let the inter-
val between two consecutive checks be an exponential
random variable with mean 1/λ , and let the checks by
different nodes be independent from each other. The
sequence of checks form a continuous-time Markov
chain, where the checks occur at a rate kλ , where k is
the number of used hash functions. We will focus on
the embedded discrete-time Markov chain. In the fol-
lowing we will try to understand some properties of this
algorithm.

h2 h3 h4 h5 h6 h7 h8

After

Before

h3 h4 h5 h6 h7 h8h1 h2

h1

Figure 3. Gap removal: remove h6 and use h2

Let us represent the status of the hash functions
by a binary vector (or binary array) of length m, x ∈
{0,1}m, with k 1’s, where 1 ≤ k ≤ m. Each 1 corre-

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

sponds to a used hash function, and each 0 corresponds
to an unused function. In accordance with the objective
of the algorithm outlined above, we wish to move all 1’s
in x to the first k positions. That is, we’d like to compact
x into the form 11...100..0. The discrete-time Markov
chain embedded in the algorithm is equivalent to the
following description. At each step, select one of the k
1’s uniformly at random with probability 1/k. Suppose
the selected 1 is at position i, where i ∈ {1,2, ...,m},
counted from the left to the right. With probability
gi(j), we attempt to move the 1 to the left by j posi-
tions, where 1 ≤ j < i and gi(j) satisfies ∑i−1

j=1 gi(j) = 1

for each i. If the jth position to the left of position i is a
0, then moving the 1 is allowed. In other words, the 1 at
position i and the 0 at position i− j exchange positions.
Otherwise, the 1 is not moved. We wish to know how
long it takes to compact the vector x.

The sequence of transitions form a finite-state
Markov chain, denoted by {Xn}∞

n=0. For any two vec-
tors x,y ∈ {0,1}m, we write x � y if y can be derived
from x by moving a 1 in x to a position to its left that
contains a 0. It must be true that x and y are identical at
all positions except at two positions i and j, where i < j
and xi = 0, yi = 1, x j = 1, and y j = 0. For instance, if
x = 1010 and y = 1100, then x � y. Since such posi-
tions i and j depend on x and y, we rewrite i as L(x,y)
and j as H(x,y). Let S(x) = {y ∈ {0,1}m : x � y}, the
set of vectors derived from x by exchange a 1 with a 0
to the left. With these, the transition probabilities of the
Markov chain, denoted by p(x,y), are given by

p(x,y)

=P{Xn+1 = y | Xn = x}

=

⎧⎪⎨
⎪⎩

1
k gH(x,y)(H(x,y)−L(x,y)) if x � y

1−∑z∈S(x) p(x,z) if x = y

0 otherwise

.

Given the Markov chain starts at X0 = x, the time
to finish compacting x is denoted by Tx. Given fixed m
and k, the expected value of Tx, denoted by ETx, can
be computed for all vector x of length m with exactly k
1’s. This is done as follows. First, let us interpret each
vector x as a binary representation of a non-negative in-
teger and order all vectors of length m and with k 1’s in
decreasing order of the numerical value. There are ex-
actly Cm

k of such vectors. This is the number of different
ways to place k 1’s at m positions. The ordered vectors
are denoted x1,x2, ...,xCm

k . We write v(i) = ETxi . We
also interpret p(i, j) as p(xi,x j) in the original notation.

Starting with X0 = xi and conditional on the first
jump, for 1 < i ≤ Cm

k ,

v(i) = ∑
j

p(i, j)v(j)+1. (6)

Also,
v(1) = 0. (7)

We rewrite (6) and (7) in matrix notation.

v = Pv+ r, (8)

where v = (v(1),v(2),v(Cm
k))T , P is the transition ma-

trix of the Markov chain, and r = (0,1,1, ...,1)T . From
Lemma 2 in chapter 4 (page 123) of [3], the solution to
(8) exists and is unique. For our problem, the transition
matrix, P, is lower-triangular. The solution to (8) can
be found easily by computing v(1),v(2), ... iteratively.
The difficulty lies in the potentially large dimension of
the vector v for large value of m. We will consider some
special cases of (8).

4.3. Uniform Jump

Imagine that the 1 in the jth location of the vec-
tor x is picked to make a jump, where 1 < j ≤ m,
and the position to jump to is chosen uniformly at ran-
dom on [1, j − 1]. In other words, g j(l) = 1

j−1 , for all
l = 1,2, ..., j−1. This is called the uniform jump algo-
rithm.

4.3.1. Initial vector type: Isolated-1. An vector of
the Isolated-1 type starts (from the left) with consec-
utive 1’s, followed by i consecutive 0’s, followed by
an isolated 1, then followed by 0’s. An example is
1111000100 for i=3. Let us re-index the vectors of the
above form by, i, the number of 0’s before the last 1, for
i = 0,1, ...,m− k. Clearly, v(0) = 0. We can show that

Lemma 4.1

v(i) =

{
k2 i = 1

k2 + k ∑i
j=2

1
j 1 < i ≤ m− k

. (9)

4.3.2. Initial vector type: Isolated-0. An vector of
the Isolated-0 type starts (from the left) with consec-
utive 1’s, followed by exactly one isolated 0, followed
by zero or more 1’s, and then followed by 0’s. In other
words, it has the form 1...101...10...0. Let us re-index
the vectors so that the ith vector has the isolated 0 at po-
sition k− i+1, for i = 1,2, ...,k. For instance, consider
the case m = 5 and k = 3. The vectors 1, 2 and 3 are
11010, 10110 and 01110, respectively. Note that in the
ith vector, the isolated 0 is followed by i consecutive 1’s.
For convenience, let us call the vector 1...10...0 the 0th

vector, and let v(0) = 0. We can show that

Lemma 4.2 For i = 1,2, ...,k, v(i) = k2.

We shall make some comments on the uniform
jump algorithm. First, one should not be alarmed with

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

the k2 number of jump steps in Lemma 4.1 and 4.2,
since the number of jumps per unit time scales linearly
with k. The expected time it takes to complete the com-
pacting process is linear in k. Second, uniform jump
is suitable to quickly remove large gaps (long string of
consecutive 0’s). This is evident from the expression
in (9), where the second term ∑i

j=2
1
j is approximately

ln(i). It is particularly suitable for the case where k �m
and the 1’s in the vector concentrate at the right side of
the vector, such as 000000000000111. Recall that the
purpose of removing the gaps is for the binary search
algorithm to quickly locate a used hash function (cor-
responding to a 1 in the vector). The aforementioned
vectors are precisely those that most trouble the bi-
nary search algorithm. The uniform jump algorithm can
quickly move the 1’s toward the left side of the vector.
Third, for vectors where the 1’s concentrate at the left
side, e.g., 101101111110000, the uniform jump algo-
rithm is not very efficient in removing the last few 0’s,
particularly when k is reasonably large. This fact is evi-
dent from the k2 term in Lemma 4.1 and 4.2. However,
we are not very concerned with this because the binary
search algorithm nonetheless will have a high chance of
finding a 1 quickly for this type of vectors.

4.4. Simulation Experiments for Compacting
the Bit Array

Let us call the bit vector as a bit array for conve-
nience. In all subsequent simulation results, the time
unit is normalized in the following way. Each array en-
try with value 1, called a marked entry, makes a jump
(compacting) attempt following a Poisson process, in-
dependently from other marked entries. The interval
between any two consecutive attempts by the same
marked entry, which is an exponential random variable,
has mean 1 time unit. All time intervals are measured
with respect to this time unit. Note that the average
number of jump attempts by all marked entries in each
time unit is equal to the number of marked entries, i.e.,
the number of 1’s in the array.

We consider the following class of randomized
compacting algorithm, called compact(p), indepen-
dently run by each marked entry. Let us focus on a
marked entry at location (index) j, where j ranges from
2 to m. With probability p, it picks the target location
t = j − 1 to make a jump attempt, and with probabil-
ity 1− p, it picks a target t uniformly at random from
[1, j−1]. If the target location t contains a value 1, then
nothing is done. If it contains a 0, then the marked en-
try at location j is moved to location t. In other words,
the value at location t becomes 1 and the value at loca-
tion j becomes 0. The special case of compact(0)

is the uniform jump algorithm. In the following, we
will mainly consider the simulation results of the uni-
form jump algorithm, but will mention the performance
tradeoffs that can be achieved by the compact(0.5)
algorithm.

The initial array type to be considered is known as
Ones-at-End. An array of this type has k consecutive
1’s at the end of the array, following m− k 0’s. An ex-
ample is 00000111 for m = 8 and k = 3. In terms of
the time required to finish compacting, one tends to be-
lieve that such array type represents the “worst case”,
in suitably defined sense, for many compacting algo-
rithms, such as uniform jump. However, we have not
proven any of these types of claims. Our extensive ex-
periments have provided some evidence for the conjec-
ture. For instance, Ones-at-End has slightly worse mean
required time than another initial-array type, Random-
Choice, where the k marked entries are chosen uni-
formly at random from the set of indices {1,2, ...,m}
without replacement. This is shown in Figure 4. Note
the linear dependence of the mean completion time on
k, the number of marked entries, which can be too slow
when k is large. This problem will be addressed in two
different ways. First, it turns out that the compacting
process becomes “nearly” finished much sooner than
its completion. In other words, the array becomes use-
ful, with respect to performing random binary search,
much sooner than the completion time. Second, the
compact(0.5) algorithm can be used, if desired, to
make the dependence on k sub-linear, and hence, dra-
matically improves the mean completion time. The
price to pay is increased delay before the probability
of eventually hitting a marked entry reaches 1.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 20 40 60 80 100

T
im

e
re

qu
ire

d

Number of ones, k

mean, Ones-at-End
mean, Random Choice
deviation, Ones-at-End
deviation, Random Choice

Figure 4. Time required to compact the
1’s. Comparison of Ones-at-End and Random-
Choice. m = 10000

Recall that our objectives for compacting the ar-
ray of 0-1 digits are to ensure, first, that the random

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

binary search algorithm will eventually hit a marked
entry and, second, that the load (or hitting probability)
to each marked entry is balanced. Both objectives are
fulfilled after the compacting process finishes. How-
ever, the probability of eventually hitting a marked en-
try can reach 1 long before the process finishes, as soon
as the value at location 1 becomes 1. In Figure 5, we
show this probability as a function of time, while the
compacting process is running, for three cases, k = 10,
k = 100 and k = 1000. Each of these curves represents
a typical sample path of the compacting process. Ob-
serve that the probability increases to 1 exponentially
fast, well before the mean completion time of the com-
pacting process, which is 28.27, 177.12 and 1665.62 for
k = 10, k = 100 and k = 1000, respectively. (See Figure
4. The mean time for the case k = 1000 is derived by
linear extrapolation of the curve.).

 0.0001

 0.001

 0.01

 0.1

 1

 0 1 2 3 4 5

P
ro

ba
bi

lit
y

of
 h

it

Time

k = 10
k = 100
k = 1000

Figure 5. Probability of eventually hitting a
marked entry. The initial array is of the Ones-
at-End type. m = 10000.

To examine how well our second objective of the
compacting algorithm is fulfilled, in Figure 6, we plot
the load to each of the marked entries as the time pro-
gresses for the same instances as in Figure 5. This is the
hitting probability to each of the marked entries condi-
tional on that at least one of them is hit. We see that,
at time 0, the marked entries are hit uniformly. How-
ever, as seen from Figure 5, the probability of an even-
tual hit to any marked entry is low. We point out that
the load at time 0 is generally not uniform for most ini-
tial array patterns. In fact, it is uniform only for arrays
in which the marked entries are packed consecutively.
As the compacting algorithm operates, the uniform load
pattern is first destroyed (however, the eventual hit prob-
ability increases), and then gradually restored. At time
15, the load is almost uniform except for the last few
marked entries. Considering the fact that the mean com-

pletion time of compacting is 177.12 for this case, we
see that the vast majority of the compacting time is ded-
icated to compacting the last few marked entries, while
the other marked entries are already packed into ap-
propriate places. To make it more concrete, starting
with an initial array such as 0000000000111111,
very quickly, the array is compacted into something like
1111101000000000. However, it takes much longer
time to eventually finish the compacting process. This
can be confirmed by observing that, starting with an ar-
ray of the Isolated-1 type with m = 10000, k = 100 and
i = 1, where i is the number of 0’s before the last iso-
lated 1, it takes 100 time units to complete the compact-
ing process (See Lemma 4.1.), whereas the mean com-
pletion time starting from an array of the type Ones-at-
End is only 177.12.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 h

it

Entry

time = 0
time = 1
time = 3
time = 5

(a)

 0.0001

 0.001

 0.01

 0.1

 0 10 20 30 40 50 60 70 80 90 100

P
ro

ba
bi

lit
y

of
 h

it

Entry

time = 5
time = 7
time = 9
time = 15
time = 30

(b)

Figure 6. Load to the marked entries over time.
The initial array is of the Ones-at-End type. m =
10000, k = 100. (a) during time 0 to 5; (b) during
time 5 to 30

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

5. Conclusion

This paper deals with algorithmic issues related to
the file replication strategy using multiple hash func-
tions for structured P2P networks. The central issue
here is, out of the potentially large number of hash func-
tions, which one to use for downloading or which one
to use for replicating a file so that the load to the servers
is balanced. Our main contribution is that, first, we have
devised the random binary search algorithm and the as-
sociated hash function compacting scheme. These al-
gorithms are suitable to the dynamic P2P environment
and are potentially more tolerant to security breaches
than previously known tree-based approaches for orga-
nizing the hash functions. Second, we have explored
the performance of these algorithms.

Throughout the paper, we have been focusing on a
single file. In reality, since a server can serve multiple
files, balanced load with respect to one file does not im-
ply balanced load with respect to all files. We feel that
it is not an urgent priority to study this because, in the
P2P environment, each host most likely contains a small
number of files, and the chance is small that more than
one files on it are popular simultaneously. More im-
portantly, in addition to the basic load-balancing mech-
anisms suggested in the paper, each server should also
implement an admission control mechanism so that it
can reject new requests if it is overloaded, irrespective
of which files have caused it. Admission control is also
a solution to some other problems that have been over-
looked so far, such as many-to-one mapping from the
hash functions to the servers and heterogeneous server
capacities.

References

[1] Anawat Chankhunthod, Peter Danzig, Chuck Neerdaels,
Michael Schwartz, and Kurt Worrell. A Hierarchical In-
ternet Object Cache. In Proceedings of USENIX Annual
Technical Conference (USENIX ’96), San Diego, CA,
January 1996.

[2] Frank Dabek, M. Frans Kaashoek, David Karger, Robert
Morris, and Ion Stoica. Wide-area Cooperative Storage
with CFS. In Proceedings of the 18th ACM symposium
on Operating systems principles (SOSP ’01), pages 202–
215, Banff, Alberta, Canada, October 2001.

[3] Robert G. Gallager. Discrete Stochastic Processes.
Kluwer Academic Publishers, 1996.

[4] Gnutella Forums Website. http://www.
gnutellaforums.com.

[5] Brighten Godfrey, Karthik Lakshminarayanan, Sonesh
Surana, Richard Karp, and Ion Stoica. Load Balancing
in Dynamic Structured P2P Systems. In Proceedings of
IEEE Infocom 2004, Hong Kong, March 2004.

[6] David Karger, Eric Lehman, Tom Leighton, Matthew
Levine, Daniel Lewin, and Rina Panigrahy. Consistent
Hashing and Random Trees: Distributed Caching Proto-
cols for Relieving Hot Spots on the World Wide Web. In
Proceedings of the Twenty-Ninth Annual ACM Sympo-
sium on Theory of Computing (STOC ’97), El Paso, TX,
May 1997.

[7] Kazaa Website. http://www.kazaa.com.
[8] Napster. http://www.napster.com.
[9] C. Plaxton, R. Rajaraman, and A. Richa. Accessing

nearby copies of replicated objects in a distributed en-
vironment. In Proceedings of the 9th Annual ACM Sym-
posium on Parallel Algorithms and Architectures (SPAA
’97), pages 311–320, Newport, Rhod Island, June 1997.

[10] C. Greg Plaxton and Rajmohan Rajaraman. Fast Fault-
Tolerant Concurrent Access to Shared Objects. In Pro-
ceedings of the twenth-eighth Annual ACM Symposium
on Theory of Computing (STOC ’96), Philadelphia, PA,
May 1996.

[11] Ananth Rao, Karthik Lakshminarayanan, Sonesh
Surana, Richard Karp, and Ion Stoica. Load Balanc-
ing in Structured P2P Systems. In 2nd International
Workshop on Peer-to-Peer Systems (IPTPS ’03), pages
311–320, Berkeley, CA, Feb. 2003.

[12] Sylvia Ratnasamy, Paul Francis, Mark Hanley, Richard
Karp, and Scott Shenker. A Scalable Content-
Addressable Network. In Proc. ACM SIGCOMM ’2001,
pages 161–172, San Diego, CA, August 2001.

[13] Antony Rowstron and Peter Druschel. Pastry: Scalable,
Distributed Object Location and Routing for Large-
Scale Peer-to-Peer Systems. In Proceedings of the 18th
IFIP/ACM International Conference on Distributed Sys-
tems Platforms (Middleware ’01), Heidelberg, Germany,
November 2001.

[14] Antony Rowstron and Peter Druschel. Storage Man-
agement and Caching in PAST, a Large-scale, Persis-
tent Peer-to-Peer Storage Utility. In Proceedings of the
18th ACM Symposium on Operating Systems Principles
(SOSP ’01), pages 188–201, Banff, Alberta, Canada,
Oct 2001.

[15] Ion Stoica, Robert Morris, David Karger, M. Fran
Kaashoek, and Hari Balakrishnan. Chord: A Scalable
Peer-to-Peer Lookup Service for Internet Applications.
In Proc. ACM SIGCOMM ’2001, pages 149–160, San
Diego, CA, August 2001.

[16] Marvin Theimer and Michael B. Jones. Overlook: Scal-
able Name Service on an Overlay Network. In Proceed-
ings of the 22nd ICDCS, Vienna, Austria, July 2002.

[17] Ben Y. Zhao, John Kubiatowicz, and Anthony D.
Joseph. Tapestry: An Infrastructure for Fault-tolerant
Wide-area Location and Routing. Technical Report
UCB/CSD-01-1141, University of California Univer-
sity, Berkeley, Computer Science Division (EECS),
April 2001.

Proceedings of the 12th International Conference on Parallel and Distributed Systems (ICPADS'06)
0-7695-2612-8/06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

