
Hyper-Compact Virtual Estimators for Big Network Data
Based on Register Sharing

Qingjun Xiao†‡ Shigang Chen† Min Chen† Yibei Ling§

†Department of Computer & Information Science & Engineering, University of Florida, Gainesville, FL, USA
‡Key Lab of Computer Network and Information Integration (Southeast University), Ministry of Education, China

§Telcordia Technologies & Applied Research, Ericsson, USA
Email: csqjxiao@seu.edu.cn {sgchen, min}@cise.ufl.edu yibei.ling@gmail.com

ABSTRACT

Cardinality estimation over big network data consisting of nu-
merous flows is a fundamental problem with many practical ap-
plications. Traditionally the research on this problem focused on
using a small amount of memory to estimate each flow’s cardinality
from a large range (up to 109). However, although the memory
needed for each flow has been greatly compressed, when there is
an extremely large number of flows, the overall memory demand
can still be very high, exceeding the availability under some impor-
tant scenarios, such as implementing online measurement modules
in network processors using only on-chip cache memory. In this
paper, instead of allocating a separated data structure (called esti-

mator) for each flow, we take a different path by viewing all the
flows together as a whole: Each flow is allocated with a virtual
estimator, and these virtual estimators share a common memory
space. We discover that sharing at the register (multi-bit) level is
superior than sharing at the bit level. We propose a framework
of virtual estimators that allows us to apply the idea of sharing
to an array of cardinality estimation solutions, achieving far better
memory efficiency than the best existing work. Our experiment
shows that the new solution can work in a tight memory space of
less than 1 bit per flow or even one tenth of a bit per flow — a quest
that has never been realized before.

Categories and Subject Descriptors

C.4 [Performance of Systems]: [Measurement Techniques]; C.2.3
[Computer Communication Networks]: Network Operations –
Network Management

Keywords

Big Network Data, Flow Monitoring, Cardinality Estimation

1. INTRODUCTION
Cardinality estimation is one of the fundamental problems in

network traffic measurement [9,10,14,17,25,26]. In a general defi-
nition, it is to estimate the number of distinct elements in each flow
during a measurement period. The flows under measurement may

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than

ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGMETRICS’15, June 15–19, 2015, Portland, OR, USA.

Copyright c© 2015 ACM 978-1-4503-3486-0/15/06 ...$15.00.

http://dx.doi.org/10.1145/2745844.2745870 .

be per-source flows, per-destination flows, per-source/destination
flows, TCP flows, WWW flows, P2P flows, or abstract flows. The
elements may be destination addresses, source addresses, ports,
values in other header fields, or even keywords that appear in the
payload of packets in the flow.

Practical Importance: The cardinality problem has many prac-
tical applications. For example, if we treat all packets sent from
the same source address as a flow (per-source flow), we may use
a cardinality estimation module at a gateway or firewall to detect
scanners by measuring the number of distinct destination addresses

in each flow. In this case, packets belonging to a flow are identi-
fied by their common source address (also called flow label). The
elements under measurement are the destination addresses in the
headers of the packets. In the opposite example, we may treat all
packets to a common destination as a flow and count the number
of distinct source addresses in each flow. When we observe the
cardinality of a certain flow suddenly surges, it may signal a DDoS
attack against the destination address of the flow. For other applica-
tions, a large server farm may learn the popularity of its content by
tracking the number of distinct users that access each file, where all
accesses to a file form an (abstract) flow; an institutional gateway
may determine the popularity of external web content for caching
priority by tracking the number of outbound web requests for each
web content, where all requests from different users to a common
URL form a flow.

In yet another example, if Google treats all client IPs that query
a keyword as a flow, the cardinality of the flow suggests the popu-
larity of the keyword being searched. In this case, the flow label
is the keyword under query. The estimator that works on per-
keyword flows may be implemented as a function module at the
web server. According to a recent paper [14], various data analy-
sis systems at Google, such as Sawzall, Dremel and PowerDrill,
estimate the cardinalities of very large data sets on a daily ba-
sis. As pointed out in [14], cardinality estimation over large data
sets presents a challenge in terms of computational resources, and
memory in particular; for the PowerDrill system, a non-negligible
fraction of queries historically could not be computed because they
exceeded the available memory.

State of the Art: To deal with big data consisting of a very large
number of flows, we must conserve memory space when design-
ing a cardinality estimation module. For this purpose, a series of
solutions were developed in the past, including PCSA [12], Mul-
tiresolutionBitmap [10] (which is a generalization of LinearCount-
ing [22]), MinCount [3], LogLog [8], and HyperLogLog [11]. They
all allocate a separate data structure, called estimator, for every
flow. Each estimator contains a certain number of registers, bitmaps
or other elementary data structures. The most compact estimator

417

in [11] requires hundreds of bytes to ensure a large estimation range
and a good estimation accuracy.

Challenges: However, as the Internet moves into the era of big
network data, hundreds of bytes per flow can be too much in some
important scenarios — Modern high-speed routers forward packets
at the speed of hundreds of Gigabits or even hundreds of Terabits
per second [13]. The number of data flows that traverse a core
router can be in tens of millions. Simultaneous tracking of such
a large number of flows (each of which needs hundreds of bytes)
brings a great challenge. The reason is that, in order to sustain high
throughput, routers forward packets from incoming ports to outgo-
ing ports via switching fabric, bypassing main memory and CPU.
If one wants to apply cardinality estimation as an online module to
process packets in real time, one way is to implement it on network
processors at the incoming/outgoing ports and use on-chip cache
memory. However, the commonly-used cache on processor chips
is SRAM, typically a few megabytes, which may have to be shared
among multiple functions for routing, performance, measurement,
and/or security purposes. In such a context, the memory that can
be allocated for the function of cardinality estimation may be even
less than 1 bit per flow.

In another scenario, suppose a major web search company wants
to know how many different users have searched the same phrase
(question or sentence) each day, which provides information on
phrase popularity, useful in optimizing search performance or study-
ing social trends on the Internet [2]. This is a cardinality estimation
problem, where all search records for a given phrase form a flow.
The number of flows (phrases, questions, sentences) can be in bil-
lions. Of course, we can resort to a data center for such big data,
but it will certainly be welcome if one can find a novel solution that
deals with an extremely large number of flows in the memory of a
cheap commodity computer.

Our Contribution: After decades of development [3, 8, 10–12,
22], it appears to be very difficult to further compress the size
of an individual estimator much below hundreds of bits, without
sacrificing estimation range or accuracy. Recently, an interesting
idea was proposed to let different estimators (each for one flow)
share bits [16, 17, 25], so that bits unused by one can be picked
up by another. Along this line, we make three new contributions:
First, we discover that sharing bits is actually inefficient because
of too much noise introduced between estimators. Sharing space is
good, but it should be done differently at the register level, not at
the bit level, where a register is a multi-bit data structure that will be
introduced later. Second, sharing has only been applied to bitmap
and PCSA [12], an early work dated back to 1985. We develop a
framework of virtual estimators which enables memory sharing for
the recent cardinality estimation solutions, including LogLog [8]
and HyperLogLog [11], with the latter being the best existing work.
Third, we fully develop the virtual HyperLogLog solution, with
a new procedure for recording per-flow information in the shared
space, a set of formulas for estimating per-flow cardinality with
noise removal, and the analytical results for estimation error under
register sharing. We show that the new solution can work in a tight
memory space of less than 1 bit per flow or even one tenth of a bit
per flow — a quest that has never been realized before.

The rest of the paper is organized as follows: Section 2 discusses
the related work. Section 3 introduces our new design of register
sharing. Section 4 proposes a framework for constructing virtual
estimators based on register sharing. Section 5 presents the detailed
design of a memory-efficient cardinality estimation solution under
the framework, and Section 6 analyzes the new solution’s mean
and variance. Section 7 evaluates the performance of the proposed

estimation solution through experiments based on real traffic traces.
Section 8 draws the conclusion.

2. RELATED WORK
Cardinality estimation is different from the related problem of

flow-size estimation [15], which measures the number of elements
(e.g., packets or bytes) in each flow through CountMin Sketches (a
generalized tool for estimating the frequency of each element in a
multiset) [5], Counter Braids [18, 19], Probabilistic Lossy Count-
ing [7], Randomized Counter Sharing [15], etc., with the goal of
learning flow distribution or identifying heavy hitters. Consider
all packets from a source address as a flow. Suppose the source
sends 10,000 packets to a single destination address. The flow
size is 10,000 when we measure the number of packets, but the
flow cardinality is just one if we measure the distinct number of
destination addresses in this flow. In short, cardinality estimation
needs to remove duplicates, which makes it a more difficult prob-
lem because it has to somehow “remember" the observed elements
for duplicate removal, while measuring a flow size only needs a
counter.

Hash table and Bitmap: It is too costly to design an estimator
based on a hash table that stores all elements to remove duplicates.
Instead, we may use a bitmap [22]: Initially all bits are zeros.
Each arrival element is hashed to a bit which is then set to one.
Duplicates are automatically filtered out since they are mapped to
the same bit. At the end of a measurement period, the cardinality
estimation is n̂ = −b lnV [22], where b is the number of bits used,
V is the fraction of bits whose values remain zeros, and n̂ is the
estimated flow cardinality.

The problem of bitmap is that the estimation range is bounded by
b ln b. Hence, the bitmap has to be huge to handle a very large flow.
Fig. 1 shows the simulation results, where the bitmap size is 1280
bits per flow in the leftmost plot, 96 bits per flow in the second
plot, and 32 bits per flow in the third, respectively. Each flow is
represented by a point, whose x-coordinate is the true cardinality
and y-coordinate is the estimated cardinality. The equality line is
also shown. The closer a point is to the line, the more accurate the
estimation is. The leftmost plot clearly shows a limited estimation
range. As the bitmap size shrinks, the range shrinks quickly, as
shown by plots (b)-(d). Note that “less than 1 bit" per flow will
not work for the bitmap approach. Variants of the bitmap approach
also have the problem of limited estimation range [23–26].

MultiResolutionBitmap and PCSA: Sampling is one of the
main methods in the literature for dealing with the estimation range
problem. MultiResolutionBitmap [10] is essentially the concatena-
tion of multiple bitmaps, each having a different sampling proba-
bility. If we let the sampling probabilities be 1

2
, (1

2
)2, ..., (1

2
)w and

set each bitmap to its minimum size (a single bit), then we have
the smallest MultiResolutionBitmap, equivalent to an FM sketch
of the earlier PCSA [12]. An FM sketch, also referred to as a
register in the literature, can give an estimation up to 2w, where
w is the number of bits in the register. For example, w = 32 for an
estimation range up to 232.

However, the estimation result from a single register is very in-
accurate. To improve accuracy, FM uses multiple registers and
returns the average of their estimations. Fig. 2 presents the sim-
ulation results of FM. It clearly has a larger estimation range, but
its estimation accuracy is low even when there are 40 registers in
the first plot. The estimation results are discrete when there are just
a few registers in the second and third plots.

LogLog and HyperLogLog: LogLog [8] and HyperLogLog [11]
were proposed to compress the size of each register from 32 bits to

418

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

Bitmap

(a) 1280 bits per flow

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

Bitmap

(b) 96 bits per flow

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

Bitmap

(c) 32 bits per flow

�
�
�
�
�
�
�
�
	
�

� � � � � � � � 	 �

��
�
�
�
��
��
��
��
��
�
�
��
�

�

����� ���������� ���

�

(d) less than 1 bit per flow

Figure 1: Measurement results of the bitmap approach, whose estimation range is limited. Each flow is represented by one point.

The x-coordinate is the true cardinality, and the y-coordinate is the estimated cardinality. The closer a point is to the equality line,

the more accurate the estimation is.

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

PCSA

(a) 1280 bits per flow, 40 reg-
isters of 32 bits each, 13% error

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

PCSA

(b) 96 bits per flow, 3 regis-
ters of 32 bits each

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

PCSA

(c) 32 bits per flow, 1 regis-
ter of 32 bits

�
�
�
�
�
�
�
�
	
�

� � � � � � � � 	 �

��
�
�
�
��
��
��
��
��
�
�
��
�

�

����� ���������� ���

�

(d) less than 1 bit per flow

Figure 2: Measurement results of FM or PCSA.

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

LogLog

(a) 1280 bits per flow, 256 reg-
isters of 5 bits each, 8.1% error.

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

LogLog

(b) 80 bits per flow, 16 reg-
isters of 5 bits each, 33% error.

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

LogLog

(c) 5 bits per flow, 1 register
of 5 bits

�
�
�
�
�
�
�
�
	
�

� � � � � � � � 	 �

��
�
�
�
��
��
��
��
��
�
�
��
�

�

����� ���������� ���

�

(d) less than 1 bit per flow

Figure 3: Measurement results of LogLog.

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

HyperLogLog

(a) 1280 bits per flow, 256 reg-
isters of 5 bits each, 6.5% error

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

HyperLogLog

(b) 80 bits per flow, 16 reg-
isters of 5 bits each, 26% error

1

5

10

15

20

1 5 10 15 20

es
ti

m
at

ed
 c

ar
d

in
al

it
y

 (
x

1
0

0
0

)

actual cardinality (x1000)

HyperLogLog

(c) 5 bits per flow, 1 register
of 5 bits

�
�
�
�
�
�
�
�
	
�

� � � � � � � � 	 �

��
�
�
�
��
��
��
��
��
�
�
��
�

�

����� ���������� ���

�

(d) less than 1 bit per flow

Figure 4: Measurement results of HyperLogLog.

5 bits for the same estimation range of 232. Their performance is
presented in Fig. 3 and Fig. 4. The estimation accuracy of LogLog
and HyperLogLog (HLL) is much improved as compared with PCSA,
because smaller registers mean there are more of them under the
same memory constraint, which drives the estimation variance down.
However, they do not work well for 80 bits in the second plot of
Fig. 3 and Fig. 4 (with the relative standard error being 33% for
LogLog and 26% for HLL), let alone less than one bit per flow.
The accuracy of HLL is a little better than that of LogLog.

Performance Summary: The performance of the traditional
cardinality estimators is summarized in Table 1, where MinCount [3,
4] takes a different approach by hashing each arrival element and
keeping a number of smallest hash values, from which the estima-
tion is made (using the range of the smallest hash values). In the
second column, m is the number of smallest hash values kept by
MinCount for each flow, the number of bits used by MultiResolu-
tionBitmap, or the number of registers used by other approaches.
The total memory cost is m multiplied by the size of each memory
unit (hash value, bit or register).

419

Table 1: Comparison of the prior art.
Solution Std. Err. (σ) Mem Units Mem (σ=5%)

MinCount 1.00/
√
m ≤32 bits 1600 bytes †

MultiResBitmap ≈ 4.4/
√
m 1 bit 968 bytes

PCSA 0.78/
√
m 32-bit registers 974 bytes

LogLog 1.30/
√
m 5-bit registers 423 bytes

HyperLogLog 1.04/
√
m 5-bit registers 271 bytes

† For MinCount, we assume the size of its memory units is 32 bits, and
each unit stores the 32-bit hash value of a stream element.

For a single flow, the memory needed to control the standard
error within 5% of the actual cardinality is given in the last col-
umn, which shows the progress in memory saving over the past
decades: If we use PCSA as the initial benchmark, the seminal
work of LogLog cuts the memory requirement by more than half.
The followup HyperLogLog cuts the memory further by more than
30%. HyperLogLog has made great impact on IT industry and
was adopted by Google [14], PostgreSQL, file-sharing P2P sys-
tems [21], and DDoS attack detection systems [11].

3. OUR NEW APPROACH OF REGISTER

SHARING AND VIRTUAL ESTIMATORS

3.1 Motivation: Waste of Space
The traditional solutions allocate one estimator for each flow,

which is however a serious waste of space. As an example, we
download traffic traces from CAIDA (Cooperative Association for
Internet Data Analysis) [1]. Consider per-source flows. The cardi-
nality of each flow is the number of distinct destination addresses
contacted by a source. We illustrate the distribution of the flow
cardinalities in Fig. 5, where the measurement period is 10 minutes
and each point shows the number (y-coordinate) of flows that have
a certain cardinality (x-coordinate). A roughly straight line on a
log-log plot is often considered as the signature of a power law
distribution. In this figure, the line is roughly y = 3 · 104 · x−1.7.
This log-scale figure demonstrates that the vast majority of flows
have small cardinalities, while a small number of flows have large
cardinalities.

0

1

10

10
2

10
3

10
4

10
5

10
6

10
7

0 1 10 10
2

10
3

10
4

10
5

N
u

m
b

er
 o

f
F

lo
w

s

Flow Cardinality

Figure 5: Flow distribution: each point shows the number (y-

coordinate) of flows having a certain cardinality (x-coordinate).

The average cardinality of all flows is about two.

Without knowing the flows’ cardinalities beforehand (which are
in fact what we want to figure out), the estimators of all flows are set
according to the maximum range of cardinality, requiring hundreds
of bits even for the best estimator. However, if a flow turns out to be
small, e.g., with a cardinality of 1, most of the bits will be wasted.

3.2 Sharing at bit level?
One way to make use of unused bits is to share bits among

the estimators. Two solutions were proposed for sharing among

Figure 6: Bit sharing in [17], where the FM sketches (registers)

share their individual bits from a common bit pool.

Figure 7: Register sharing, where the estimators share their

registers from a common register pool.

bitmaps [25] and FM sketches [17]. In the compact spread estima-
tor (CSE) [25], a bitmap is allocated for each flow, but all bitmaps
share their bits from a common bit pool. The problem is that it is
difficult to extend the estimation range of bitmaps without incurring
large overhead or causing estimation inaccuracy.

In the probabilistic multiplicity counting solution (PMC) [17], an
estimator with multiple FM sketches is allocated to each flow. In
fact, PMC was originally designed for estimating the flow size (i.e.,
the number of packets in each flow), but it can be easily modified
for estimating the flow cardinality, which is not commonly true
for other flow-size estimators. As illustrated in Figure 6, the FM
sketches (called registers) of all estimators share their bits from
a common bit pool uniformly at random, so that mostly unused
higher-order bits in the registers can be utilized. However, sharing
introduces noise across estimators, which we explain through an
example: Without going into too much technical details which can
be found in the original paper [17], roughly speaking, when the
ith bit in a register (FM sketch) is set to one, it means 2i packets
are recorded by the register on average, where 0 ≤ i < w and
w is the number of bits in each register. In the Figure 6, suppose
estimator 1 is for a small flow. So the high-order bits in its sketches
should be zeros. If a high-order bit in estimator 1 happens to
share the same bit in the common pool with a low-order bit in
estimator 2, when the low-order bit is set to one by estimator 2,
the high-order bit in estimator 1 will also become one. The low-
order bit in estimator 2 only represents one element, but the noise it
induces represents 2w−1 elements for estimator 1. Although novel
statistical methods can be used to remove noise, the noise of bit-
level sharing is too high to take the full potential of the sharing
idea, which we will demonstrate through experiments. Sharing
high-order bits only with high-order bits will not work well either
because the underutilized high-order bits will remain underutilized.

3.3 Register Sharing and Virtual Estimators
Our idea is to share at the register level, as illustrated in Figure 7.

The estimators of different flows share their registers from a com-
mon register array M . Given a fixed register array, we dynamically

420

create an estimator for a new flow by randomly drawing a number
of registers from the array. In a sense, the array of registers are
physical, but the estimators are logical because they are created
on the fly without additional memory allocation. Hence, they are
called virtual estimators.

Suppose a system allocates a certain amount of physical memory
to the function of cardinality estimation. The number of bits avail-
able may be smaller than the number of flows. If this is the case,
the number of registers in M will certainly be even smaller. Each
register is thus shared by many virtual estimators, ensuring that the
register is fully utilized.

Consider the virtual estimator of an arbitrary flow. What it esti-
mates is actually the cardinality of the flow plus the noise intro-
duced by other flows that share its registers. Refer to Figure 7
where estimator 1 and estimator 2 share a common register. If
the register records 5 elements from the flow of estimator 1 and
6 elements from the flow of estimator 2, the final result will be 11
elements recorded. From the viewpoint of estimator 1, the register
carries its flow’s information as well as noise from other flows. The
same is true from the viewpoint of estimator 2.

Because the registers in all virtual estimators are randomly picked,
there is an equal opportunity for any two registers from different
estimators to be mapped to the same physical register in M . Hence,
as one virtual estimator records an element of its flow into one of
its registers, the probability for this operation to cause noise to
any other virtual estimator is the same. When there are a large
number of virtual estimators and each of them randomly chooses
a large number of registers, the noise that they cause to each other
will be roughly uniform. Such uniform noise can be measured and
removed.

One may argue that similar noise also exists for register-level
sharing. An estimator of a small flow may share a register with an
estimator of a large flow. First, the elements of the large flow will
be spread among its hundreds of registers. Each register carries
much smaller noise than a single bit in PMC can do. Second, the
number of large flows is often exponentially fewer than the number
of small flows; see Fig. 5 for example. That means the number of
registers that carry large noise account for a small fraction of all
registers in M . If the estimator of a small flow contains one or a
few registers of large noise, the technique of harmonic averaging
can be used to remove the effect of such outliers (which is already
done by [8, 11]). On the contrary, for PMC, all bits that are set to
ones in V can cause large noise.

3.4 Counter Sharing for Flow Size
— A Different Problem

We have explained in the previous section that flow-size esti-
mation is a different problem than cardinality estimation. Sharing
counters has been applied to reduce memory overhead for estimat-
ing the sizes of a large number of flows [5,15,18]. Take CountMin
[5] as example, which resembles a segmented counting Bloom filter
(organized in a two-dimensional matrix), where the arrival of each
packet of a flow causes the k counters of the flow to increase by one.
The minimal value of the k counters is used as an estimation of the
flow size. This approach cannot solve the problem of cardinality
estimation because the counter does not “remember" the elements
that it has seen for duplicate removal. As a minor note, although
the minimal value of the k counters has the least noise, it does have
noise, which can be significant when the number of bits is smaller
than the number of flows — Because each counter has multiple
bits, the number of counters will be far smaller than the number
of flows. Therefore it is highly probable that most counters are

shared by multiple flows, and thus even the minimal value of the k
counters carries the combined size of multiple flows.

4. A FRAMEWORK FOR VIRTUAL-

ESTIMATOR SOLUTIONS
We propose a unified framework for developing virtual-estimator

solutions that enable register-level sharing for mainstream sketches
such as PCSA [12], LogLog [8], and HyperLogLog [11]. In the
next section, we will show as an example how to apply the frame-
work to HLL for a virtual-estimator solution denoted as vHLL. The
notations used are summarized in Table 2 for quick reference.

Table 2: Notations

M a physical array of registers

m number of registers in M
Mf a subset of registers from M used by the virtual estimator of

flow f
s number of registers used by a virtual estimator

Hi(f) a hash function that maps the ith register of Mf to a physical
register in M

nf true cardinality of flow f
n̂f estimated cardinality of flow f
n̂s an estimation made based on Mf , which record both ele-

ments of flow f and elements from other flows as noise

n true combined cardinality of all flows

n̂ an estimated value of n

In the framework, we use a single array M of m registers to store
the cardinality information of all flows. The ith register in the array
is denoted by M [i], 0≤ i<m. The size of the registers is set based
on the type of estimators used [8, 11, 12] and the maximum range
of cardinality to be estimated. For example, in the vHLL solution,
the size of registers is five bits, in order to measure big cardinalities
up to 4 × 109. Each flow has s virtual registers that are randomly
selected from M through hash functions. These registers logically
form a virtual estimator, denoted as Mf , where f is the label of the
flow. The ith register of the virtual estimator, denoted as Mf [i],
0 ≤ i < s, is selected from M as follows:

Mf [i] = M [Hi(f)], (1)

where Hi(...) is a hash function whose range is [0,m). We want
to stress that Mf is not a separate data structure. It is merely a
logical construction based on registers selected from M , and it is
not explicitly constructed during online operation. In all our later
formulas, one should treat the notation Mf [i] simply as M [Hi(f)],
referring to a register in M .

The hash function Hi, 0≤ i< s, can be implemented from a
master function H(...) as follows:

Hi(f) = H(f ⊕R[i]) or

Hi(f) = H(f | i), (2)

where ‘|’ is the concatenation operator, ‘⊕’ is the XOR operator,
and R[i] is a constant whose bits differ randomly for different in-
dexes i. The master hash function H we have adopted in our exper-
iments is 64-bit MURMUR3 hash. According to an online technical
document, MURMUR3 performs better than many other hash func-
tions, including JENKINS’ LOOKUP3, CITY, and SPOOKY [20].

At the beginning of each measurement period, all registers are
reset to zeros. The arrival stream of elements is abstracted as a
sequence of 〈f, e〉 pairs, where f is a flow label and e is an element
of the flow. For example, if a router measures per-source flows
for their numbers of distinct destination addresses, it extracts the

421

source address of each arrival packet as the flow label and the des-
tination address from the IP header as the element to be recorded.
For each pair 〈f, e〉, we record e in one of the registers of Mf based
on the methods in [12], [8] or [11], depending on which one is used.

At the end of a measurement period, the register array M is
offloaded by a server for long-term storage. Given a flow label f in
offline query, we reconstruct its virtual estimator Mf by copying s
registers from M at indices Hi(f), 0≤ i< s. Let ns be the number
of distinct elements recorded by Mf , which is the flow’s cardinality
plus the noise introduced by other flows due to register sharing. Let
nf be the actual cardinality of flow f . The noise term is ns − nf .
We use the estimation formula from [12], [8] or [11] (depending on
which one is used) to give an estimation n̂s of ns. Below we focus
on noise estimation.

Let n be the sum of all flows’ cardinalities. From the flow f ’s
point of view, the elements of all other flows, (n − nf) of them,
are noise. Let Y be a random variable for the number of noise
elements recorded by an arbitrary register in M . When the number
of flows and the number of registers per estimator are both suf-
ficiently large and the cardinality of any flow is negligibly small
when comparing with n, Y approximately follows the binomial
distribution Bino(n − nf ,

1
m
), because each noise element has

approximately an equal chance to be recorded by any register due
to the random selection of registers by virtual estimators. Hence,

E(Y) =
n− nf

m
.

The total noise, ns − nf , is the sum of individual noises in the s
registers of Mf . Hence, ns − nf can be considered as the sum of
s independent random variables of Bino(n− nf ,

1
m
).

E(ns − nf) = sE(Y) = s
n− nf

m
(3)

By the law of large numbers in the probability theory, the relative

variance V ar(
ns−nf

E(ns−nf)
) approaches to zero when s is large. In

this case, E(ns − nf) can be approximated by an instance value,
ns − nf . We have

ns − nf ≈ n− nf

m
s

nf ≈ ms

m− s

(ns

s
− n

m

)

. (4)

We define a grand flow as the combination of all flows. With a
few hundreds of extra bytes and applying the HyperLogLog, we
can obtain an accurate estimation n̂ for n (see Table 1), while the
additional memory overhead is negligible when comparing with the
memory space M . Alternatively, since the elements of the grand
flow distribute approximately in uniform over M , we can use the
entire register array M as an estimator to give an estimation for n
(using HyperLogLog, for example).

Let n̂f be our estimation of nf . We have the following estima-
tion formula from (4).

n̂f =
ms

m− s
·
(n̂s

s
− n̂

m

)

(5)

In the next section, we will select vHLL, i.e., virtual HyperLogLog,
to discuss its operations and performance in details.

5. VIRTUAL HYPERLOGLOG ESTIMATOR
In this section, as an example, we apply the framework of virtual

estimators on HyperLogLog for a new solution, vHLL, based on
register-level sharing. This solution consists of two components:
one for recording the stream of packets in the virtual HyperLogLog

estimators, and the other for estimating the cardinality of an arbi-
trary flow f .

5.1 Record Flow Elements in Virtual Estimator
Consider a flow f . When a measurement period begins, all

registers in its virtual estimator Mf are reset to zeros. For each
arrival element e of flow f , we perform the hashing below:

H(e) = 〈x1x2...〉 (6)

p = 〈x1x2 . . . xb〉
q = 〈xb+1xb+2, . . .〉,

where 〈x1x2...〉 is binary format of the hash output H(e), p de-
notes the leading b bits with b equal to log2 s, and q represents
the remaining bits. Using the value of p, we can map e pseudo-
randomly to a register Mf [p mod s]. For clarity, we will breviate
Mf [p mod s] simply as Mf [p] afterwards.

The operation of recording e is simple: Let ρ(q) be the number
of leading zeros in q plus one; for example, if q = 001..., then
ρ(q) = 3. Clearly, the probability of ρ(q) = i is (1

2
)i, for ∀i > 0.

We update Mf [p] if its current value is smaller than ρ(q). Namely,

Mf [p] := max
(

Mf [p], ρ(q)
)

, (7)

where := is assignment operator. Hence, Mf [p] has recorded (one
plus) the longest run of leading zeros from any element mapped to
the register. Suppose Mf [p] = M [Hp(f)] as in (1), and Hp(f) =
H(f | p) as in (2). Combining (7), (1) and (2), we have

M [H(f | p)] := max
(

M [H(f | p)], ρ(q)
)

. (8)

This assignment requires two hash operations: H(e) for p and q in
(6), and H(f | p). It also requires at most two memory accesses,
reading M [H(f | p)] and writing M [H(f | p)] back if its value
changes. Note that the writing operation happens rarely since the
likelihood for ρ(q) > M [H(f | p)] to happen will decrease expo-
nentially as the register’s value increases.

Eq. (8) shows that the operations are actually performed on the
physical register array M , and the virtual estimator is logical in the
online recording phase.

5.2 Flow Cardinality Estimation
Given a flow label f for offline query, we construct Mf from the

stored M . Consider an arbitrary register Mf [i], 0≤ i< s. Any el-
ement mapped to this register had a probability of 1

2
Mf [i] to set the

register to its current value. Hence, the estimation for the number
of elements mapped to this register is 2Mf [i] [11].

Recall that ns is the total number of distinct elements that have
been recorded by the estimator Mf , including both elements in flow
f and those in other flows that share registers in Mf . In order to
estimate ns, the normalized harmonic mean is applied to aggregate
the estimations from all registers in Mf :

n̂s = αs · s2 ·
(

s−1
∑

j=0

2−Mf [j]
)−1

, (9)

where αs is a bias correction constant that equals

αs =
(

s

∫ ∞

0

(

log2

(2 + u

1 + u

))m

du
)−1

. (10)

The above equation for constant αs is complicated. Numerical
values are often used in practice: α16 = 0.673, α32 = 0.697,
α64 = 0.709, and αs = 0.7213/(1 + 1.079/s) for s≥ 128.

The estimator in (9) is good for large cardinalities, but it is severely
biased when dealing with small cardinalities [11]. For a small

422

cardinality, we treat Mf as a bitmap of s bits, with each register
Mf [i] converted to one bit, whose value is 1 when Mf [i]> 0 or
zero otherwise. The estimation formula is n̂s = −s log2 V , where
V is the fraction of bits in the bitmap that are zeros [22]. This
formula is used when the cardinality estimation by (9) is smaller
than 2.5s.

Recall that we can estimate the sum n̂ of all flow cardinalities
based on a separate estimator or simply from the whole array M
using (10) where n̂s is replaced with n̂, s is replaced with m, and
Mf is replaced with M . After computing both n̂s and n̂, we use
(5) to compute the estimated flow cardinality n̂f .

6. ESTIMATION BIAS AND VARIANCE
This section analyzes the bias and standard error of our vHLL

estimator. From [11], we have the following theorem.

THEOREM 1. Let ns be the number of distinct elements that are

mapped to a HyperLogLog estimator Mf . Suppose the number s
of registers in Mf is more than 16.

• If ns is sufficiently large, the estimate n̂s by (9) is asymptot-

ically almost unbiased in the sense that

1

ns

E(n̂s) = 1 + δ1(ns) + o(1),

where |δ1(ns)| < 5× 10−5 as soon as s≥ 16.

• The standard error defined as 1
ns

√

V ar(n̂s) satisfies

1

ns

√

V ar(n̂s) =
βs√
s
+ δ2(ns) + o(1),

where |δ2(ns)| < 5×10−4 as soon as s≥ 16. The constants

βs being bounded, with β16 = 1.106, β32 = 1.070, β64 =
1.054, β128 = 1.046, and β∞ = 1.039.

As stated in the HyperLogLog paper [11], the functions δ1 and δ2
represent oscillating functions of a tiny amplitude, and they can be

safely neglected for all practical purposes.

6.1 Estimation Bias
Given an arbitrary flow f , we know from Section 4 that ns is

the sum of the flow cardinality nf and a noise random variable
ns − nf with a binomial distribution of Bino(n − nf ,

s
m
). For

∀i ∈ [0, n− nf], we have

Prob{ns − nf = i} =

(

n− nf

i

)

(
s

m
)i(1− s

m
)n−nf−i. (11)

Under the condition of ns − nf = i, by Theorem 1, we have

E(n̂s |ns − nf = i) = (nf + i)
(

1 + δ1(nf + i) + o(1)
)

≈ nf + i, (12)

with a small error bounded by a ratio of 5× 10−5. Hence,

E(n̂s) =

n−nf
∑

i=0

E(n̂s |ns − nf = i)×Prob{ns − nf = i}

≈
n−nf
∑

i=0

(nf + i)×
(

n− nf

i

)

(
s

m
)i(1− s

m
)n−nf−i

= nf + (n− nf)
s

m
. (13)

The value of n̂ is estimated based on the entire array M or through
a separate estimator with hundreds of bytes (i.e., much more than

16 registers). From Theorem 1, we have E(n̂) = n(1 + δ1(n) +
o(1)) ≈ n, with a very small error bounded by a ratio of 5× 10−5.
From the estimation formula (5), we have

E(n̂f) =
ms

m− s

(E(n̂s)

s
− E(n̂)

m

)

≈ ms

m− s

(nf + (n− nf)
s
m

s
− n

m

)

= nf . (14)

Therefore, the vHLL estimator is approximately unbiased.

6.2 Estimation Variance
Next we derive the variance of n̂f .

V ar(n̂f) =
(ms

m− s

)2
(V ar(n̂s)

s2
+

V ar(n̂)

m2

)

(15)

=
(ms

m− s

)2
(E(n̂s

2)−
(

E(n̂s)
)2

s2
+

V ar(n̂)

m2

)

=
(m

m− s

)2
(

E(n̂s
2)−

(

E(n̂s)
)2

+ (
s

m
)2V ar(n̂)

)

With ∀i ∈ [0, n − nf), under the condition of ns − nf = i, by
Theorem 1, we have

1
nf+i

√

V ar(n̂s |ns − nf = i) = βs√
s
+ δ2(nf + i) + o(1)

=
βs√
s
≈ 1.04√

s
, (16)

where we use 1.04 to approximate βs, assuming s≥ 128, which is
always the case in our experiments later. Hence,

V ar(n̂s |ns − nf = i) ≈ 1.042

s
(nf + i)2. (17)

Similarly, we have

V ar(n̂) ≈ 1.042

m
n2, (18)

where m is the number of registers in the physical estimator for n,
and we let m≥ 128. Because E(n̂s

2 |ns = nf+i) = V ar(n̂s |ns−
nf = i) +

(

E(n̂s |ns − nf = i)
)2

, from (12) and (17), when s is
sufficiently large, we have

E(n̂s
2 | ns = nf + i) ≈ 1.042(nf + i)2

s
+ (nf + i)2

= (
1.042

s
+ 1)(nf + i)2.

Combining (11) with the above equation, we have

E(n̂s
2) =

n−nf
∑

i=0

E(n̂s
2 |ns − nf = i)Prob{ns − nf = i} (19)

≈
n−nf
∑

i=0

(
1.042

s
+1)(nf + i)2

(

n−nf

i

)

(
s

m
)i(1− s

m
)n−nf−i

= (
1.042

s
+ 1)

(

nf
2 + 2nfE(ns − nf) + E((ns − nf)

2)
)

= (
1.042

s
+ 1)

(

nf
2 + 2nf (n− nf)

s

m

+ (n− nf)
s

m
(1− s

m
) + (n− nf)

2(
s

m
)2
)

= (
1.042

s
+ 1)

(

(nf + (n−nf)
s

m
)2 + (n−nf)

s

m
(1− s

m
)
)

.

423

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

s : size of virtual estimator (x 1000)

n = 1 x 10
6

n = 2 x 10
6

n = 4 x 10
6

(a) Flow cardinality nf=1× 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

s : size of virtual estimator (x 1000)

n = 1 x 10
6

n = 2 x 10
6

n = 4 x 10
6

(b) Flow cardinality nf=2× 104

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500 2000

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

s : size of virtual estimator (x 1000)

n = 1 x 10
6

n = 2 x 10
6

n = 4 x 10
6

(c) Flow cardinality nf=4× 104

Figure 8: Relative standard error with respect to s, n, and nf

Applying (13), (18) and (19) to (15), we have

V ar(n̂f) ≈
(m

m− s

)2
(1.042

s

(

nf + (n− nf)
s

m

)2

+(n− nf)
s

m
(1− s

m
) + (

s

m
)2
1.042

m
n2
)

. (20)

Consider the three terms between the parentheses after
(

m
m−s

)2
.

We know that the noise ns − nf follows a binomial distribution
Bino(n − nf ,

s
m
), whose mean is given by (3) as (n − nf)

s
m

.
Hence, the first term is the estimation variance for the flow cardinal-
ity plus the mean noise. The noise variance is (n−nf)

s
m
(1− s

m
),

which is captured by the second term. The third term (s
m
)2 1.042

m
n2

is caused by the estimation n̂ for the grand flow.

6.3 Relative Standard Error
We define the relative standard error as

StdErr
(n̂f

nf

)

=

√

V ar(n̂f)

nf

. (21)

From (20) and (21), we also observe that the relative standard error
(or error in short) increases as the cardinality of grand flow n in-
creases, and it decreases as the cardinality of target flow nf grows.

Below we use some numerical examples to illustrate the above
observations and the interplay between different sources of estima-
tion error. Suppose the allocated memory is m = 256K. Consider
a target flow cardinality of nf = 104. Figure 8(a) shows the
numerically computed estimation error by (21) with respect to s
(the number of registers per virtual estimator) along the horizontal
axis and n (the combined cardinality of all flows) for different
curves. Starting from 16, as s increases, the error drops quickly,
thanks to improved estimation accuracy from the virtual estimator
Mf as predicted by Theorem 1. However, when s becomes further
larger (more than 256 in the figure), the rate of improvement drops
significantly, which can also be predicted by Theorem 1 with its
factor of improvement being 1√

s
. Moreover, as s increases, the

error caused by noise increases. Combining these two factors, we
observe that when s is relatively large (for a wide range from 500
to 2000 in the figure), its impact on the error becomes more or
less stabilized.

From Figure 8(a) to Figure 8(c), we increase nf and observe that
the error decreases, which means that the relative standard error
is smaller for flows of larger cardinalities (although their absolute

errors can still be larger). When n increases, the error increases,
as predicted.

7. EXPERIMENTAL EVALUATION
We have implemented the vHLL solution and the most related

work PMC [17]. vHLL is based on register-sharing, while PMC is

based on bit-level sharing. We compare their performance through
experiments using real network traces downloaded from CAIDA [1].
The traces are captured by a high-speed monitor named equinix-
sanjose (located in San Jose, CA, US), which is connected to a 10-
Gbit/s Ethernet backbone link. Each trace file captures the packets
in 1 minute. In order to create larger traces for our experiments,
we download 60 traces and combine them into 6 larger ones, each
for 10 consecutive minutes. The statistics of the large traces can be
found in Table 3.

Table 3: Trace Statistics

time(min) num of flows total cardinality mean flow cardinality

1-10 1473306 2675506 1.8

11-20 1013517 1856676 1.8

21-30 1648779 3005649 1.8

31-40 1562288 2881330 1.8

41-50 1612709 3280242 2.0

51-60 1612605 3280138 2.0

We consider per-source flows and measure the number of distinct
destinations that each source sends packets to. The distribution
of the flows with respect to the cardinality has been shown pre-
viously in Figure 5. We stress that the purpose of our experi-
ments is primarily technical — evaluating how accurate our vHLL
is on cardinality estimation, while the case study of measuring
per-source flows may find use in profiling scanners, identifying
popular hosts on the Internet (server sources send data to a large
number of clients), and detecting anomaly based on measurement
over consecutive periods, such as the detection of a worm-infected
host by observing that it suddenly deviates from normal behavior
by probing a large number of different destination addresses [6,27].

7.1 Estimation Accuracy in Tight Memory
We evaluate the impact of memory space on the accuracy of

cardinality estimation for vHLL and PMC. To make a fair compar-
ison between the two, they are allocated with the same memory to
process the CAIDA traces. For the proposed vHLL, we configure
the value of s to 512 by default, but will vary its value in later
experiments. Recall that m is the total number of registers in the
common pool. Its value depends on the overall available memory.
The average number of flows in all six traces is about 1.5 millions.
We vary the available memory space from 1.5 Mb to 0.75 Mb to
0.375 Mb to 0.15 Mb, such that the average memory per flow
is about 1 bit, 0.5 bit, 0.25 bit, and 0.1 bit, respectively. The
corresponding experimental results are presented in Figures 9, 10,
11, and 12, respectively. Again, each flow is represented by a point,
whose x-coordinate is the true cardinality and y-coordinate is the
estimated cardinality. The equality line is also shown. The closer a
point is to the line, the more accurate the estimation is.

424

In Figure 9, plot (a) shows the performance of vHLL with av-
erage memory of 1 bit per flow. The points are clustered around
the equality line (y = x), indicating good accuracy. Plot (b) shows
the performance of PMC with the points scattering away from the
equality line. Plot (c) compares the two solutions in terms of esti-

mation bias. The vertical axis is the relative bias defined as E(
nf−n̂f

nf
).

Since there are too few flows for some cardinalities (especially the
large ones) in our Internet trace, we divide the horizontal axis into
measurement bins of width from 5000 on the high end in the plots
to 1000 in the low end to ensure that each bin has a sufficient
number of flows 25, and measure the bias and standard deviation
in each bin. In general, PMC has larger bias than vHLL. Plot (d)
compares the two solutions in terms of accuracy. The vertical axis
is the relative standard error of the estimation results, which is

defined as

√
V ar(n̂f)

nf
. The measurement also uses the bin method

as previously explained. vHLL has much smaller error than PMC.
This result is expected because according to [17], the performance
of PMC is related to the so-called fill rate, i.e., the fraction of bits
that are set to ones in the common bit pool. The intended fill rate for
PMC to perform well is in the range of (0, 0.5). When the memory
is 0.5 bit per flow, the fill rate is about 0.76 in our experiment, which
explains why PMC performs relatively poor. Specifically, when the
actual cardinality is 10000, 20000 and 30000, the measured errors
by PMC are 0.22, 0.28 and 0.23, respectively, while those by vHLL
are 0.055, 0.043 and 0.044, respectively.

Figure 10 makes the same set of comparison with 0.5 bit per
flow. The performance of vHLL remains good, whereas PMC no
longer works as its fill rate becomes 0.9. For example, when the
actual cardinality is 10000, 20000 and 30000, the measured errors
by PMC are 0.74, 0.67 and 0.87, respectively, while those by vHLL
are 0.073, 0.065 and 0.049, respectively.

As the average memory per flow decreases to 0.25 bit and further
to 0.1 bit, Figures 11-12 show that vHLL still works with gradually
deteriorating accuracy. For 0.25 bit per flow, when the actual cardi-
nality is 10000, 20000 and 30000, the measured errors by vHLL are
0.10, 0.095 and 0.096, respectively. For 0.25 bit per flow, when the
actual cardinality is 10000, 20000 and 30000, the measured errors
by vHLL are 0.15, 0.13 and 0.10, respectively. We also point out
that although the relative standard errors for small flows are higher,
it does not entirely diminish the usefulness of these estimations
because the absolute errors for small flows are in fact much smaller
than those of large ones. For example, by examining the first plot
of each figure, one will not mistaken a small flow for a large one
due to the modest absolute error.

7.2 Impact of Value s on vHLL
Our second set of experiments evaluate the impact of s (number

of registers per virtual estimator) on estimation accuracy. We repeat
the experiment in Figure 10(a) with average memory of 0.5 bit per
flow, but change s from 512 to values: 128, 256 and 1024. The
results are shown in Fig. 13(a)-(c), respectively. Corresponding
relative standard errors are shown in Figure 14(a)-(c), respectively.

We observe that when s is relatively small at 128, the estima-
tion accuracy in Figure 13(a) is noticeably worse than that in Fig-
ure 10(a), which is evident from the fact that the points of the for-
mer surround the equality line less tightly. Quantitatively, the errors
in Figure 14(a) with s = 128 are larger than those in Figure 14(d)
for vHLL with the default s = 512. For example, when the actual
cardinality is 20000, the relative standard error under s = 128 is
10.9%, while that under s = 512 is 6.5%.

However, when s becomes large enough (more than 256), for a
wide range of values, the impact of s on the estimation accuracy

stabilizes, which is evident when comparing Figure 13(b), Fig-
ure 13(c), and Figure 10(a), whose s values are 256, 512 and 1024,
respectively. For example, when the actual cardinality is 20000,
their errors are 8.1%, 6.5% and 5.2%, based on from Figure 14(b),
Figure 14(c) and Figure 10(d), respectively.

The above observations are consistent with our analysis in Sec-
tion 6 and the numerical results in Figure 8 (which has different
parameters though). The reasons for these observations have been
explained in Section 6.3 and will not be repeated here.

7.3 Impact of Overall Traffic
Our third set of experiments investigate how the overall traffic

volume affects estimation accuracy. The overall traffic volume is
characterized by n, the sum of all flows’ cardinalities, because
duplicates in the traffic must be removed in our context. The greater
the value of n is, the larger the average noise level on each register
will be, which will in turn negatively affect the estimation accuracy
of a virtual estimator consisting of s registers.

We artificially increase the cardinality of each flow by a factor
randomly chosen from the range of [1, 3], which doubles the cardi-
nality on average. The value of n is thus expected to be doubled.
We then repeat the experiment in Figure 10(a) with average mem-
ory of 0.5 bit per flow. The results are presented in Figure 15,
where plot (a) shows raw estimated cardinalities, plot (b) shows the
estimation bias, and plot (c) shows the relative standard error. The
bias remains close to zero, particularly for large flows. The error is
modest, but larger than that in Figure 10(d) where the value of n is
half, which confirms our prediction above.

We further enlarge n by increasing the cardinality of each flow
with a factor randomly chosen from the range of [1, 7]. The value
of n is expected to be increased by four folds. The results are
presented in Figure 16. Again the bias is close to one, but the error
increases.

7.4 A Case Study: Detect Super Destinations
Our last set of experiments compare vHLL and PMC based on a

hypothetical application for detecting so-called super destinations.
In this case study, we consider per-destination flows and measure
the number of distinct sources that access a destination address in
each measurement period, using the same Internet traces. Suppose
the policy is to report all the destinations that have been accessed
by 5,000 or more sources within a measurement period. These
super destinations may be used for profiling the popular servers
(or services) in the network or triggering anomaly warnings (such
as potential DDoS attacks) if they were never reported as super
destinations before.

If a destination with a cardinality less than 5,000 is reported, it
is called a false positive. If a destination with a cardinality 5,000
or above is not reported, it is called a false negative. We define the
false positive ratio (FPR) as the number of false positives divided
by the total number of destinations reported. Based on this defini-
tion, if FRP is 0.1, it means 10% of the reported destinations should
not have been reported. We define the false negative ratio (FNR) as
the number of false negatives divided by the number of destinations
whose cardinalities are 5,000 or more.

The experimental results are shown in Table 4. Clearly, vHLL
outperforms PMC by a wide margin when we take both FPR and
FNR into consideration. The FNR is close to zero for PMC when
the memory is 0.5 bit per flow or less. That is because PMC be-
comes a positively biased estimator in such a small memory as
depicted in Fig. 10(b). Its FPR is 73.7% for 0.5 bit per flow and
99.2% for 0.25 bit per flow.

425

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) vHLL with 1 bit per flow

1

5

10

20

30

40

1 5 10 20 30 40
es

ti
m

at
ed

 c
ar

d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

PMC

(b) PMC with 1 bit per flow

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL
PMC

(c) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL
PMC

(d) Estimation accuracy

Figure 9: Compare vHLL and PMC with 1 bit per flow.

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) vHLL with 0.5 bit per flow

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

PMC

(b) PMC with 0.5 bit per flow

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL
PMC

(c) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL
PMC

(d) Estimation accuracy

Figure 10: Compare vHLL and PMC with 0.5 bit per flow.

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) vHLL with 0.25 bit per flow

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

PMC

(b) PMC with 0.25 bit per flow

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL

(c) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(d) Estimation accuracy

Figure 11: Compare vHLL and PMC with 0.25 bit per flow

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) vHLL with 0.1 bit per flow

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

PMC

(b) PMC with 0.1 bit per flow

-1

-0.5

 0

 0.5

 1

1 5 10 20 30 40

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL

(c) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(d) Estimation accuracy

Figure 12: Compare vHLL and PMC with 0.1 bit per flow.

426

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) s = 128.

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(b) s = 256

1

5

10

20

30

40

1 5 10 20 30 40

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(c) s = 1024

Figure 13: Cardinality estimation with different values of s under average memory of 0.5 bit per flow

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(a) s = 128

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(b) s = 256

 0

 0.2

 0.4

 0.6

 0.8

 1

1 5 10 20 30 40

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(c) s = 1024

Figure 14: Relative standard errors of cardinality estimation with different values of s under average memory of 0.5 bit per flow

Table 4: False positive ratio and false negative ratio with

respect to memory cost

Memory (bit per flow)
PMC vHLL

FPR FNR FPR FNR

0.25 0.992 0.048 0.039 0.026

0.5 0.737 0.045 0.034 0.013

1 0.039 0.044 0.012 0.014

vHLL also has non-negligible FPR and FNR since its estimated
cardinality is not exactly the true cardinality. To confine impre-
ciseness to a certain degree, the policy may be relaxed to report all
destinations whose estimated cardinalities are 5000 × (1 − ǫ) or
above, where 0 ≤ ǫ < 1. If a destination less than 5000× (1− 2ǫ)
gets reported, it is called an ǫ-false positive. If a destination with a
true cardinality 5,000 or more is not reported, it is called an ǫ-false

negative. The FPR and FNR are defined the same as before. The
experimental results for ǫ = 10% are shown in Table 5, and those
for ǫ = 20% are shown in Table 6, where the FPR and FNR for
vHLL are merely 0.7% and 0.6%, respectively, when the memory
is 0.25 bit per flow. In Table 6, when the memory grows to at least
0.5 bit per flow, FPR and FNR for vHLL become zeros.

8. CONCLUSION
In this paper, we have proposed a unified framework for devel-

oping efficient solutions to the problem of estimating cardinalities
for a very large number of streaming flows. From this framework,
we examine a particularly powerful solution called virtual Hyper-
LogLog (vHLL) in details. Through analysis and experimental
evaluation, we show that vHLL can use a compact memory space
(down to 0.1 bit per flow on average) to estimate the cardinalities
of flows with wide range and reasonable accuracy. This new ca-
pability enables on-chip implementation of cardinality estimation
needed for online applications that can keep up with the line speed
of modern routers, or allow efficient processing of big data by

Table 5: ǫ = 10%, False positive ratio and false negative ratio

with respect to memory cost

Memory (bit per flow)
PMC vHLL

FPR FNR FPR FNR

0.25 0.992 0.010 0.014 0.010

0.5 0.846 0.029 0.003 0.003

1 0.013 0.017 0.003 0.002

Table 6: ǫ = 20%, False positive ratio and false negative ratio

with respect to memory cost

Memory (bit per flow)
PMC vHLL

FPR FNR FPR FNR

0.25 0.991 0.003 0.007 0.006

0.5 0.953 0.021 0.0 0.0

1 0.010 0.002 0.0 0.0

using low-cost commodity computers instead of expensive high-
performance computing systems.

9. ACKNOWLEDGMENTS
This work is supported in part by National Science Foundation

of United States under grants CNS-1115548 and CNS-1409797.
The authors also would like to thank the Key Laboratory of Com-
puter Network and Information Integration (Southeast University),
Education Ministry of China, for financial support.

10. REFERENCES
[1] CAIDA UCSD anonymized 2013 internet traces on Jan. 17.

http://www.caida.org/data/passive/passive_2013_dataset.xml.
[2] Google trends. http://www.google.com/trends/.
[3] Z. Bar-yossef, T. S. Jayram, R. Kumar, D. Sivakumar,

L. Trevisan, and Luca. Counting distinct elements in a data
stream. Proc. of RANDOM: Workshop on Randomization and
Approximation, 2002.

427

5
10

20

30

40

50

60

70

5 10 20 30 40 50 60 70

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) n is doubled

-1

-0.5

 0

 0.5

 1

5 10 20 30 40 50 60 70

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL

(b) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20 30 40 50 60 70

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(c) Estimation accuracy

Figure 15: Cardinality estimation with n doubled under average memory of 0.5 bits per flow

5
10

20

30

40

50

60

70

5 10 20 30 40 50 60 70

es
ti

m
at

ed
 c

ar
d
in

al
it

y
 (

x
1
0
0
0
)

actual cardinality (x1000)

vHLL

(a) n is increased by four folds

-1

-0.5

 0

 0.5

 1

5 10 20 30 40 50 60 70

re
la

ti
v
e

b
ia

s

actual cardinality (x1000)

vHLL

(b) Estimation bias

 0

 0.2

 0.4

 0.6

 0.8

 1

5 10 20 30 40 50 60 70

re
la

ti
v
e

st
an

d
ar

d
 e

rr
o
r

actual cardinality (x1000)

vHLL

(c) Estimation accuracy

Figure 16: Cardinality estimation with n increased four folds under average memory of 0.5 bits per flow

[4] K. Beyer, P. J. Haas, B. Reinwald, Y. Sismanis, and
R. Gemulla. On synopses for distinct-value estimation under
multiset operations. Proc. of ACM SIGMOD, 2007.

[5] G. Cormode and S. Muthukrishnan. An improved data stream
summary: the Count-Min sketch and its applications. Proc. of
LATIN, 2004.

[6] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou,
L. Zhang, and P. Barham. Vigilante: End-to-end containment
of internet worms. SIGOPS Operating Systems Review,
39(5), October 2005.

[7] X. Dimitropoulos, P. Hurley, and A. Kind. Probabilistic lossy
counting: An efficient algorithm for finding heavy hitters.
ACM SIGCOMM Computer Communication Review, 38(1),
2008.

[8] M. Durand and P. Flajolet. Loglog counting of large
cardinalities. ESA: European Symposia on Algorithms, pages
605–617, 2003.

[9] C. Estan and G. Varghese. New directions in traffic
measurement and accounting. Proc. of ACM SIGCOMM,
August 2002.

[10] C. Estan, G. Varghese, and M. Fish. Bitmap algorithms for
counting active flows on high-speed links. IEEE/ACM
Transactions on Networking (TON), 14(5):925–937, 2006.

[11] P. Flajolet, E. Fusy, O. Gandouet, and F. Meunier.
HyperLogLog: The analysis of a near-optimal cardinality
estimation algorithm. Proc. of AOFA: International
Conference on Analysis Of Algorithms, 2007.

[12] P. Flajolet and G. N. Martin. Probabilistic counting
algorithms for database applications. J. Comput. Syst. Sci.,
31(2), 1985.

[13] W. D. Gardner. Researchers transmit optical data at 16.4
Tbps. InformationWeek, February 2008.

[14] S. Heule, M. Nunkesser, and A. Hall. HyperLogLog in
practice: Algorithmic engineering of a state-of-the-art
cardinality estimation algorithm. Proc. of EDBT, 2013.

[15] T. Li, S. Chen, and Y. Ling. Fast and compact per-flow traffic
measurement through randomized counter sharing. in Proc.
of IEEE INFOCOM, 2011.

[16] T. Li, S. Chen, W. Luo, M. Zhang, and Y. Qiao. Spreader
classification based on optimal dynamic bit sharing.

IEEE/ACM Transactions on Networking, 21(3):817–830,
2013.

[17] P. Lieven and B. Scheuermann. High-speed per-flow traffic
measurement with probabilistic multiplicity counting. Proc.
of IEEE INFOCOM, pages 1–9, 2010.

[18] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and
A. Kabbani. Counter braids: A novel counter architecture for
per-flow measurement. Proc. of ACM SIGMETRICS, June
2008.

[19] Y. Lu and B. Prabhakar. Robust counting via counter braids:
An error-resilient network measurement architecture. Proc. of
IEEE INFOCOM, April 2009.

[20] Neustar.biz. How to choose a good hash function: Part 3.
http://research.neustar.biz/2012/02/02/choosing-a-good-hash-
function-part-3.

[21] N. Ntarmos, P. Triantafillou, and G. Weikum. Counting at
large: Efficient cardinality estimation in internet-scale data
networks. Proc. of ICDE, pages 40–40, 2006.

[22] K.-Y. Whang, B. T. Vander-Zanden, and H. M. Taylor. A
linear-time probabilistic counting algorithm for database
applications. ACM Transactions on Database Systems,
15(2):208–229, 1990.

[23] Q. Xiao, Y. Qiao, M. Zhen, and S. Chen. Estimating the
persistent spreads in high-speed networks. Proc. of IEEE
ICNP, pages 131–142, 2014.

[24] Q. Xiao, B. Xiao, and S. Chen. Differential estimation in
dynamic RFID systems. In Proc. of INFOCOM
(mini-conference), pages 295–299, 2013.

[25] M. Yoon, T. Li, S. Chen, and J.-K. Peir. Fit a spread
estimator in small memory. Proc. of IEEE INFOCOM, 2009.

[26] Q. Zhao, J. Xu, and A. Kumar. Detection of super sources
and destinations in high-speed networks: Algorithms,
analysis and evaluation. IEEE JASC, 24(10):1840–1852,
2006.

[27] C. C. Zou, L. Gao, W. Gong, and D. Towsley. Monitoring
and early warning for internet worms. Proc. of the 10th ACM
Conference on Computer and Communications Security,
2003.

428

