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a b s t r a c t

We consider a two-tier content distribution system for distributing massive content, con-
sisting of an infrastructure content distribution network (CDN) and a large number of
ordinary clients. The nodes of the infrastructure network form a structured, distributed-
hash-table-based (DHT) peer-to-peer (P2P) network. Each file is first placed in the CDN,
and possibly, is replicated among the infrastructure nodes depending on its popularity.
In such a system, it is particularly pressing to have proper load-balancing mechanisms
to relieve server or network overload. The subject of the paper is on popularity-based file
replication techniques within the CDN using multiple hash functions. Our strategy is to set
aside a large number of hash functions. When the demand for a file exceeds the overall
capacity of the current servers, a previously unused hash function is used to obtain a
new node ID where the file will be replicated. The central problems are how to choose
an unused hash function when replicating a file and how to choose a used hash function
when requesting the file. Our solution to the file replication problem is to choose the
unused hash function with the smallest index, and our solution to the file request problem
is to choose a used hash function uniformly at random. Our main contribution is that we
have developed a set of distributed, robust algorithms to implement the above solutions
and we have evaluated their performance. In particular, we have analyzed a random binary
search algorithm for file request and a random gap removal algorithm for failure recovery.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

One of the distinct trends related to the Internet is that
it is being applied to the transfer of more and more mas-
sive content. This can be packaged DVD movies that Holly-
wood sells online, long and high quality streaming content,
e.g., recorded TV programming, long-running video confer-
encing sessions, mountains of scientific data and all other
automatically collected data such as consumer, market or
economic data. There are two basic approaches to the dis-
tribution of such content. The first is by an overlay, infra-
structure content distribution network (CDN), such as
Akamai [1], Coral [10] or CoBlitz [25], where the servers
. All rights reserved.
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in the infrastructure network interact with each other to
replicate or cache the file. Requesting clients retrieve the
file from a nearby server. The second approach is by a
peer-to-peer (P2P) file-sharing network, such as BitTorrent
[4] or Gnutella [12]. In this approach, there is no distinction
between an infrastructure node or a regular client. Each
peer can download the file or pieces of the file from a num-
ber of peers in parallel, and at the same time, serve the file
or its pieces to some other peers. This is known as collabo-
rative download or swarming.

We believe that both content distribution approaches
will continue to coexist. In particular, the infrastructure-
based approach is essential for commercially viable con-
tent distribution, for reasons such as service reliability
and quality, accountability, or security. Hence, we consider
a two-tier content distribution system consisting of an
infrastructure CDN and a large number of ordinary clients.
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The nodes of the infrastructure network form peering rela-
tionship as in a structured, distributed-hash-table-based
(DHT) P2P network, such as Chord [35], CAN [30], Pastry
[31] or Tapestry [38]. Each file is first placed in the CDN,
and possibly, is replicated among the infrastructure nodes
depending on its popularity, i.e., the number of requests
from the clients. A client sends its file request to the
CDN, which routes the request to a node that contains
the file. The client can then retrieve the file from the CDN
node. Advanced P2P distribution techniques, such as
swarming or parallel download, can be used among the
infrastructure nodes when replicating a file in the CDN,
or between the infrastructure nodes and the clients when
downloading a file. However, the clients are not required
to serve downloaded files to other clients or CDN nodes,
even though it is possible to do so.

In a large CDN for massive content distribution, it is par-
ticularly pressing to have proper load-balancing mecha-
nisms to relieve server or network overload. The subject of
the paper is on popularity-based file replication techniques
using multiple hash functions on a DHT-based CDN. DHT
has already been introduced into the ad-hoc file-sharing
systems such as BitTorrent. Its introduction into the CDN
is similarly motivated by many desirable characteristics of
DHT-based structured networks, such as allowing fast re-
source location, decentralized massive computation or data
access, large-scale resource sharing, simplified routing, ease
of management, and improved service quality and fault-tol-
erance due to path redundancy. At a deeper level, DHT gives
every node and every piece of resource (e.g., file) a numeric
ID; DHT-based networks can be viewed as distributed data
structures for managing these IDs. The desirable character-
istics of DHT come from clever data structures.

The envisioned framework of a DHT-based CDN and a
popularity-based file replication strategy is in contrast to
traditional, unstructured CDNs such as Akamai [1], or
web caching systems [34], which replicate the files at
essentially all edge servers where demand exists.1 The
main motivation behind our framework is that the tradi-
tional CDNs do not scale well or become inefficient for mas-
sive content distribution, as partially discussed in [25]. We
will justify this in more details in Section 2.1.

In a DHT-based network, file placement is done by
inserting the file into the distributed-hash-table. More spe-
cifically, a hash function is first applied to the file (e.g., the
file name) and the returned hash value becomes the file ID.
The file is then placed at a node that owns the range of
hash values containing the file ID. Searching for a file (or
locating a node) is to obtain the hash value of the file (or
the node, respectively) and to route a query with the hash
value as the destination address. Thus, the combination of
hashing and structured routing eliminates the need of
query flooding or establishing file directories. Compared
with the original DHT-based networks for P2P file-sharing
networks, in our design of the DHT-based CDN, the files
themselves instead of the file pointers are placed in the
network according to their IDs.
1 This is roughly true for web CDNs if we ignore the business dynamics,
such as the service contract.
The idea of file replication with multiple hash functions
is that, if k replicas of a file are needed, we will hash the
original file with (at least) k hash functions, obtain k file
IDs, and place the file in k nodes. One of the challenges is
that it is not easy to decide the number of hash functions
needed, since it is file dependent. The strategy assumed
by this paper is that a large number of hash functions are
set aside, enough for the most demanded file (e.g., the
number being m = 232). With respect to a particular file,
how many of these functions are actually used depends
on the popularity of the file. We expect that most of them
are not used for the majority of the files.

The focus of this paper is not in re-discovering the idea
of using multiple hash functions for file replication, but in
solving the unavoidable technical problems related to the
use and management of the hash functions. Two central
problems addressed are: How does a node choose one of
the unused hash functions when replicating a file, or one
of the used hash functions when requesting a file? Many
solutions may be possible. But, they usually come with dif-
ferent performance-complexity tradeoffs, which are often
difficult to understand. The contribution of this paper is
that we propose simple and robust solutions, and more
importantly, we thoroughly analyze the solutions and
demonstrate they have very good performance.

Specifically, our solution to the former problem is to
choose the first unused hash function for file replication.
Assuming the IDs of the hash functions are 1, 2, . . ., m, this
rule leads to the following invariance: When k hash func-
tions are being used, they must have IDs 1, 2, . . ., k. Our
solution to the latter problem is to choose a used hash
function uniformly at random. We develop distributed
algorithms that implement the above solutions and evalu-
ate their performance. A key algorithm is a random binary
search algorithm. Furthermore, for robustness in coping
with node failures or the dynamics of node arrival and
departure, we invent a random gap removal algorithm
and evaluate its performance.

The paper is organized as follows. In Section 2, we re-
view related works. In Section 3, we describe three algo-
rithms governing the use and management of the hash
functions. In Section 4, we evaluate the performance of
the algorithms. In Section 5, we describe simulation results
that compare our multiple hash function-based load-bal-
ancing approach to on-demand caching plus replication
at neighbors. The conclusion is drawn in Section 6.
2. Background

2.1. Content distribution techniques

Traditional CDNs such as Akamai [1] and Coral [10], or
web caching systems [34] mainly aim at distributing smal-
ler web-related files and are not quite suitable for distrib-
uting massive files (see [25]). They typically replicate all
files that are requested by clients, regardless of the request
frequencies, at every edge server to improve the response
time perceived by the clients. For massive content, this ap-
proach does not scale well due to the limitation in the
memory or disk cache, or network bandwidth. At the min-
imum, it is wasteful.
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Instead, one should use popularity-based replication,
taking advantage of the skew in the popularity of different
files, as proposed for other systems [17,36]. This approach
requires efficient file location service, whereas earlier
CDNs only require the DNS-based server location service.
In this paper, we assume a DHT-based CDN for file place-
ment and location service, as apposed to an unstructured
network that requires query flooding, a centralized direc-
tory or more static DNS-like lookup service. Many recent
distributed file/storage systems, file-sharing systems and
CDNs start to employ the DHT for file lookup, for instance,
Coral [10], CFS [9], PAST [32] and OceanStore [21], because
it allows fast, decentralized lookup. Other desirable charac-
teristics of DHT-based networks include simplified routing,
a small network diameter, path redundancy, fault-toler-
ance, scalability, and ease of management. A sample of
such networks include Chord [35], Tapestry [38], Pastry
[31], CAN [30], Koorde [16], ODRI [23], Ulysses [20], and
FISSIONE [22].

Since our CDN is a P2P network, file replication among
the CDN nodes can employ many techniques used in P2P
collaborative file distribution. The advantages of collabora-
tive distribution over a conventional single-server scheme,
or even a tree-based multicast scheme, have been well
established. For instance, it avoids server or network over-
load, achieves higher throughput or faster distribution
speed, and is more resilient to link failure, frequent node
departure, and traffic fluctuation. A sample of P2P collabo-
rative distribution systems include BitTorrent [4], Split-
Stream [5], FastReplica [7], Bullet [19], Bullet’ [18],
Slurpie [33], ChunkCast [8], CoBlitz [25] and Julia [3]. An
abstract problem in many of these works is how to distrib-
ute a file to all nodes as fast as possible. This is different
from our problem, which concerns the distribution of a file
to a subset of the CDN nodes based on its popularity.
2.2. Existing load-balancing techniques

Relevant file replication strategies that have been pro-
posed previously can be summarized into three categories:
(i) caching, (ii) replication at neighbors or nearby nodes,
and (iii) replication with multiple hash functions. A file
can be cached at nodes along the route of the publishing
message when it is first published, or more typically, at
nodes along the routes of query messages when it is re-
quested. In approach (ii) above, when a node is overloaded
with the requests to a file, it replicates the file at its neigh-
bors, or at other nodes that are close in the ID space such as
the successors or neighbor’s neighbors. CAN and Chord
mainly use strategy (ii), complemented by (i) and (iii).2

Tapestry uses strategy (ii) and (iii). Following the sugges-
tions in Chord, CFS [9] replicates a file at k successors of
the original server and also caches the file on the search
path. PAST [32], which is a storage network built on Pastry,
replicates a file at k numerically closest nodes of the original
server and caches the file on the insertion and the search
paths. In the Plaxton network in [26], the replicas of a file
2 File replication in these and other structured networks is also
(sometimes mainly) for the purpose of fault-tolerance.
are placed at directly connected neighbors of the original
server and it is shown that the time to find the file is mini-
mized. The replication strategies used in Coral [10] and Bee-
hive [28] belong to the class of strategy (ii). Both systems
replicate an object at its neighbors along the lookup tree.

Each of these strategies has its advantages and disad-
vantages, and in real systems, they can be used in combi-
nation to complement each other. Caching is often simple
and can improve the response time of the queries if done
properly. However, a naive caching algorithm cannot be a
complete solution to the load-balancing problem, because
even a good cache hit ratio, say 80%, still leaves 20% of
the requests going to the original server for the file, which
may overload the server many times beyond its capacity.
Replication at neighbors does not have the cache-miss
problem, if the file is replicated at all neighbors of the ori-
ginal server. However, in most proposed structured P2P
networks, the load to each of the neighbors is not evenly
distributed. In general, it is difficult to achieve truly bal-
anced load with this approach because the assignment of
requests to nodes depends on many factors and is not
tightly controlled. Furthermore, even after the nodal hot-
spot is removed, the routing hotspot may still remain be-
cause all requests are directed to some neighborhood of
the original server.

The main advantage of replication with hash functions
is that, with uniform hash functions, copies of the file are
uniformly distributed over the network, and with uniform
use of the hash functions, file requests are also uniformly
distributed over the set of replication servers for the file.
The disadvantage is that the response time for queries is
increased, as we will see later. But, response time is not a
serious concern for large download, and can also be im-
proved by parallel requests. Genuine uniform hashing is
not able to preserve locality information, which is useful
for assigning clients to nearby servers. However, some
form of uniform hashing that maintains the locality infor-
mation is possible, but is considered outside the scope of
this paper.

In [17,6] and [27], file replication is performed through
multiple hash functions, which are organized in a tree. This
results in the replication servers being organized into a
tree. In our case, the replication servers have no topological
relationship. The fine dynamic replication (FDR) strategy
introduced in [37] is also based on multiple hash functions.
FDR is implemented on dedicated servers called request
redirectors, which maintain information on server avail-
ability for each object and server load. Such information
may not be accurate at all time and may not be consistent
among the redirectors, which may cause unnecessary over-
load on some servers. On the other hand, there is no need
of dedicated servers with our algorithm. The only informa-
tion each client has is the set of hash functions. Server
availability can be found by random binary search and ser-
ver load is monitored by the server itself, which is always
accurate. Overall, our algorithms are highly decentralized
and keep minimum state information without loss of accu-
racy of needed information, and therefore, should be more
robust against failures and other contingencies.

Another complementary load-balancing technique is to
migrate the files in a heavily-loaded server to lightly loaded
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servers [9,29,13]. There, the nodal overload is caused by
having too many files mapped to the node rather than
by having too many requests for one or a few files. Since
those papers focus on a particular kind of nodal hotspot
problem that is different from our file hotspot problem,
their technique is orthogonal but can be complementary
to our algorithms.
3 bzc is the floor of the real number z, i.e., the largest integer not
exceeding z.
3. File replication, request and failure recovery
algorithms

Our goal is to replicate a popular file into multiple cop-
ies and store them in different nodes, with the help of m
uniform hash functions, denoted by h1;h2; . . . ;hm, where
m is a large enough number, say 232, so that no file will
ever need more than m copies. It is not hard to have a fam-
ily of such functions. One way is to use one hash function,
h, but append a number i to the argument of the hash func-
tion, where i = 1,2, . . .,m. For instance, if the argument is
the file name, foo, then hðfoo1Þ;hðfoo2Þ; . . . ;hðfoomÞ gives
m hash values for the file. The number i is called the ‘‘salt”
value in [38]. For an in-depth discussion on creating proper
hash functions, the readers are referred to [17].

Since m is a very large number, we do not want to rep-
licate every file m times. Instead, we will take the popular-
ity-based replication strategy [17,36]. The basic idea is
that, every node keeps track the popularity of each file
and replicates the file when the number of requests ex-
ceeds a threshold. As a result, the number of replicas pro-
duced depends on the popularity of the file. The focus of
the paper is on hash function usage and management un-
der this file replication strategy. One must consider two
important questions. First, when requesting a file, how
does the client quickly find a used hash function? Second,
when the current servers cannot handle the requests for
the file, how does the network replicates the file to other
nodes, with the help of the unused hash functions?

With respect to a fixed file, let us call a CDN node that
already contains a copy of the file a filled node. Otherwise,
it is called an empty node. In the so-called push strategy, file
replication is initiated by an overloaded filled node: It at-
tempts to push a copy of the file to an empty node. Alter-
natively, upon seeing many requests, an empty node can
locate a filled node and make a copy of the file. This is
called the pull strategy. In practice, both strategies should
be combined. We will mainly explain the algorithms in
the push strategy since they are more complex and also
provide the essential ingredients for the pull strategy.

3.1. Replication algorithm

This sub-section gives an answer to the second question
raised above. The goal of our file replication algorithm is
that, if k hash functions are used for replication, they must
be h1;h2; . . . ; hk. The rationale for this will become apparent
when we discuss how to use the hash functions to access
the file in Section 3.2. With this goal, in order to push a file
to an empty node, the overloaded filled node must first find
an unused hash function. Again, assume k hash functions
are currently used, h1; . . . ; hk. The filled node must discover
the number k and use the hash function hkþ1. It can do so by
executing binary search for k between 1 and m, which takes
Oðlog mÞ steps. More specifically, the node runs the
find_k(f, 1, m) algorithm, to find the number k, where f
is the file. Recall that the binary search algorithm maintains
the current search interval s; sþ 1; . . . ; t, where, in the first
search step, s = 1 and t = m. In each step, the algorithm tries
to find out if hi is used, where i ¼ bðsþ tÞ=2c.3 This is accom-
plished by routing the query with the hiðf Þ as the destination
address in the infrastructure CDN. If the result of the query
indicates that hi is not used (i.e., file f is not present at the
node that owns hiðf Þ.), the original node calls find_k(f, s,
i) and t is set to be i. On the other hand, if the result of the
query indicates that hi is used, the original node calls
find_k(f, i, t), and s is set to be i.

There are a number of well-known ways for a node to
decide if it is overloaded. We assume a generic method:
If the measured request rate is above a pre-defined thresh-
old, then the node is overloaded.
3.2. File request algorithm: random binary search based hash
function usage

We propose the following hash function usage scheme.
First, the file replication algorithm ensures that the hash
functions are used in increasing order of their indices. With
this and assume that hash functions h1; . . . ;hk are used for
f, the goal of the file request algorithm is to choose one of
the k used hash functions uniformly at random. Assuming
each hash function maps the file f to a distinct node, then
each filled node sees the same number of requests on aver-
age. To achieve this objective, the requesting node calls
search_f(f, m), shown in Algorithm 1, which is a random
version of binary search. The function uniform_ran-
dom(l, u) returns an integer between l and u, inclusive,
uniformly at random. The function query_nd(v) returns
the node that contains the hash value v.

Algorithm 1. search_f(f, u)

u � uniform_random(1, u);
nd � query_nd(hu(f));
if f exists at node nd then

return nd
else if u == 1 then

f cannot be found
else

search_f(f, u)
end if

The idea of search_f(f, u) is that we first pick a ran-
dom number between 1 and m, say i1. If hi1 is not used, in
the next iteration, we pick a number between 1 and i1 ran-
domly, say i2. If hi2 is not used, in the next iteration, we pick
a number between 1 and i2 randomly. The algorithm goes
on until a used hash function is returned or until it discov-
ers that none of the hash functions is used.
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3.3. Failure handling: the gap removal algorithm

The hash function usage scheme presented in Section
3.1 and 3.2 is adequate if no node ever leaves the P2P net-
work unexpectedly. Otherwise, the files of the failed node
may not be moved to appropriate nodes to ensure their
continued availability. From the point of view of the hash
functions, node failure may create gaps in the sequence
of used hash functions.4 Without proper repair, the gaps
will accumulate over time and will likely cause the binary
search algorithm to fail, undermining the effectiveness of
the load-balancing scheme. For instance, imagine the case
where the hash functions h2 and h4 are in use and h1 and
h3 are not. Suppose, when applied to the file f, they each cor-
respond to a different node. Then, there is a non-negligible
probability that search_f(f, m) fails to return a replica ser-
ver. In another example, suppose h1 and h4 are in use and h2

and h3 are not. Then, the node corresponding to h1 will take
a higher load than the one corresponding to h4. This discus-
sion suggests we should remove the gaps in the sequence of
used hash functions.

We will consider the following simple gap removal
algorithm. Let us focus on a particular file, say, f. For ease
of discussion, we say the algorithm is run independently
by each used hash function, whereas it is run by the node
corresponding to the hash function. If, in practice, a filled
node corresponds to multiple used hash functions, it
should execute the algorithm separately on behalf of each
used hash function. Every once in a while, a used hash
function random selects another hash function with smal-
ler index and checks if the latter is in use. If not, the latter
function will be put to use and the former hash function is
removed from usage. More specifically, suppose hj is doing
the checking. The filled node corresponding to hjðf Þ, say
node A, draws a number I randomly from 1;2; . . . ; j� 1,
then sends a query message for f to hIðf Þ. If hI is not in
use, indicated by the fact that the node corresponding to
hIðf Þ, say node B, does not contain f, then a replica of f is
created at node B. The replica at node A is removed, pro-
vided node A does not correspond to other used hash func-
tions. With the filling of the gap corresponding to the
missing function hI and the removal of the hash function
hj from the used list, it appears that hj is moved to hI . This
is illustrated in Fig. 1, where h6 is removed and the gap at
h2 is filled.

It remains to specify the probability distribution that
governs which hash function should be checked by the
algorithm. We consider the following class of algorithm,
called compact(p), independently run by each used hash
function. Let us focus on the jth hash function hj. With
probability p, it selects the hash function hj�1, and with
probability 1� p, it selects a hash function uniformly at
random from h1 to hj�1. If the selected hash function is
used, then nothing is done. Otherwise, the selected hash
function will be used and hj will no longer be used. The
special case of compact(0) is also known as the uniform
4 If a node fails unexpectedly, the query will land in a ‘‘neighboring” node
determined by the DHT routing algorithm. The neighboring node may or
may not have the corresponding file. In other words, the hash function gap
may or may not exist.
jump algorithm. Both the uniform jump algorithm and
compact(0.5) algorithm work well. But some tradeoffs
are involved.

Primarily designed for failure recovery, the gap removal
algorithm can also simplify the protocol executed when a
node joins or leaves the CDN. No time-consuming file trans-
fer is needed at the time of node arrival or departure. The
gap removal algorithm will accomplish that at a later time.

3.4. Discussion

3.4.1. Centralized alternative
The essential assumption in our hash function manage-

ment scheme is that the information about which hash
functions are currently being used is not readily available.
In our scheme, such information is accessed through dis-
tributed search. An obvious alternative is to keep the infor-
mation at a centralized server. This scheme is not scalable
if the centralized server is responsible for managing the
hash functions of all files. For scalability, one can resort
to a distributed database, either a DNS-like system or a
DHT-based database. Besides the DHT-based system’s lack
of elegance – the DHT stores the hash functions used for
another DHT that stores file content – both systems will
have difficulty in keeping synchrony of the fast-changing
hash function usage information across distributed servers.
They also require non-trivial protocols or configuration
procedures for handling failure or query overload. In con-
trast, our solution does not maintain a record (state) of
the hash function usage information, but relies on fully dis-
tributed algorithms with minimum protocol support.

3.4.2. Parallel search algorithms
We will show later that the basic file request algorithm,

Algorithm 1, takes about ln m
k search steps to find the file.

For a large CDN, this may translate into delay of seconds.
The delay can be reduced by a factor of s if a batch of s re-
quests are sent out in parallel. In addition, the parallel
algorithm is also useful for parallel download from the se-
lected CDN servers to the requesting client.

4. Performance evaluation of the algorithms

4.1. Analysis on the random binary search algorithm

4.1.1. Hash function selection
Let TðiÞ be the number of steps taken by Algorithm 1 to

return a used hash function, assuming the first search step
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takes place on the set f1; . . . ; ig, where k 6 i 6 m. We wish
to find the statistics of TðmÞ. But, first, by conditioning on
TðmÞ, it is easy to see that the returned function from the
algorithm is chosen uniformly at random from h1 to hk.

The expected number of tries to find a used function
and the variance are both O log m

k

� �
. The following theorems

give the precise statements.

Theorem 4.1.

ETðmÞ ¼ 1 if m ¼ k;
1þ 1

k þ . . .þ 1
m�1 if m > k:

�
: ð1Þ

Proof. Conditional on the hash function returned from the
first search step, we have the following iterative relation.

ETðiÞ ¼
1 if i ¼ k;
k
i þ 1

i

Pi

j¼kþ1
ð1þ ETðjÞÞ if kþ 1 6 i 6 m:

8<
: ð2Þ

The proof is by induction with the help of (2). h

By comparing the sum in Theorem 4.1 with integral, we
get the following bounds for ETðmÞ for 1 < k < m,

1þ ln
m
k
6 ETðmÞ 6 1þ ln

m� 1
k� 1

: ð3Þ

Let Var(X) denote the variance of the random variable X.
We can show

Theorem 4.2. For m > k,

VarðTðmÞÞ ¼ 1
k2 þ 1

ðkþ1Þ2
þ . . .þ 1

ðm�1Þ2

þ 1
k þ 1

kþ1þ . . .þ 1
m�1 :

ð4Þ

Proof. Again by conditioning on the hash function
returned from the first search step, we have the following
iterative relation, for i ¼ kþ 1; . . . ;m.

ET2ðiÞ ¼ k
i
þ 1

i

Xi

j¼kþ1

ð1þ 2ETðjÞ þ ET2ðjÞÞ: ð5Þ

With the help of (2) and (5), we can show inductively,

ET2ðiÞ ¼ 1þ 1
k
þ 1

kþ 1
þ . . .þ 1

i� 1

� �2

þ 1

k2 þ
1

ðkþ 1Þ2

þ . . .þ 1

ði� 1Þ2
þ 1

k
þ 1

kþ 1
þ . . .þ 1

i� 1
� ð6Þ

For 1 < k < m, reasonable bounds for Var(T(m)) are

ln
m
k
þ 1

k
� 1

m
6 VarðTðmÞÞ

6 ln
m� 1
k� 1

þ 1
k� 1

� 1
m� 1

: ð7Þ

For large m and k� m, VarðTðmÞÞ � ln m
k .

In fact, it can be shown that TðmÞ � 1 can be approxi-
mated by a Poisson random variable with mean ln m

k .

4.1.2. Access to all hash functions
In addition to load balance the file servers by choosing

one of them uniformly for downloading, we also wish not
to overload any node with excessive query traffic, even
though the request message is much smaller than typical
files. We have just established that each used hash function
is selected with equal probability. However, the access pat-
tern by the requests to the unused hash functions (i.e., the
node corresponding to the hash function) in the random
binary search algorithm is not uniform. Therefore, our next
question is, by the end of the algorithm, how many times
the hash function i has been accessed, where k < i 6 m.

To answer this question, we work with a continuous,
scaled version of the algorithm for ease of analysis. In this
version, consider the interval [0, 1] on which the interval
[0, a] is marked, where 0 < a 6 1. The algorithm works
similarly as Algorithm 1. Given the initial interval [0, 1],
it performs random binary search until the region [0, a]
is hit. More concretely, in the first search step, a number
X1 is chosen uniformly on [0,1]. If X1 > a, in the second
step, a number X2 is chosen uniformly on ½0;X1�. Let the
random variable T be the number of jump (search) steps
taken before the algorithm returns some y 2 ½0; a�. Let Xi

be the position of the ith jump in the algorithm,
i ¼ 1;2; . . .. Let us consider the stopped process,
X1;X2; . . . ;XT . For each 0 6 y 6 1, let NðyÞ be the number
of Xi’s less than or equal to y in the stopped process. That is

NðyÞ ¼ jfi : Xi 6 y; i ¼ 1;2; . . . ; Tgj ¼
XT

i¼1

1ðXi6yÞ:

where the indicator function 1ðXi6yÞ is equal to 1 when
Xi 6 y, and equal to 0 otherwise. Let nðyÞ ¼ dENðyÞ

dy , and call
it hit density. It is a kind of ‘‘density” in the sense that the
expected number of hits by the requests on ½y; yþ Dy� is
nðyÞDy. It can be shown that

Theorem 4.3.

nðyÞ ¼
1
a for 0 6 y 6 a
1
y for a < y 6 1

�
: ð8Þ

Proof. The proof is given in Appendix A. h

From the above theorem, we see that the un-marked re-
gion is hit less than the marked region per unit length.
Translating this observation to the load-balancing applica-
tion, we conclude that even though the unused hash func-
tions are not accessed uniformly, each of them is accessed
less than any of the used hash functions.

Due to the fact that the continuous version of the algo-
rithm approximates the discrete version, Theorem 4.3
should also approximately apply to the discrete case. In
Fig. 2, we plot the simulation results of hit counts to each
hash function for the discrete algorithm, that is, the ex-
pected number of hits to each hash function by the time
the algorithm finishes. In the same figure, we also show
the function 1/n, for 1 6 n 6 m and the constant 1/k. We
see that Theorem 4.3 applies very well here.

In a separate note, Theorem 4.3 allows the pull-based
replication strategy to be naturally integrated into our cur-
rent framework. Since the query load is non-increasing as a
function of the hash function index, the order of file repli-
cation in the pull strategy must correspond to the increas-
ing order of the hash function index. This maintains the
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key invariance of our framework that the hash functions
are used in increasing order of their indices.

4.2. Analysis of the gap removal algorithm

Let us represent the status of the hash functions by a
binary vector (or binary array) of length m, x 2 f0;1gm,
with k 1’s, where 1 6 k 6 m. Each 1 corresponds to a used
hash function, and each 0 corresponds to an unused func-
tion. In accordance with the objective of the algorithm, we
wish to move all 1’s in x to the first k positions. That is,
we’d like to compact x into the form 11. . .100. . .0. The
question is how long this takes.

The discrete-time Markov chain embedded in the algo-
rithm is equivalent to the following description. At each
step, select one of the k 1’s uniformly at random with prob-
ability 1/k. Suppose the selected 1 is at position i, where
i 2 f1; 2; . . . ; mg, counted from the left to the right. With
probability giðjÞ, we attempt to move the 1 to the left by
j positions, where 1 6 j < i and giðjÞ satisfies

Pi�1
j¼1giðjÞ ¼ 1

for each i. If the jth position to the left of position i is a 0,
then the 1 is allowed to move. In other words, the 1 at po-
sition i becomes 0 and the 0 at position i� j becomes 1, as
if they exchange positions. Otherwise, the 1 is not moved.

Each state of the Markov chain is a m-digit binary vec-
tor, and a transition occurs every time a 1 attempts a
move. Let us denote the finite-state Markov chain by
fXng1n¼0. The transition probability from state x to state y,
denoted by pðx; yÞ, can be computed from the giðjÞ func-
tions above. Given the Markov chain starts at X0 ¼ x, the
time it takes to finish compacting x is denoted by Tx. We
write vðxÞ ¼ ETx.

Starting with X0 ¼ x and conditional on the first jump,
we have

vðxÞ ¼
X

y

pðx; yÞvðyÞ þ 1: ð9Þ

Also, for the vector x = 11. . .100. . .0, we know that

vðxÞ ¼ 0: ð10Þ

The solution to (9) and (10) exists and is unique (See Lem-
ma 2 in chapter 4 of [11].). The problem can actually be
solved efficiently due to its special structure. The difficulty
lies in the potentially large dimension of the vector t for
large value of m.

We will consider some special vector types as the initial
state under the uniform jump algorithm. The results shed
light on the behavior of the algorithm for general cases.

4.2.1. Initial vector type: Isolated-1
An vector of the Isolated-1 type starts (from the left) with

consecutive 1’s, followed by i consecutive 0’s, followed by
an isolated 1, then followed by zero or more 0’s. An example
is 1111000100 for i = 3. Let us index the vectors of the
above form by, i, the number of 0’s before the last 1, for
i = 0, 1, . . ., m–k. Clearly, t(0) = 0. We can show that

Lemma 4.4.

vðiÞ ¼
k2 i ¼ 1

k2 þ k
Pi

j¼2

1
j 1 < i 6 m� k

8<
: : ð11Þ

Proof. First, t(1)

vð1Þ ¼ 1

k2 ð1þ vð0ÞÞ þ 1� 1

k2

� �
ð1þ vð1ÞÞ ð12Þ

The first term on the right hand side corresponds to the
case where the isolated 1 is picked, with probability 1

k,
and moved to the only 0 to its left. The second term corre-
sponds to all other cases. Rearranging (12), we get
vð1Þ ¼ k2. Now suppose (11) is true for 1,2, . . ., i � 1, and
we wish to show it is true for i. Conditional on the first
jump, t(i) satisfies

vðiÞ ¼ 1
k

1
kþ i� 1

ðiþ vð0Þ þ vð1Þ þ � � � þ vði� 1ÞÞ

þ 1� i
kðkþ i� 1Þ

� �
ð1þ vðiÞÞ ð13Þ

or

ivðiÞ ¼ kðkþ i� 1Þ þ vð0Þ þ vð1Þ þ � � � þ vði� 1Þ ð14Þ

Plugging into the above equation the expressions for
vð0Þ; vð1Þ; . . . ; vði� 1Þ, we get

ivðiÞ ¼ kðkþ i� 1Þ þ ði� 1Þk2 þ k
2
ði� 2Þ

þ k
3
ði� 3Þ þ � � � þ k

i� 1
ði� ði� 1ÞÞ

¼ ik2 þ kði� 1Þ þ k
2

iþ k
3

iþ � � � þ k
i� 1

i� kði� 2Þ

¼ ik2 þ kþ k
2

iþ k
3

iþ � � � þ k
i� 1

i ð15Þ

Dividing both sides by i in the above, we have completed
the proof. h

4.2.2. Initial vector type: Isolated-0
An vector of the Isolated-0 type starts (from the left) with

consecutive 1’s, followed by exactly one isolated 0, followed
by zero or more 1’s, and then followed by zero or more 0’s.
In other words, it has the form 1. . .101. . .10. . .0. Let us re-
index the vectors so that the ith vector has the isolated 0
at position k� iþ 1, for i = 1,2, . . .,k. For instance, consider
the case m = 5 and k = 3. The vectors 1, 2 and 3 are 11010,
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10110 and 01110, respectively. Note that in the ith vector,
the isolated 0 is followed by i consecutive 1’s. For conve-
nience, let us call the vector 1. . .10. . .0 the 0th vector, and
let vð0Þ ¼ 0. We can show that

Lemma 4.5. For i ¼ 1;2; . . . ; k, vðiÞ ¼ k2.

Proof. We have already shown in the proof of Lemma 4.4
that vð1Þ ¼ k2. Suppose the lemma is true for 1; 2; . . . ; i� 1,
where 1 6 i < k. We will show that it remains true for i.
Conditional on the first jump, vðiÞ satisfies

vðiÞ1
k

Xi

j¼1

1
k� iþ j

ð1þ vði� jÞÞ

þ 1� 1
k

Xi

j¼1

1
k� iþ j

 !
ð1þ vðiÞÞ ð16Þ

Xi

j¼1

1
k� iþ j

vðiÞ ¼ kþ
Xi

j¼1

1
k� iþ j

vði� jÞ ð17Þ

Using the induction hypothesis and the fact vð0Þ ¼ 0, we
get

Xi

j¼1

1
k� iþ j

vðiÞ ¼ kþ k2
Xi�1

j¼1

1
k� iþ j

¼ k2
Xi

j¼1

1
k� iþ j

Hence, vðiÞ ¼ k2. h

We shall make some comments on the uniform jump
algorithm. First, one should not be alarmed with the k2

number of jump steps in Lemma 4.4 and 4.5, since the num-
ber of jumps per unit time scales linearly with k. Hence, the
expected time it takes to complete the compacting process
is linear in k. Second, uniform jump is suitable to quickly re-
move large gaps (long string of consecutive 0’s). This is evi-
dent from the expression in (11), where the second termPi

j¼2
1
j is approximately ln (i). It is particularly suitable for

the case where k� m and the 1’s in the vector concentrate
at the right side of the vector, such as 000000000000111.
Recall that the purpose of removing the gaps is for the bin-
ary search algorithm to quickly locate a used hash function
(corresponding to a 1 in the vector). The aforementioned
vectors are precisely those that most trouble the binary
search algorithm. The uniform jump algorithm can quickly
move the 1’s toward the left side of the vector. Third, for vec-
tors where the 1’s concentrate at the left side, e.g.,
101101111110000, the uniform jump algorithm is not very
efficient in removing the last few 0’s, particularly when k is
reasonably large. This fact is evident from the k2 term in
Lemma 4.4 and 4.5. However, we are not very concerned
with this because the binary search algorithm nonetheless
will have a high chance of finding a 1 quickly for this type
of vectors.

4.2.3. Simulation experiments for the gap removal algorithm
The above observations will be further supported by

simulation experiments. In the simulation results, time is
normalized in the following way. Each bit array (bit vector)
entry with value 1, called a marked entry, makes a jump
(compacting) attempt following a Poisson process, inde-
pendently from other marked entries. The interval between
any two consecutive attempts by the same marked entry,
which is an exponential random variable, has mean 1 time
unit. All durations are measured with respect to this time
unit. Note that the average number of jump attempts by
all marked entries in each time unit is equal to the number
of the marked entries, i.e., the number of 1’s in the array.

In the following, we will mainly consider the simulation
results of the uniform jump algorithm, but will mention
the performance tradeoffs that can be achieved by the
compact(0.5) algorithm.

The initial array type to be considered is known as Ones-
at-End, which has k consecutive 1’s at the end of the array,
following m–k 0’s. An example is 00000111 for m = 8 and
k = 3. In terms of the time required to finish compacting,
one tends to believe that such array type represents the
‘‘worst case” for many compacting algorithms, including
uniform jump. However, we have not proven this claim.
Our extensive experiments have provided some evidence
for the conjecture. For instance, Ones-at-End has slightly
worse mean required time than another initial array type,
Random-Choice, where the k marked entries are chosen uni-
formly at random from the set of indices {1,2, . . .,m} with-
out replacement. This is shown in Fig. 3. Note the linear
dependence of the mean completion time on k, the number
of marked entries. If this is deemed as being too slow when
k is large, we can address it in two different ways. First, it
turns out that the compacting process becomes ‘‘nearly”
finished much sooner than its completion. In other words,
the array becomes useful, with respect to performing ran-
dom binary search, much sooner than the completion time.
Second, the compact(0.5) algorithm can be used, if de-
sired, to make the dependence on k sub-linear, and hence,
dramatically improves the mean completion time. The
price to pay is increased delay before the probability of
eventually hitting a marked entry reaches 1.

Recall that our objectives for compacting the binary ar-
ray are to ensure, first, that the random binary search algo-
rithm will eventually hit a marked entry and, second, that
the load (or hitting probability) to each marked entry is
balanced. Both objectives are fulfilled after the compacting
process finishes. However, the probability of eventually
hitting a marked entry can reach 1 long before the process
finishes, as soon as the value in the first location of the



 1e-05

 0.0001

 0.001

 0.01

 0.1

1

0  10  20  30  40  50  60  70  80  90  100

Pr
ob

ab
ilit

y 
of

 h
it

Entry

time = 0
time = 1
time = 3
time = 5

a

 0.0001

 0.001

 0.01

 0.1

0  10  20  30  40  50  60  70  80  90  100

Pr
ob

ab
ilit

y 
of

 h
it

Entry

time = 5
time = 7
time = 9
time = 15
time = 30

b

Fig. 5. Load to the marked entries over time. The initial array is of the
ones-at-end type. m = 10,000, k = 100. (a) during time 0–5; (b) during
time 5–30.

118 Y. Xia et al. / Computer Networks 53 (2009) 110–125
array becomes 1. In Fig. 4, we show this probability as a
function of time, while the compacting process is running,
for three cases, k = 10, k = 100 and k = 1000. Each of these
curves represents a typical sample path of the compacting
process. Observe that the probability increases to 1 expo-
nentially fast, well before the mean completion time of
the compacting process, which is 28.27, 177.12 and
1665.62 for k = 10, k = 100 and k = 1000, respectively.

To examine how well our second objective of the com-
pacting algorithm is fulfilled, in Fig. 5, we plot the load to
each of the marked entries as the time progresses for the
same instances as in Fig. 4. This is the hitting probability
to each of the marked entries conditional on that at least
one of them is hit. We see that, at time 0, the marked en-
tries are hit uniformly. However, as seen from Fig. 4, the
probability of an eventual hit to any marked entry is low.
As the compacting algorithm operates, the uniform load
pattern is first destroyed (however, the eventual hit prob-
ability increases), and then gradually restored. At time 15,
the load is almost uniform except for the last few marked
entries. Considering the fact that the mean completion
time of compacting is 177.12 for this case, we see that
the vast majority of the compacting time is dedicated to
compacting the last few marked entries, while the other
marked entries are already packed into appropriate places,
as predicted by Lemma 4.4.

4.3. Overhead

Since our algorithms are used for massive content distri-
bution where the file sizes are very large, communication
overhead is in general negligible compared to the actual
file transmission. For look up, our algorithm needs about
ln (m/k) message transmissions in worst case, where m is
the total number of hash functions and k is the number of
hash functions actually used for the particular file being
searched. Consider the worst case scenario, where m = 232

and k = 1. It takes ln(m/k) = 22 lookup messages. Assume
that the message size is 100 bytes, which may contain the
source IP, port number, file name, and file ID. Assume also
that the file size is 5 Gbytes. Then, the aggregate size of
the transmitted control messages is 100� lnð232Þ ¼ 2:2
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of the ones-at-end type. m = 10,000.
Kbytes, which is nearly negligible compared to the file size.
The parallel search algorithm increases the control message
overhead by the number of parallel search messages, which
is typically no more than 8.

The communication overhead of the gap removal algo-
rithm is also small. The reason is that the system still func-
tions well with a small number of gaps: Even when some
of servers containing a file are down accidentally, clients
looking for the file can still find some other servers by
continuing the random binary search. But, if the gaps keep
accumulating without repair, the system performance will
deteriorate. Hence, it is sufficient to run the gap removal
algorithm in the background in a low-activity mode, for in-
stance, once every 30 seconds or even every several min-
utes. This should be frequent enough for relatively stable
CDNs, where node failures are infrequent.

The gap removal algorithm needs to be executed for
each file replica, by the node containing the replica. The
overall message overhead in the whole network is propor-
tional to the total number of file replicas in the system.
When the file popularity follows the Zipf distribution, most
of the files don’t need to be replicated, which means they
don’t need to execute the gap removal algorithm. Finally,
a node with many replicas (for different files) can also ad-
just the running frequency based on the total number of
replicas it contains.



Fig. 6. On-demand caching in Tapestry. The object server replicates its
object to the heavy-traffic source on query paths.
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5. Experiments

5.1. Comparison with other replication strategy

In this section, we present the simulation results with
which we compare the replication strategy using multiple
hash functions and random binary search (for brevity,
called the MH strategy) with an on-demand caching strat-
egy augmented by replication at neighbors. For both cases,
the simulation is conducted on the Tapestry network. On
Tapestry, an object (e.g., file) stored at a server is published
along the publish path to a node known as the object root,
which is uniquely determined by surrogate routing. The
nodes along the publish path each have an object pointer
to the server. A query is routed along the query path which
is also determined by surrogate routing. Tapestry’s routing
guarantees that the query discovers a proper object pointer
at a node on the publish path of the object, as long as the
object exists in the network [38]. Tapestry’s focus is on
replication and caching of the object pointers, instead of
the objects themselves. The main objective is to be able
to locate each object pointer quickly. But, there is also a
provision of on-demand caching of object content for
load-balancing purpose.

In the simulation, the name space size is 232, the num-
ber of levels is 8, the size of each level is 16, and the num-
ber of nodes is 4096. This implies that each node ID is an
eight-digit hexadecimal number, and that each node has
up to eight primary neighbors, one at each level. To simu-
late the distance and delay between nodes, we assume
every node has a physical position in a 1000 � 1000
square. The distance between a pair of nodes is the Euclid-
ean distance, which determines the delay. Note that, for
our purpose, it is sufficient to consider such an abstract
distance model instead of a more realistic underlay
network.

At the start of a simulation run, only one node has the
file. We use a measurement interval of 10 time units (e.g.,
seconds, minutes) for each node to check the file request
rate. We also define a request rate threshold that triggers
a file replication event, which is 1. The meaning is that if
the number of requests observed by a node is more than
10 per interval, then the node initiates a file replication.
To prevent unnecessary replication caused by temporary
fluctuation of the request rate, we use the exponentially
weighted moving average of the request rate. We configure
the simulator to generate requests randomly with a total
rate of 40 requests per time unit. Ideally, 40 servers are
needed with perfectly balanced load so that each server
experiences a request rate exactly equal to the threshold.

When the MH strategy is integrated with the Tapestry
network, the file is stored at its root node, which is deter-
mined by the primary file ID, h1ðf Þ, i.e., obtained by apply-
ing the first hash function to the unique file name.
Therefore, we can replicate the file to up to m different
nodes using m different hash functions. In our simulation,
the MH strategy uses 128 hash functions for searching or
replicating the file. If a server experiences a higher request
rate than the threshold, it initiates file replication to an-
other node, determined by the next available hash function.
Tapestry utilizes an on-demand caching strategy for
relieving server overload, which is shown in Fig. 6. We
name it the caching along query path (CQP) strategy. With
the CQP strategy, if a node observes a higher request rate
passing through it than the threshold, it requests a copy
of the file to be cached locally, the source of which is some
node along its own query path to the server. After the rep-
lication, the node becomes a new server that can intercept
queries and serve the file from the local copy. CQP is a pull
strategy because a non-server node initiates the replication
to itself. The pulling-only CQP strategy has a problem that
if a server experiences overload, it can only count on other
nodes caching the file and intercepting sufficient queries.
There is no guarantee that the overload can be resolved.
Therefore, we extend CQP by combining it with a push rep-
lication strategy. Whenever a server detects an excessive
request rate, it replicates the file to the neighbor that has
sent the most requests during the current measurement
interval. We call this integrated strategy CQP-push. Note
that CQP-push combines caching on-demand and replica-
tion at neighbors.

We use the following metrics to compare the replica-
tion strategies.

� Distribution of server load. We measure the load of
each server by counting the number of requests arriving
at each server during the time intervals of interest. Each
interval is between two consecutive file replication
events. Note that the intervals do not have identical
duration.

� Worst case and deviation of server load. We measure
the average, maximum, minimum, and standard devia-
tion of server load across the current servers at the cur-
rent interval. We show the change of server load over
time.

� Final number of replicas. We show the final number of
replicas produced by each strategy. This number guar-
antees that none of the servers is overloaded. However,
due to statistical fluctuation in the measurement-based
algorithm, this number exceeds the minimum number
required for each strategy. Since the file size is large,
restricting the number of unnecessary replicas is a very
important performance issue. It has implications in the
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size of the distribution system required, including the
network bandwidth requirement, the number of servers
and their memory, disk and computational capacity.

5.1.1. Uniform requests throughout network
In this experiment, we compare the goodness of the

replication strategies when the requests for the file are
generated uniformly at random throughout the network.
Fig. 7 shows how the server load decreases and how the
number of replicas increases over time. For the server
load, each narrow, vertical box represents one standard
deviation above or below the average of the request
rates seen by the servers on each measurement interval;
the two ends of each vertical line represent the maxi-
mum and minimum request rate across servers. The
maximum and the standard deviation of server load is
much lower in MH than in CQP-push throughout time,
indicating that the former achieves better server
load-balancing. In the end, CQP-push needs much more
replicas than MH, because its server load is not as
uniform.

Fig. 8 shows the distribution of server load at the mo-
ment when the system has 50 replicas. CQP-push shows
highly skewed distribution. This is because the servers
encountered along the query paths but near the root node,
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which is the final destination of queries, may not be used
frequently when their upstream nodes along the query
paths also contain the file. On the other hand, MH shows
quite even distribution, as theory predicts.

5.1.2. Localized requests from a region
We next compare the performance of the replication

strategies when the request pattern is not uniform through-
out the network. In reality, this can happen for many rea-
sons that are difficult to foretell. To emulate the non-
uniform request pattern, we restrict the requests to be gen-
erated uniformly from a region of the entire physical space.
No requests are generated from outside the designated re-
gion. As shown in Fig. 9, with MH, the file replicas are dis-
tributed throughout the network at the end of simulation,
whereas in CQP-push, they tend to group together in the re-
quest region. On one hand, having the servers closer to the
request region brings the benefits of shorter round-trip
time (RTT) and more localized data transfer. On the other
hand, it causes higher network stress if the bandwidth in
the region is not abundant. More importantly, we could ex-
pect that with CQP-push, if the request region moves from
one to another, then most previous replicas may not be
used, resulting in an unnecessarily large number of replicas.

Fig. 10 plots the change of server load and the number
of replicas over time when the requests are generated from
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a restricted region. Again, MH has much more balanced
server load than CQP-push for all time.

Fig. 11 shows the distribution of server load after the
replication process finishes. MH enjoys very well balanced
server load whereas CQP-push has skewed distribution. In
addition, CQP-push requires about four times as many rep-
licas as MH. In a separate note, it also takes twelve times as
long time as MH before the replication process ends.

5.2. Simulation with multiple files

The main algorithms of this paper have been developed
by focusing on a single file. When there are multiple pop-
ular files, which is usually the case, the default strategy is
to run the single file algorithms independently for each file.
The question is whether this strategy leads to well bal-
anced nodal load given that the load is now the aggregate
of the per-file load over all the files contained by the node.
The simulation results in this subsection will show that the
strategy performs well. Next, we show that the perfor-
mance can be further improved with an easy modification
to the basic algorithms by allowing two random-choices
for locating a node for replications and for queries.

In these experiments, we assume that the popularity of
the files follows the Zipf distribution (which is widely as-
sumed in CDNs). We use 1000 nodes and 10,000 files and
generate up to 2.7 million queries. The targeted file of
the query is determined by the Zipf distribution with a
parameter 0.271, which is widely used in CDN simulations.
At a node, the replication of a file is initiated whenever the
number of requests to the file exceeds a threshold, which is
set to 100.

We present the simulation results of the multiple file
scenario with two different strategies, which mainly differ
in the way of deciding where a file is replicated: the single-
choice strategy and the multiple-choice strategy. The
single-choice strategy is exactly the same as the one
described in Section 3 using a single family of hash
functions. The multiple-choice strategy uses two or more
different hash function families for locating a node for rep-
lication and requests. Whenever a node needs to replicate
a file, it locates two candidate destination nodes using two
hash function families. Then, it compares the nodal loads
on those nodes and chooses the node with lower load for
replicating the file. Whenever a client requests a file, it uses
both hash function families simultaneously, finds two
nodes and compares the file-specific loads at the two
nodes. The request will be served by the node with lower
file-specific load.

The multiple-choice strategy can balance the load more
effectively than the single-choice strategy. The reason can
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be explained by examining a related balls-in-bins (BNB)
problem [15,14,2,24], which is an abstract model for
load-balancing. The single-choice BNB problem is to place
n balls into k bins by selecting one destination bin uni-
formly at random and independently across different balls.
It is well known that, with k = n, the number of balls in the
bin with the most balls, which corresponds to the maxi-
mum load, is ð1þ oð1ÞÞ ln n

ln ln n with high probability. Note
that the average number of balls per bin, which corre-
sponds to the average load, is 1 in this case. In the multi-
ple-choice BNB problem, for each new ball, d bins are
independently and randomly selected and their contents
are examined. The new ball is placed into the bin with
the fewest balls. Rather surprisingly, for d > 1, the maxi-
mum becomes ð1þ oð1ÞÞ ln ln n

ln d with high probability, an
exponential reduction in the maximum load.

In Fig. 12a, we compare the nodal load distributions of the
two strategies when the average nodal load is 1500 or 2700.5

It shows that the single-choice strategy balances the load rea-
sonably well, but the multiple-choice strategy does much bet-
ter. For example, when the average load is 2700, 25.4% of the
5 The nodal load is measured in terms of the number of file requests
served. This measure makes sense if the file sizes are nearly identical. Here,
we make this assumption for ease of presentation. The real system can in
fact enforce this assumption by splitting a large file into multiple smaller
files.
nodes each handles more than 3000 requests with the single-
choice strategy, while the percentage drops down to 0.3% with
the multiple-choice strategy. Fig. 12b shows the distributions
of the number of files at each node under the two strategies.
The multiple-choice strategy is also better in balancing the
number of files over all nodes.

Fig. 12c shows the ratio of the maximum to average no-
dal load for both strategies over a wider range of average
load. For both strategies, the ratio decreases fast initially
as the average nodal load increases, but the decrease slows
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down eventually. The ratio in the multiple-choice strategy
is consistently lower than that in the single-choice strategy
and can get very close to 1.

Note that the experimental parameters we chose are
quite pessimistic instead of optimistic. In other words,
our experiments are about the bad cases. For instance, if
the number of nodes is smaller while keeping other param-
eters unchanged, the load distribution over the nodes will
be more balanced. This is the reason why the load balance
improves as the average nodal load increases in Fig. 12c.
One way to think about this is again to consider sending
n balls (corresponding to file replicas) to k bins (corre-
sponding to the nodes) uniformly at random. The average
number of balls per bin is n/k and the maximum number
of balls in any bin is roughly n/k + ln (k) with high probabil-
ity, in the single-choice scheme. As k decreases, n/k domi-
nates more and more the log term, which means the
fluctuation of load becomes more and more negligible. In
the multiple-choice scheme, the maximum number of balls
in any bin is roughly n/k + ln (ln n) with high probability,
which is why it leads to even more balanced load. Hence,
as k decreases, the load balance gets better.

The most imbalanced situation is when n = k, where each
bin eventually has only 1 ball on average, but the fluctuation
is ln n or ln (ln n) in the single or multiple-choice schemes,
respectively. In our experiments, when the total number of
requests is 2.7 million over the interval of time (correspond-
ing to the average nodal load 2700), we see from Fig. 12b
that each node has about 35 files on average, including
the original 10 files per node before replication. Hence, we
have k = 1000, n ¼ ð35� 10Þ � 1000 ¼ 25;000, and n/
k = 25. When the total number of requests is 1.5 million
(corresponding to the average node load 1500 in Fig. 12b),
each node has 20 files on average in the end, which means
it has 10 replicas. In this case, k = 1000, n = 10,000, and n/
k = 10. Since the values of n/k are relatively small, the exper-
imental results are close to the worst cases.

In the above simulation, we use per-file load for deter-
mining replication and assigning a request to a node. Nev-
ertheless, the resulting nodal load is very well balanced. To
further prevent unexpected nodal overload in rare contin-
gency situations, our file load based replication strategy
may be combined with a node load based strategy. In the
latter strategy, if the aggregate requests for all its files ex-
ceed a threshold, the server replicates some of its files else-
where, for instance, its most loaded files. We may also
introduce admission control by which the overloaded ser-
ver can reject additional file requests. Admission control is
also a complementary solution to some other potential
problems that have not been emphasized so far, such as
many-to-one mapping from the hash functions to the serv-
ers and heterogeneous server capacities. It has been imple-
mented in most P2P file-sharing applications. Finally, we
may also adapt some other load-balancing techniques for
resolving nodal hotspot, as introduced in [9,29,13].
6. Conclusion

This paper deals with algorithmic issues in file replica-
tion with multiple hash functions on DHT-based content
distribution networks. The central issue here is, out of a
potentially large number of hash functions, which one to
use for downloading and which one to use for replicating
a file so that the server load, and to some extent, the
network load are balanced. Our main contributions are as
follows. First, we have devised a complete set of algorithms
for hash function usage and management. These include the
random binary search algorithm for file request, the file
replication algorithm and the hash function compacting
algorithm for failure recovery. Second, we have thoroughly
explored the performance of these algorithms by analysis
and simulation. Third, we compare the proposed file repli-
cation scheme based on multiple hash functions with the
combined scheme of on-demand caching and replication
at neighbors.

Our algorithms for hash function usage and manage-
ment are efficient, simple, and are compatible with the
characteristics of the CDN we envision. These include the
large network size, the massive content carried by the net-
work, high infrastructure node dynamic, and a fast-chang-
ing file request pattern. In particular, the latter two
characteristics make it difficult to run complicated proto-
cols or to maintain consistency of state information kept
at different nodes. Our solution to the file replication prob-
lem relies on fully distributed algorithms with minimum
protocol support and without keeping any state
information.

Appendix I. Appendix proof of Theorem 4.3

From NðyÞ ¼
PT

i¼11ðXi6yÞ, we have

ENðyÞ ¼
XT

i¼1

PfXi 6 yg: ð18Þ

When 0 6 y 6 a, ENðyÞ ¼ PfXT 6 yg ¼ y
a, and hence,

nðyÞ ¼ 1
a. We will next focus on the case a < y 6 1. In this

case, NðyÞ ¼
PT�1

i¼1 1ðXi6yÞ. Conditional on the number of
jumps by the algorithm, the hit density can be written
as,

nðyÞ ¼
X1
j¼2

PfT ¼ jg
Xj�1

i¼1

pðXi ¼ yjT ¼ jÞ; ð19Þ

where pðXi ¼ yjT ¼ jÞ denotes the conditional density of Xi

given T ¼ j. To compute this conditional density, we start
with the joint density. For a < xj�1 6 xj�2 6 . . . 6 x1 6 1,

pðT ¼ j;X1 ¼ x1; . . . ;Xj�1 ¼ xj�1Þ
¼ pðT ¼ jjXj�1 ¼ xj�1ÞpðXj�1 ¼ xj�1jXj�2 ¼ xj�2Þ . . . pðX2

¼ x2jX1 ¼ x1ÞpðX1 ¼ x1Þ ¼
a

xj�1

1
xj�2

. . .
1
x1
: ð20Þ

Hence,

pðX1 ¼ x1; . . . ;Xj�1 ¼ xj�1jT ¼ jÞ

¼ a
xj�1

1
xj�2

. . .
1
x1
=PfT ¼ jg: ð21Þ

Lemma 4.1. For 1 6 i 6 j� 1, the marginal density
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pðXi ¼ xijT ¼ jÞ ¼ a
PfT ¼ jg

1
xi

1
ðj� 1� iÞ! ln
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Proof.
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By simple induction, it is easy to show
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For a < y 6 1, combining the result of the Lemma 4.1 with
(19), we have
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