
Demonstrating Scalability and Efficiency of
Pack-Centric Resource Management for Cloud

Yi Wang, Ye Xia, Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Mauricio Tsugawa, Jose A. B. Fortes
Department of Electrical & Computer Engineering
University of Florida, Gainesville, FL 32611, USA

Abstract—Computational clouds have evolved to go beyond cost-
effective on-demand hosting of IT resources and elasticity. The
added features now include the ability to offer entire IT systems as
a service that can quickly adapt to changing business environments.
The new trend introduces challenges in datacenter resource man-
agement, including scalability, system-orientation, and optimization
supporting both datacenter efficiency and customer system agility
and performance. The conventional approach of resource man-
agement adopts a flat fine-grained model that results in problem
formulations of enormous sizes; it also has the drawback of being
less flexible in meeting customers’ need. In this paper, we introduce
a pack-centric approach to datacenter resource management by
abstracting a system as a pack of resources and considering
the mapping of these packs onto physical datacenter resource
groups, called swads. The assignments of packs to swads are
formulated as mixed integer programming problems. Scalability is
achieved through a hierarchical decomposition method and parallel
solvers. The new datacenter resource management framework is
illustrated with a concrete resource placement problem. Numerical
experiments show the scalability of the hierarchical decomposition
method and the benefits of the overall framework.

Index Terms—Cloud Computing, Datacenter, Virtual Machine
Placement, Resource Management, Mixed Integer Programming

I. INTRODUCTION

Computational clouds have become widely used by businesses
as their most cost-effective means to deploy IT services. In order
to serve a rapidly-growing customer population, datacenters have
become increasingly large in scale and difficult to manage.
Besides the scale, a fundamental development in the industry is
the emergence of software-defined datacenters, which promise to
offer complete virtualized infrastructure, including computing,
network, storage, software, and all other datacenter resources,
that can quickly adapt to changing business needs [1].

However, offering such sophisticated services poses a grave
scalability challenge in datacenter resource management. We
observe that virtually all existing management schemes are VM-
centric, where each customer specifies a desired number of
virtual machines (VM) as well as the resource requirements for
each VM, including CPU, memory, storage, I/O throughput. The
management system then assigns the VMs to the PMs (physical
machines) such that certain cost, profit or performance objectives
are optimized, subject to server resource constraints. Such a flat,
fine-grained management scheme results in problem formula-
tions of enormous sizes for large cloud systems (e.g., half a
million PMs in Amazon EC2 [2]). The problem for determining
the VM-to-PM assignment could involve billions of variables,
and a great deal more than that if one considers traffic matrices
and routing between VMs. The scalability challenge is further
exacerbated by the complexity of the service offerings [1], [3].

This research was in part supported by the National Science Foundation under
Grants 1265341 and 1234983 and by the National Science Foundation of China
under Grant 61472256.

For instance, an infrastructure/system deployment may have
complex objectives and contain complex relationships among the
system components, such as resource grouping and hierarchy,
various colocation or anti-colocation constraints, topological
relationships, workflow dependencies and traffic patterns.

Existing solutions avoid the scalability challenge by restrict-
ing to smaller problems, limited supported features, and sub-
optimal heuristics. For example, with simplifying assumptions,
the problems may sometimes be reduced to multi-dimensional
bin-packing [4]–[6], which is still NP-hard. Practical cloud
systems usually adopt less sophisticated heuristics, such as
round-robin, first-fit or first-fit-decrease, as evidenced by open-
source middleware stacks [7]. While simple heuristics may
find solutions quickly, they can also be underachieving with
respect to the resource management objectives, such as resource
utilization and/or workload performance.

A second challenge that the VM-centric approach faces is
its lack of agility for group-based dynamic resource sharing.
Customers may not know beforehand what exactly their resource
requirements are for each of their VMs. The VM-centric re-
source allocation may lead to the situation where some VMs
are not using their allocated resources while other VMs starve.
Instead, the customer may wish to specify resource requirements
in an aggregate manner and rely on dynamic sharing to avoid
the aforementioned situation. Agility of such a high degree is
not supported by today’s cloud systems, although we can see
signs of industry moving towards that direction. For instance,
EC2’s auto-scaling feature automatically increases or decreases
the number of VMs based on the customer’s workload [8]. But,
this on-demand feature does not allow resource commitment to
a group of VMs or in-group resource sharing.

To address these challenges, we propose a new pack-centric
framework plus hierarchical decomposition for large-scale, so-
phisticated resource management. The new framework helps to
break up an extremely complex, large resource management
problem into a series of small, manageable ones based in large
part on the natural grouping of VMs according to resource
sharing and colocation requirements. Specifically, we introduce
two concepts, called pack and swad; together with their hierar-
chies, they provide a recursively defined multi-level abstraction
of customer demands and cloud resources. A collection of
resource-sharing VMs is modeled as a pack, and multiple packs
can be further abstracted into a higher-level pack, giving rise
to a hierarchical organization of VMs and packs. Agility is
achieved by pack-based resource management, allowing intra-
pack resource sharing. Similarly, the resources in the cloud are
organized into a multi-level hierarchical structure of PMs, i.e.,
swads of PMs, swads of swads, and so on. Datacenter resource
management is transformed from a problem of VM-PM mapping
to a problem of pack-swad mapping, with the problem size

2016 IEEE 9th International Conference on Cloud Computing

2159-6190/16 $31.00 © 2016 IEEE

DOI 10.1109/CLOUD.2016.119

849

being progressively reduced as more levels of packs/swads are
introduced.

The main goal of this paper is to demonstrate the scalability
and effectiveness of the proposed pack-centric, hierarchical
decomposition framework for datacenter resource management.
The framework was first introduced in our work-in-progress
paper [9]. We will outline the framework in this paper. One of its
key components is the use of mixed integer programming (MIP)
formulations and algorithms for resource management problems.
In software-defined datacenters, the resource management prob-
lems are diverse and always changing, perhaps unknown ahead
of the time [1], [3]. The MIP approach has the advantage of
eliminating the need to craft specialized algorithms for different
problems. For scalable solutions, we propose hierarchical de-
composition of the problems in accordance with the pack and
swad hierarchies. One of the main contributions of the paper is
that we provide experimental evidence to demonstrate the high
scalability of the hierarchical framework and the performance
gain of the MIP approach. The paper is unique in that it evaluates
MIP for solving large-scale datacenter resource management
problems.

The idea of grouping the resource requirements from a
customer and abstracting the corresponding hardware resources
has been explored before. In v-Bundle [10], each VM has a
minimum and a maximum resource requirement, and the VMs
are initially assigned to the PMs based on their minimum
requirements. The VMs form groups; the VMs in the same group
can migrate among the assigned PMs for resource sharing. The
distributed management scheme in v-Bundle does not provide
optimal VM placement — both the initial VM placement and
VM migration are ad-hoc (first-fit). In contrast, we take a
completely different approach of hierarchical problem decompo-
sition by a centralized controller, and we can achieve scalability
and local optimality at the same time. Also, our pack abstraction
and hierarchy allow the specification of resource sharing at
multiple levels, instead of a single level in v-Bundle. Another
prior work is the virtual datacenters (VDC) in [11]. A simple
first-fit heuristic algorithm is used to select – for each customer
– a server cluster (called VDC) that has sufficient resources
to serve the customer’s aggregate resource demand. Then a
traditional VM-centric scheme is used for resource allocation
within each VDC. Compared with v-Bundle and VDC, we have
two clearly-defined hierarchies, a virtual hierarchy of requested
resources and a physical hierarchy of available resources. Both
are general, flexible and extensible beyond two levels. Our MIP-
based formulations and algorithms are also general and flexible
in that they can accommodate different cost criteria, customer
requirements and constraints, and find high-performance solu-
tions. Finally, MIP is used for assignments at all levels. Resource
grouping and decomposition algorithms have also been proposed
for several VM placement problems where the objective is to
reduce datacenter network traffic or network energy cost [12]–
[14].

II. PACKS, SWADS AND HIERARCHICAL DECOMPOSITION

A. Definitions and Examples of Pack and Swad
To meet the scalability and agility challenges, we propose a

new pack-centric framework. The framework supports a variety
of sophisticated, system-oriented cloud services. It also allows
natural hierarchical grouping of resource requests, which can
then be mapped to the hierarchy of physical resource groups
in a datacenter. The architecture enables a scalable, hierarchical

decomposition approach for solving large resource management
problems.

Shanghai

...

London

...

Headquarters

...
...

...

Finance
Engineering

Management

Firewall
Headquarters pack

Shanghai pack London pack

Management FinanceEngineering
Firewall

VM VM

Corporation

...
VM VM

...
VM VM

...

Fig. 1. VMs and other virtual resources can be organized through a hierarchical
pack structure determined by administrative boundaries, locations and resource
sharing requirement.

1) Packs and Pack Hierarchy: We propose a new abstraction
called pack, which is a set of VMs, a set of smaller packs and/or
collections of (virtual) resources that should be placed as a group
in a datacenter for the purpose of resource sharing or perfor-
mance enhancement. This recursive definition allows a customer
to organize its resource requirement in a hierarchical structure, as
illustrated by Fig. 1, which shows a scenario of a multinational
corporation outsourcing its IT infrastructure to the cloud. The
corporation has a branch in London, a branch in Shanghai, and
its headquarters in San Jose, corresponding to three packs. The
headquarters pack further consists of a firewall VM and three
lower-level packs, describing the resource requirements by the
management, finance, and engineering departments, respectively.

2) Swads and Swad Hierarchy: We define a swad as a set
of PMs, collections physical resources (e.g., network storage)
and/or lower-level swads in a cloud system. Each swad will be
labeled with the types and amount of resources it possesses.
The capacity of a resource in a swad is usually (but not always)
equal to the sum of the capacities of its components, possibly
excluding a certain percentage of resources that may be set aside
to support elasticity. In other times, more detailed description of
a resource in a swad is needed, such as the networking capacity
of a server cluster when the cluster is viewed as a swad.

swad swad swad swad
SWAD SWAD

Fig. 2. Swad-based hierarchical abstraction of a cloud system

In the example of Fig. 2 with a fat-tree topology [15], we use
a swad to represent the PMs of each rack, shown by the nodes
labeled with “swad” in the right plot. We then group a number
of lower-level swads into a higher-level swad, as illustrated by
the nodes labeled with “SWAD”, giving rise to a hierarchical
structure (tree), with the whole datacenter as a swad at the
root. While the fat-tree topology in Fig. 2 has two levels (pod
and rack), the swad hierarchy may have an arbitrary number of
levels.

3) Construction of the Hierarchies: The swad hierarchy is
established by the cloud provider alone according its resource
management policies, proximity of physical resources and vari-
ous other constraints. The construction of the swad hierarchy is
expected to be straightforward in most cases. For ease of design
and maintenance, large datacenters usually contain zones of
identical hardware and software systems. Within each such zone,
the swads can be made identical, each consisting of identical
system components.

850

The pack hierarchy is established by combining the cus-
tomers’ pack specifications and the cloud provider’s consider-
ations. A customer’s request may be already in the form of a
pack hierarchy, such as the example of Fig. 1. Each customer’s
pack hierarchy will be a subtree in the final pack hierarchy. The
provider can group multiple pack hierarchies from the customers
into a higher-level pack. The grouping process continues upward
recursively to form the final pack hierarchy. The pack hierarchy
is constructed after the swad hierarchy has been established so
that the former can “fit” the latter. The pack hierarchy can be
modified frequently and substantially in response to customers’
ever-changing pack requests. Unlike the swad hierarchy, there
is a great deal of flexibility in constructing the pack hierarchy.
A thorough exploration is beyond the scope of this paper.

B. Hierarchical Decomposition and Pack-to-Swad Assignment
Aside from the benefits that packs allow system-oriented

cloud services and increased customer agility, the other main
use of the pack and swad hierarchies is to decompose a large
resource management problem of enormous complexity into a
series of much smaller subproblems that are far easier to solve
quickly and can be solved in parallel.

The hierarchical decomposition algorithm is shown in Algo-
rithm 1. Consider an arbitrary pack hierarchy (or sub-hierarchy)
rooted at pack p∗ and an corresponding swad hierarchy (or sub-
hierarchy) rooted at swad s∗. Let P and S denote the sets of the
direct child packs and child swads of p∗ and s∗, respectively.
The algorithm first assigns the packs in P to the swads in S
(Line 2). The assignment is done by solving an MIP problem
(see Sections III and IV). The assignment process then continues
downward along the swad hierarchy (Lines 4-20). In general,
consider a swad at level i. Assume that some level-i packs have
been assigned to that swad. For that swad, the next assignment
to do is to assign the child packs of the those level-i packs to the
child swads of the level-i swad (Line 17). When the assignment
process finishes, all the VMs will be assigned to the PMs.

There is an assignment subproblem associated with each swad
on the swad hierarchy. As the experimental results in Section
IV show, the computation time for the subproblems at the
lowest levels dominates the overall computation time. These
subproblems are independent from each other, and therefore,
can be dispatched to separate solvers for parallel computation.

Several things may happen. In any assignment step above,
if a pack is too large to fit into any child swad of the swad
currently being considered, then the pack will be unpacked and
replaced by its children (Line 1). Such a unpacking process can
continue until either every pack can fit into some child swads,
or until there are no more descendant packs to unpack. If a
terminal swad (whose children are PMs) is reached but some of
the packs assigned to the swad have descendant packs, all the
descendant packs will be unpacked and made ready for the final
assignment step.

III. A CANONICAL VM PLACEMENT PROBLEM

To demonstrate the effectiveness and scalability of our frame-
work, we will use a canonical datacenter resource management
problem as an example. In this section, we will describe the MIP
formulation of the problem and the application of hierarchical
decomposition (Algorithm 1) to this problem. Later in Section
IV, we will solve very large instances of the problem. Although
many other problems can be chosen for demonstration, the
canonical problem has the advantage of wider applicability and
ease of presentation.

Algorithm 1 Hierarchical Decomposition Algorithm (P, S)

1: check for possible unpacking conditions and unpack;
2: find an assignment of packs in P to swads in S by solving an MIP problem;
3: if an optimal assignment X = [xik]∀p∈P,s∈S is found then
4: for each swad s ∈ S do
5: if s is a PM then
6: continue; � assignment to s is done
7: else � s is a swad with children
8: P ′ ← ∅, S′ ← s.children;
9: for each pack p ∈ P with xps = 1 do

10: if p is a VM then
11: insert p into P ′;
12: else � p is a pack with children
13: insert p.children into P ′;
14: end if
15: end for
16: if P ′ �= ∅ then
17: execute Algorithm 1 with (P ′, S′);
18: end if
19: end if
20: end for
21: end if

A. Problem Formulation

Consider a problem of assigning N VM to M PMs in
a datacenter, under the capacity constraints of the physical
resources of the PMs. Specifically, we consider three types of
physical resources: the number of vCPU, memory size (GB)
and local disk size (GB). Each VM requires certain amount of
resources in these three categories. The total requested resources
by the VMs assigned to a PM must not exceed the PM’s resource
capacities.

The optimization objective is to minimize the total operation
cost of running the active PMs. We assume that a fixed operation
cost is incurred for a PM as long as the PM is used by some
VMs, i.e., some VMs are assigned to the PM. When a PM
has no VMs assigned to it, it will be turned off, and there is
zero operation cost. The operation cost may include the average
energy cost when a machine is running and typical maintenance
cost.

Let the set of VMs and PMs be denoted by V = {1, 2, . . . , N}
and P = {1, 2, . . . ,M}, respectively. Eeach VM i ∈ V requires
ai vCPUs, bi GB memory, and di GB local disk size. For each
PM k ∈ P , its resource capacities are Ak vCPUs, Bk GB of
memory and Dk GB of local disk size.

For each VM i ∈ V and each PM k ∈ P , let xik be a 0-1
assignment variable from VM i to PM k, which takes the value
1 if VM i is assigned to PM k and 0 otherwise. Each VM i
should be assigned to only one PM.

For each PM k, let yk be a 0-1 variable indicating whether
PM k is used by some VMs, with yk = 1 meaning that PM k is
used (active) and yk = 0 meaning that PM k is unused (which
will be turned off). When PM k is used to serve some VMs,
there is a fixed cost Ck associated with running the PM.

The following is the MIP formulation of the problem. The PM
resource capacity constraints associated with the vCPU, memory
and disk space, respectively, can be expressed as:

∑
i∈V ai xik ≤

Ak,
∑

i∈V bi xik ≤ Bk and
∑

i∈V di xik ≤ Dk, ∀k ∈ P . To
ensure that each VM is assigned to exactly one PM, we need
the constraints:

∑
k∈P xik = 1, ∀i ∈ V . To ensure that a PM

k must be set active (i.e., yk = 1) as long as some VMs are
assigned to it, we need:

∑
i∈V xik ≤ N yk, ∀k ∈ P . Finally, the

optimization objective is: min
∑

k∈P Ck yk.

851

B. Algorithm Implementation
In our experiments, customers make requests of VMs and/or

packs of VMs (see Section III-C). We implement three algo-
rithms for the problem in Section III-A: (1) the VM-centric flat
MIP that directly assigns all the VMs to all the PMs; (2) the
proposed hierarchical decomposition algorithm (Algorithm 1);
(3) a heuristic algorithm improved from the first-fit-decreasing
(FFD) algorithm for bin-packing problems.

1) VM-Centric Flat MIP: All the packs are unpacked into
separate VMs. The swad hierarchy is flattened into separate
PMs. Then, the VM-to-PM assignment problem in Section III-A
is solved directly using an MIP solver.

2) Pack-Centric Hierarchical Decomposition: For the pur-
pose of demonstrating scalability, we implement a two-level
version of the hierarchical decomposition algorithm. We will
show that two levels are enough for fairly large instances of
the problem at hand. In practice, the problems are different for
different datacenters and some problems may require more than
two levels to achieve sufficient scalability. There are also other
reasons to have more than two levels, such as satisfying the
resource-sharing requirements from the customers.

All VM/pack requests are re-grouped into multiple height-1
packs; this is done randomly except that each of the requested
packs is kept together when possible. The PMs in the datacenter
are grouped into multiple height-1 swads, each with a mix of
different PM types. For these two-level pack/swad hierarchies,
two levels of MIP are needed. The first level (the top level)
has one MIP subproblem to solve, which is to assign the packs
to the swads. The second level (the bottom level) has as many
MIP subproblems as the number of swads used (i.e., the swads
with assigned packs), one for every used swad. For each of the
second-level subproblems, all the packs assigned to the focal
swad are unpacked into VMs. Then, the VMs are assigned to
the PMs in the swad by solving a smaller MIP problem similar
to the one in Section III-A.

3) Heuristic First-Fit-Decreasing Algorithm: For compari-
son, we also provide a heuristic algorithm specifically tailored
for the problem in Section III-A. It is derived from and improves
upon the first-fit-decreasing (FFD) algorithm for bin-packing. In
our improved FFD heuristic, the VMs are sorted in decreasing
order of their monetary costs and the PMs are sorted in in-
creasing order of their operation costs . Then, for each VM in
the sorted VM list, we assign the VM to the first suitable PM
(first-fit) in the sorted PM list. The reason we use costs for
sorting is that they generally correspond well with the resource
requirements of VMs and the capabilities of PMs, as can be
seen from Table I . The heuristic algorithm adopts the traditional
VM-centric view. Its time complexity is O(NM).

C. Experimental Environment
The VM types and PM types used in the experiments are

specified in Table I, which are from Amazon’s EC2 [8]. The
operation costs in 5th column of PM types table are our
estimates based on the PM configurations, since the actual costs
are unavailable. The numbers are normalized with the least
powerful PM type s1 having an operation cost 100.

To simulate pack-centric scenarios, we allow two types of
requests in each test case: individual VM requests and pack
requests. Individual VM requests refer to individual customers
requesting a single VM or a few independent VMs, which can
be freely placed on any PM in the datacenter. A pack request is
a bundle of VMs requested by an enterprise customer. A pack

TABLE I
AMAZON EC2 VM TYPES AND PM TYPES

VM Type vCPU Memory (GB) Storage (GB) Cost ($/hour)

m3.medium 1 3.75 1 × 4 67

m3.large 2 7.5 1 × 32 133

m3.xlarge 4 15 2 × 40 266

m3.2xlarge 8 30 2 × 80 532

c3.large 2 3.75 2 × 16 105

c3.xlarge 4 7.5 2 × 40 210

c3.2xlarge 8 15 2 × 80 420

c3.4xlarge 16 30 2 × 160 840

c3.8xlarge 32 60 2 × 320 1680

r3.large 2 15.25 1 × 32 175

r3.xlarge 4 30.5 1 × 80 350

r3.2xlarge 8 61 1 × 160 700

r3.4xlarge 16 122 1 × 320 1400

r3.8xlarge 32 244 2 × 320 2800

i2.xlarge 4 30.5 1 × 800 853

i2.2xlarge 8 61 2 × 800 1705

i2.4xlarge 16 122 4 × 800 3410

i2.8xlarge 32 244 8 × 800 6820

PM Type vCPU Memory (GB) Storage (GB) Cost (normalized)

s1 8 16 1 × 256 100

s2 8 32 1 × 512 150

s3 8 64 2 × 512 200

s4 8 64 4 × 512 250

m1 16 32 2 × 512 300

m2 16 64 4 × 512 400

m3 16 128 4 × 1000 500

m4 16 256 8 × 1000 700

m5 16 256 16 × 512 700

l1 32 256 4 × 1000 800

l2 48 512 8 × 1000 1200

l3 64 1024 4 × 1000 1500

l4 80 2048 16 × 1600 2200

l5 120 4096 4 × 1000 2500

l6 120 4096 24 × 1600 3000

may have certain internal structures and relationship among the
VMs. For instance, they may communicate with each other or
depend on each other in a workflow; thus it is preferable to
place them in the same swad. We assume in our experiments
that each pack request can fit into at least one of the swads
in the datacenter. In real world situations with very large pack
requests, the datacenter can aggregate swads into higher-level
swads to accommodate large packs.

In each experiment, the input data contains a mixture of
individual VM requests and pack requests of different VM types.
Each swad is a heterogeneous group of PMs of different types.
The datacenter’s swad hierarchy contains 1 to 250 different
swads, depending on the test cases. From Test 1 to Test 10,
the numbers of VMs and PMs increase, and the proportions of
different VM or PM types also vary.

We use Gurobi Optimizer 6.5 [16] as the MIP solver. All the
experiments are conducted on a PC with AMD quad-core 3.5
GHz CPU and 16 GB memory. We collect the running time and
the achieved objective values as the performance metrics.

IV. EXPERIMENTAL RESULTS

A. Solving VM-Centric Flat MIP
The VM-centric flat MIP yields optimal solutions, which

provide useful performance benchmarks. However, only small
problem instances can be solved due to its lack of scalability.
Our experimental results confirm this. Fig. 3 shows the compu-
tation time grows extremely fast from Test 1 to Test 7 when the
numbers of VMs/PMs increase from 90 VMs/70 PMs to 600
VMs/375 PMs. The computation time reaches 2070 seconds in
Test 7. Any instance with more than 1000 VMs and 1000 PMs
cannot be solved optimally in reasonable time on our machine.

852

90/70 140/80 200/100 300/150 400/210 500/300 600/375
0

500

1000

1500

2000

2500

VM/PM

R
un

 ti
m

e
(s

)

Fig. 3. Computation time of VM-centric flat MIP

B. Comparing Three Algorithms
In this part of the experiments, we use test cases 4 - 7, each

of which has more than one swad but also is small enough to
be solved by the flat MIP. The three algorithms from Section
III-B: the flat MIP, the hierarchical decomposition algorithm
(Algorithm 1) with two-level hierarchies, and the FFD heuristic,
are compared for each test case.

TABLE II
COMPARISON OF ALGORITHMS

Test No. 4 5 6 7

No. of VMs 300 400 500 600

No. of PMs 150 210 300 375

No. of Swads 2 3 4 5

Flat MIP Cost 46300 48800 60800 70300

Run Time 115.88 436.87 856.99 2070.67

Two-level HD Cost 46600 49050 64900 76000

Total Run Time 45.80 80.99 58.46 92.34

FFD Cost 65800 78500 100000 119500

Run Time 0.026 0.041 0.050 0.10

300/150 400/210 500/300 600/375
0

20000

40000

60000

80000

100000

120000

140000
flat_mip
two_level_mip
first_fit

VM/PM

O
bj

ec
tiv

e
va

lu
e

Fig. 4. Comparison of the objective values of the algorithms

In the two-level hierarchical decomposition algorithm, the
datacenter has 2, 3, 4, 5 height-1 swads in Test 4, 5, 6, 7,
respectively. Each swad contains 70 to 75 PMs of different
types. As shown in Algorithm 1, the overall problem needs
two levels of MIP to solve. In the top level pack-to-swad
assignment, the total resource requirements of each pack and
the total resource capacities of each swad are used as the input
parameters for an MIP problem. The objective of that problem
is to minimize the total cost of all the swads used. We define
a safety margin 0 < β < 1 for resource usage. The constraints
are that each swad can have at most a fraction β of its total
capacity of each resource type to be used in the first-level
pack-to-swad assignment. The purpose of having β < 1 is to
reserve more room for maneuver during the second-level VM-
to-PM assignment within each swad. If we leave no margin, i.e.

300/150 400/210 500/300 600/375
0

500

1000

1500

2000

2500

flat_mip
two_level_mip
first_fit

VM/PM

R
un

 ti
m

e
(s

)

Fig. 5. Comparison of computation time of the algorithms

β = 1, a swad might be packed too tightly with VMs/packs and
the second-level assignment might fail due to the heterogeneity
of the VMs and PMs. We used β = 0.7 in our experiments.
Each second-level VM-to-PM assignment does not have a safety
margin β.

The experimental results are shown in Table II, Fig. 4, and
Fig. 5. In the table, ‘HD’ stands for ‘hierarchical decomposition’.
The advantages of the hierarchical decomposition framework
can be observed from the computation time and achieved
objective values in the results. First, it greatly reduces the
computation time compared with the flat MIP approach. The
computation time of the hierarchical decomposition algorithm
increases slowly as the problem size increases, and hence, the
speed gain against the flat MIP gets much larger. In Test 7, the
computation time of the hierarchical decomposition algorithm is
only 92.34 seconds, whereas it is 2070.67 seconds for the flat
MIP. The improvement is due to the fact that the overall problem
is decomposed into a series of smaller subproblems, which can
be solved much more quickly. Note that, in our experiments,
the subproblems are solved in sequence on the same PC. The
reported computation time here is the total time. Since the
bottom-level MIP subproblems are completely independent from
each other, in practice, they can be distributed to the swads
and solved locally in parallel. Thus, the overall run time is
much shorter. We will explore such scalability properties in more
details in Section IV-C.

The second benefit of the proposed framework is that the
achieved objective values are very close to the optimal values,
only 4.0% larger than the latter on average (the optimal values
are obtained by the flat MIP). The near optimal results are
consistent across the four test cases, with the largest difference
being 8.1%. Together with the great gain in computation speed,
the hierarchical decomposition algorithm compares favorably
to the flat MIP approach, especially for larger-scale datacenter
resource management problems.

The heuristic FFD algorithm is the fastest on these small
test cases, which is expected due to its O(NM) complexity.
However, its achieved objective values are on average 59.4%
larger than the optimal values, which is a fairly large cost
increase. The poorer performance can be partly explained by the
heterogeneity of the swads and the PMs inside a swad, which
makes the FFD scheme less suitable in many situations.

C. Scalability of Hierarchical Decomposition Algorithm

In this part of the experiments, we focus on exploring the
scalability of the hierarchical decomposition algorithm. The test
cases 8, 9, and 10 each have 6000, 20000 and 50000 VMs with
different mixes of individual VM requests and pack requests of

853

all VM types. The datacenter has 30, 100, 250 swads for the test
cases 8, 9 and 10, respectively, with each swad having 100 PMs
of mixed types. The large cases, such as 50000 VMs and 25000
PMs, correspond well with the scale of current datacenters of
large cloud providers.

TABLE III
ALGORITHM SCALABILITY

Test No. 8 9 10

No. of VMs 6000 20000 50000

No. of PMs 3000 10000 25000

No. of Packs 105 358 754

No. of Swads 30 100 250

HD 1st-Level Time 0.065 6.40 3.98

2nd-Level Average Time 52.54 50.99 76.99

Total Cost 758250 2647900 5572850

Total Time 1377.87 4637.03 14672.82

FFD Cost 1085400 3704800 8260600

Run Time 10.21 114.54 684.32

6000/3000 20000/10000 50000/25000
0

100

200

300

400

500

600

700

800

two_level_mip

first_fit

VM/PM

R
un

 ti
m

e
(s

)

Fig. 6. Algorithm scalability

For each test case, the two-level hierarchical decomposition
algorithm is compared only with the heuristic FFD algorithm,
since the flat MIP cannot solve such large problems. The
results are shown in Table III and Fig. 6. For the hierarchical
decomposition algorithm, we show the computation time for
the top level (1st-level) pack-to-swad assignment, the average
computation time for the bottom-level (2nd-level) VM-to-PM
assignment in each of the swads, the total operating cost after
all assignments are made, and the total algorithm running time.
Our experiments use only one PC to run all the bottom-level
assignments in sequence. If each swad has a separate controller
to solve its own VM-to-PM assignment subproblem, the total
computation time from an individual swad’s point of view is the
time to solve the top-level assignment problem plus the time to
solve one bottom-level subproblem.

When the number of VMs increases from 6000 to 50000
and the number of PMs increases from 3000 to 25000 (from
test 8 to test 10), the average computation time faced by a
swad, including that for both levels, only sees a modest increase
from 53.19 seconds to 80.97 seconds. That is because the
computation time is dominated by the bottom-level computation
time, and by keeping the swad size to be a manageable 100
PMs, the bottom-level computation time remains within 30 to
100 seconds from different swads, and is relatively predictable.
Scaling the problem size even larger will only increase the
top-level computation time, if the bottom-level subproblems are
solved by parallel servers. As the problem size increases further,
the levels of decomposition can be increased (if needed) so
that the pack-to-swad assignment can also be solved in parallel.

For our problem, we see that even two-level decomposition is
sufficient for problem sizes required by today’s datacenters.

The heuristic FFD algorithm, on the other hand, scales linearly
with M×N . Though it is still relatively fast, it does suffer from
dramatic slow-down as the problem size becomes large. Starting
from test case 9, the computation time exceeds that of the
hierarchical decomposition algorithm. Moreover, the achieved
objective value by the FFD algorithm is on average 43.8% more
than that achieved by the hierarchical decomposition algorithm,
which is another disadvantage of the heuristic algorithm. The
heuristic FFD algorithm can be parallelized by splitting the VMs
and PMs into smaller batches and having different controllers
to run FFD on different pairs of VM-PM batches. However, the
achieved objective value will get worse.

V. CONCLUSIONS

In this paper, we outline a pack-centric hierarchical decom-
position framework for datacenter resource management, as
opposed to the traditional, flat, VM-centric approach adopted
by much prior work. Our experiments have shown that the new
framework is very effective and highly scalable, capable of solv-
ing very large problems encountered by large datacenters and
leading to much reduced datacenter costs. By relying on MIP,
the framework is well suited for describing and solving other
sophisticated, system-oriented resource management problems.
It can enhance customer agility, while at the same time achieve
high resource efficiency in datacenters.

REFERENCES

[1] G. Kandiraju, H. Franke, M. D. Williams, M. Steinder, and S. M.
Black, “Software defined infrastructures,” IBM Journal of Research and
Development, vol. 58, no. 2/3, March/May 2014.

[2] H. Liu, Amazon Data Center Size, March 2012, http://huanliu.wordpress.
com/2012/03/13/amazon-data-center-size/.

[3] W. C. Arnold, D. J. Arroyo, W. Segmuller, M. Spreitzer, M. Steinder,
and A. N. Tantawi, “Workload orchestration and optimization for software
defined environments,” IBM Journal of Research and Development, vol. 58,
no. 2/3, March/May 2014.

[4] M. Chen, H. Zhang, Y. Y. Su, X. Wang, G. Jiang, and K. Yoshihira,
“Effective VM sizing in virtualized data centers,” in Proceedings of
IFIP/IEEE Integrated Network Management (IM), 2011.

[5] Y. Li, X. Tang, and W. Cai, “On dynamic bin packing for resource
allocation in the cloud,” in Proceedings of the ACM Symposium on
Parallelism in Algorithms and Architectures (SPAA ’14), 2014.

[6] W. Song, Z. Xiao, Q. Chen, and H. Luo, “Adaptive resource provisioning
for the cloud using online bin packing,” IEEE Transactions on Computers,
vol. 63, no. 11, pp. 2647–2660, 2014.

[7] OpenStack Project, 2015, http://www.openstack.org/.
[8] Amazon AWS EC2 Instances, 2015, http://aws.amazon.com/ec2/.
[9] Y. Xia, M. Tsugawa, J. Fortes, and S. Chen, “Hierarchical mixed in-

teger programming for pack-to-swad placement in datacenters (work in
progress),” Proceedings of IEEE International Conference on Autonomic
Computing (ICAC), 2015.

[10] L. Hu, K. D. Ryu, D. D. Silva, and K. Schwan, “v-Bundle: Flexible
group resource offerings in clouds,” in IEEE International Conference on
Distributed Computing Systems (ICDCS ’12), June 2012.

[11] C. Guo, G. Lu, H. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and
Y. Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” Proceedings of ACM CoNEXT, 2010.

[12] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of data cen-
ter networks with traffic-aware virtual machine placement,” in Proceedings
of IEEE INFOCOM, 2010.

[13] M.-T. Chen, C.-C. Hsu, M.-S. Kuo, Y.-J. Cheng, and C.-F. Chou,
“GreenGlue: Power optimization for data centers through resource-
guaranteed VM placement,” in IEEE International Conference on Internet
of Things (iThings), and IEEE Green Computing and Communications
(GreenCom), and Cyber, Physical and Social Computing(CPSCom), 2014.

[14] L. Zhang, X. Yin, Z. Li, and C. Wu, “Hierarchical virtual machine
placement in modular data centers,” in IEEE International Conference on
Cloud Computing (CLOUD), 2015.

[15] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” Proc. of ACM SIGCOMM, 2008.

[16] Gurobi Optimizer, 2015, http://www.gurobi.com.

854

