
Using Integer Programming for Workflow Scheduling in the Cloud

Yi Wang

LinkedIn
Mountain View, CA, USA

Email: yi2000us@gmail.com

Ye Xia and Shigang Chen

Department of Computer and Information Science and Engineering
University of Florida, Gainesville, FL 32611, USA

Email: {yx1, sgchen}@cise.ufl.edu

Abstract—We study a fundamental problem of how to
schedule complex workflows in the cloud for applications
such as data analytics. One of the main challenges is that
such workflow scheduling problems involve many constraints,
requirements and varied objectives and it is extremely difficult
to find high-quality solutions. To meet the challenge, we explore
using mixed integer programming (MIP) to formulate and solve
complex workflow scheduling problems. To illustrate the MIP-
based method, we formulate three related workflow scheduling
problems in MIP. They are fairly generic, comprehensive and
are expected to be useful for a wide range of workflow schedul-
ing scenarios. Using results from numerical experiments, we
demonstrate that, for problems up to certain size, the MIP
approach is entirely applicable and more advantageous over
heuristic algorithms.

Keywords-workflow scheduling; precedence constraints;
cloud computing; mixed integer programming

I. INTRODUCTION

There is an increasing trend that the computation cloud is

used for complex workflows, such as scientific computing

workflows [1], [2] and big-data analytics [3], [4]. The current

workflow management systems in the cloud are becoming

inadequate for the growing diversity and sophistication of

complex workflows. This has resulted in long job latency,

violated customer service level agreement (SLA), wasted

cloud resources, and poor return on investment.

This paper investigates a fundamental problem regard-

ing how to schedule complex workflows in the cloud.

The workflows envisioned in this paper contain complex

constraints and feature requirements, as well as complex

objectives. Each workflow contains a set of tasks. The tasks

are dependent on each other, for instance, through the data

they generate and consume. The task/data dependency leads

to precedence constraints, meaning a task cannot start its

execution until the tasks that it depends on have finished

and the data that it needs has arrived. In addition, workflows

usually have other timing constraints such as ready times

and deadlines, and the tasks have their minimum resource

requirements. The workflows will be executed on a set of

computing resources in the cloud, such as a collection of

virtual machines (VMs). There are costs associated with

operating or leasing these resources. A generic workflow

scheduling problem is to decide when and where to execute

different tasks of all the workflows subject to the afore-

mentioned constraints. The problem can be formulated as

an optimization problem, where a typical objective is to

minimize the operating cost of the computing resources or

the payment needed to use the resources. A more general

objective is to maximize the difference between the gain

from finishing the workflows and the cost/payment.
One of the main challenges is that such workflow schedul-

ing problems are so tremendously complex that it is ex-

tremely difficult to find high-quality solutions by heuristic

reasoning alone. In fact, it is even difficult to find a feasible

solution, i.e., a solution that satisfies all the constraints

posed by a problem. There is a set of studies on simpler

versions of the problems and they mostly focus on heuristic

algorithms, which often generate infeasible solutions, such

as solutions that exceed the workflow deadlines [5]–[7].

To meet the challenge, in this paper, we explore using

mixed integer programming (MIP) [8] to formulate and

solve complex workflow scheduling problems. Prior research

in this area has not used the MIP framework much. The

MIP approach allows us to describe workflow scheduling

problems precisely – capturing all the complex constraints,

requirements and objectives – and after that, solve the

problems optimally, thus providing the best solutions to

the problems. By applying standard MIP algorithms (e.g.,

branch-and-bound [8]), the algorithm development time can

be minimized.
We next summarize our main contributions. First, we

formulated three related workflow scheduling problems in

MIP. These problems are fairly generic and are expected to

be useful for a wide range of workflow scheduling scenarios.

They are more comprehensive than those in prior studies in

that

• our formulations incorporate arbitrary precedence con-

straints among tasks (as apposed to the series-parallel

dependency, such as in MapReduce jobs), data transfer

delay, deadlines and ready times, and heterogeneous

resources;

• for the optimization objective, we consider both cost

minimization and profit maximization; with respect to

monetary cost, we consider both long-term lease and

pay-as-you-go payment models for cloud resources;

• with respect to SLA involving timing, we consider both

2017 IEEE 10th International Conference on Cloud Computing

2159-6190/17 $31.00 © 2017 IEEE

DOI 10.1109/CLOUD.2017.26

138

hard and soft deadlines.

Second, since formulating workflow problems in MIP

requires non-trivial effort, we dedicate the main part of

the paper to describing the details about how to formulate

each set of constraints, as well as the objectives. These

formulation examples demonstrate the capabilities of MIP

in capturing very complex workflow scheduling situations.

The techniques used there can be useful for other variants

of the workflow scheduling problem. Third, we conducted

numerical experiments to evaluate the effectiveness of the

MIP approach and its advantages over heuristic algorithms.

The results show that a well-known heuristic algorithm

cannot even find feasible solutions in many cases due to

the complexity of the problems, whereas the MIP solutions

are not only feasible but optimal.

We next briefly review related literature. The studies

closest to ours only focus on much restricted versions of

the workflow scheduling problem [1], [2], [4]–[7], [9]–

[16]. For instance, the task dependency is less general, e.g.,

consisting of parallel tasks or series-parallel tasks (such as

MapReduce tasks), the processing engines are homogeneous

in types, or data transfer time is not considered. Even

these restricted versions are very difficult solve. Limited

attempt has been made to find optimal solutions, and MIP

algorithms are rarely used. Nearly all previous efforts are

on developing heuristic algorithms. Because of the problem

complexity, there seem to be no known structures useful

for developing good heuristics. Existing heuristic algorithms

appear to be doing something distinctively sub-optimal. For

instance, in dealing with the deadline of a workflow, one

class of approach is to divide the time budget for an entire

workflow into separate time budget for each of the tasks;

other algorithms simply allow the deadlines to be violated.

The performance gap between the heuristic algorithms and

optimal algorithms is likely to be large. But, the gap is

unknown because the problems are never solved optimally.

The rest of the paper is organized as follows. In Section

II, we formulate a min-cost workflow scheduling problem

with hard deadline guarantee. In Section III-A, we give two

more advanced formulations: One has profit maximization

as the objective and it allows soft deadlines, and the other

adopts the pay-as-you-go payment model. In Section IV, we

present numerical results to demonstrate the effectiveness of

the MIP approach. We draw conclusions in Section V.

II. MIN-COST WITH DEADLINE GUARANTEE

A. Overview

A set of workflows is to be scheduled in the cloud. A

workflow consists of a set of computation tasks. The tasks

of a workflow are subject to precedence constraints among

themselves; that is, some tasks depend on other tasks in the

same workflow and the dependency puts timing constraints

on when a task can start execution. In most cases, the

precedence constraints are due to data dependency, where a

task reads and manipulates data produced by other tasks and

subsequently generates new data on which other tasks may

depend on. With data in the picture, precedence constraints

mean that a task cannot start execution before the tasks that

it depends on are completed and the data it needs has arrived.

For each workflow, the precedence constraints are usually

represented by a directed acyclic graph (DAG) (see Fig 1).

A node of the DAG represents a task of the workflow. A

directed edge from node i to node j means that task j
depends on task i, and in particular, on the data that task i
produces.

In typical workflow applications, the SLA is usually set at

the workflow level rather than the task level. We assume each

workflow has a deadline requirement; but a task does not

have a deadline. A task has minimum computation resource

requirements, such as the CPU power and memory.

Figure 1. Three workflows

For ease of discussion, the computing engines in this pa-

per are a set of VMs of different types. But, extension can be

made to allow other types of computing engines, including

physical machines and server clusters. The execution time

of a task depends on the amount of computing resources of

the VM on which the task is assigned to.

Our workflow scheduling problem is to decide when and

on which VM to execute each task subject to important

constraints: the precedence constraints including data avail-

ability, constraints about minimum resource requirements,

SLA in the form of ready times and deadlines, and resource

capacity constraints at the VMs. We will formulate the

problem as an MIP optimization problem, so that among all

the feasible solutions that satisfy all the constraints, we can

find an optimal solution. The objective function will capture

the operating cost or payment made to use the VMs.

We make two important assumptions:

• non-overlapping: at most one task runs on a VM at any

time;

• non-preemption: a running task will not be interrupted.

With the two assumptions, once a task is scheduled to run

on a VM starting at time t, it will continue to run until

completion. Furthermore, it will be the only task running

on the assigned VM during that time interval. We will later

write constraints to enforce the non-overlapping assumption.

139

Their are reasons for imposing the non-overlapping con-

straint. First, the in-advance scheduling considered in this

paper naturally applies to workflows where the individual

tasks are “large”, i.e., taking long time to run even on very

powerful VMs. Once a VM is dedicated to such a task,

there are no spare resources to run other tasks without sig-

nificantly impacting the focal task. Running multiple tasks

concurrently on a VM leads to unpredictable performance

and makes it even more difficult to properly schedule the

workflows. Second, with the interdependency of the tasks in

a workflow, it is beneficial to complete a task as soon as

possible so that other tasks that depend on it can be started

sooner. The non-overlapping constraint helps to reduce the

execution time of a task, when compared with running

multiple tasks on the same VM at the same time.

With respect the second assumption, it is possible that

improvement can be made by allowing preemption. For in-

stance, if a non-preemptive schedule has periods of inactivity

at some of the VMs, a preemptive schedule may allow some

tasks to fill in those idle periods, but be preempted later.

However, in practice, preemption leads to system overheads

and it is difficult to manage. Preemption also makes the

scheduling problem much more difficult. Nevertheless, it is

still an interesting topic for future research.

B. Formulating the Workflow Scheduling Problem

Often-used notations are summarized in Table I.

Table I
OFTEN-USED NOTATIONS

T the set of time slots T = {1, 2, . . . , T}
W the set of workflows W = {1, 2, . . . ,W}
S the set of all tasks of all workflows S = {1, 2, . . . , S}
V the set of VMs V = {1, 2, . . . , V }
Aw the ready time of workflow w
Dw the deadline of workflow w
Ck the number of vCPUs of VM k
Bk the amount of memory of VM k
cj the minimum number of vCPU required by task j
bj the minimum memory required by task j
Pk the leasing price or other cost to operate VM k
Rjk the running time of task j on VM k
lij lij = 1 if task i depends on task j; lij = 0 otherwise
Uij data transfer time from task i to j if i and j are not co-located
hw(s) the value of workflow w if it is finished at time Aw + s− 1
Δ duration of a time slot in minutes
L the number of times slots per time frame (i.e., per hour)
M the set of time frames M = {1, 2, . . . ,M}
xt
jk xt

jk = 1 if and only if task j is scheduled to run

on VM k starting at time slot t
yk yk = 1 if and only if some tasks are assigned to VM k
zij zij = 0 if and only if tasks i and j are assigned

to the same VM, i.e., co-located
vik vik = 1 if and only if task i is assigned to VM k
ymk ymk = 1 if and only if VM k is used on time frame m

1) Time Structure: We will consider a discrete-time

model, where time is divided into a sequence of time slots

1, 2, . . . , T of identical duration, e.g., 5 minutes per time

slot. Here, T corresponds to the furtherest time horizon

for the scheduling problem. For instance, if we schedule

workflows for the next 24 hours and if the time slot size

is 5 minutes, then T = 12 × 24 = 288. The choice of

a discrete-time model is in part due to the convenience it

offers in formulating the problem. This will become clear

later. Let T = {1, 2, . . . , T}.
2) Main Input: Consider a set of cloud computing work-

flows W = {1, 2, . . . ,W}. Each workflow contains one or

more tasks, and it can be viewed as a set of tasks. The total

pool of tasks from all the workflows is denoted by the set

S = {1, 2, . . . , S}. Each task j ∈ S can only belong to one

workflow.

We represent the task precedence constraints by a 0-1
matrix (lij), ∀i, j ∈ S , where lij = 1 if task i depends on

task j and lij = 0 if task i does not depend on task j. By

convention, we set lii = 0 for each i. The meaning of the

precedence constraints is as follows: If lij = 1, then the start

time of task i should be after the finish time of task j plus

the data transfer time from j to i.
Each workflow w has a deadline denoted by Dw. It also

has a ready time, denoted by Aw.

For computing resources in the cloud, we assume there

is a set of virtual machines (VMs) of different types and

capabilities. The set is denoted by V = {1, 2, . . . , V }. For

each VM k ∈ V , let Ck be the number of vCPUs it supports

and let Bk be the amount of its memory.

3) Main Decision Variables: The workflow scheduling

problem is to assign tasks to the VMs at the right time so that

the precedence constraints, resource constraints and timing

requirements are all satisfied.

Because of the non-overlapping and non-preemption as-

sumptions, once a task is scheduled to run on a VM k
starting at time t, it will continue to run on that VM and

use the VM exclusively until completion. Thus, to schedule

the workflows, it is enough to decide the start times and the

VM assignments of all the tasks.

With the help of the discrete-time structure, we use the

binary decision variables xt
jk to represent the task assign-

ment: xt
jk = 1 if task j is scheduled to run on VM k starting

at time slot t, and xt
jk = 0 otherwise.

Each task should start only once, which can be specified

as: ∑

k∈V

∑

t∈T
xt
jk = 1, ∀j ∈ S. (1)

Consider a fixed task j. Since the variables xt
jk can take

values of only 0 or 1, (1) is the same as saying that exactly

one xt
jk will take the value 1; that is, task j will start exactly

once on exactly one VM.

Let the binary variable yk denote the on/off (active/idle)

status of each VM k, with yk = 1 if some tasks are assigned

to VM k at any time, and yk = 0 otherwise. If VM k has no

task assignment, then we can potentially suspend the VM or

terminate the VM’s lease to reduce cost. However, if one or

140

more task is scheduled to run on the VM, it has to be turned

on (yk = 1).

We need the following constraints.

∑

j∈S

∑

t∈T
xt
jk ≤ yk|S|, ∀k ∈ V. (2)

Clearly, yk = 0 forces xt
jk = 0 for all j ∈ S and all

t ∈ T . When yk = 1, the constraint in (2) allows the

possibility that xt
jk = 0 for all j ∈ S and all t ∈ T ; that

is, while VM k is turned on, no tasks are ever assigned to

it. However, when combined with the optimization objective

of minimizing the cost of running the active VMs, such a

solution is not optimal. Thus, any optimal solution in fact

will satisfy (2) as equalities; consequently, if yk = 1, then

xt
jk = 1 for some j and some t.

4) Resource Constraints: Each task requires certain min-

imum amount of resources to run properly. For example, a

task may require a minimum of 2 vCPUs and 4 GB memory

to run. For each task j ∈ S , let cj be the minimum number

of vCPU required, and let bj be the minimum memory

requirement.

Each VM k has certain resource capacity in terms of the

number of vCPUs Ck and memory capacity Bk in GB (and

local disk/SSD volume in GB, which we omit for brevity).

From the perspective of each task, the resource constraints

state that the assigned VM for the task must have sufficient

resources to run the task:

∑

k∈V

∑

t∈T
Ckx

t
jk ≥ cj , ∀j ∈ S (3)

∑

k∈V

∑

t∈T
Bkx

t
jk ≥ bj , ∀j ∈ S. (4)

Inequality (3) and (4) are for the CPU and memory, respec-

tively. Since, for each j, exactly one xt
jk takes the value

1, (3) really says that Ck ≥ cj for k such that xt
jk = 1 for

some t. That is, if task j is assigned to VM k, then Ck ≥ cj .

A similar implication can be said about (4).

Combining with the non-overlapping assumption, (3) and

(4) also represent the capacity constraints for each VM k,

i.e., the capacity of each resource on VM k is not exceeded.

5) Non-Overlapping Constraints: The non-overlapping

constraints mean that, for each time slot t and each VM

k, at most one task occupies time slot t on VM k.

For each j ∈ S and k ∈ V , let Rjk denote the running

time of task j on VM k, which is assumed to be given. If

Rjk is inversely proportional to Ck, we have Rjk = λj/Ck,

where λj is the amount of computation required by task j
measured in vCPU-hours. For instance, if it takes 4 hours to

run the task on a VM with 3 vCPUs, then λj = 12 vCPU-

hours. If the same task is executed on a VM with 6 vCPUs,

then Rjk = 2 hours. In more general situations, Rjk may

not be inversely proportional to Ck. The data for Rjk can be

supplied in advance by measuring or estimating the running

times of each task j on different VM types based on either

trials or historical data.

With that, the non-overlapping constraints can be speci-

fied:

∑

j∈S

t∑

r=max(1,t−Rjk+1)

xr
jk ≤ 1, ∀k ∈ V, ∀t ∈ T . (5)

We will explain why (5) is the right specification for non-

overlapping under the assumption of non-preemption. The

execution of task j occupies time t on VM k if and only

if it is assigned to VM k with the start time in the set

{max(1, t − Rjk + 1), . . . , t}. The latter holds if and only

if
∑t

r=max(1,t−Rjk+1) x
r
jk = 1. Thus, (5) means that there

is at most one task occupying time t on VM k.
6) Precedence Constraints: For each pair of tasks i and j

where j depends on i (i.e., with lji = 1), let Uij denote the

data transfer time from task i to task j, provided tasks i and

j are not assigned to the same VM. We consider a scenario

where all the VMs are in the same datacenter. With that,

it is reasonable to assume that the bandwidth between the

VMs are roughly equal, and therefore, the data transfer time

Uij is proportional to the amount of data that task j needs

from task i. Since that amount of data can be known, or

estimated, ahead of time, each Uij is assumed to be given.

The precedence constraints can be formulated as follows:
(∑

k∈V

∑

t∈T
t xt

ik −
∑

k∈V

∑

t∈T
(t+Rjk)x

t
jk − Ujizij

)
lij ≥ 0,

∀i, j ∈ S. (6)

Here, when task i does not depend on task j, where lij = 0,

the inequality is vacuous. When task i depends on j, it says

task i must start after the completion time of task j plus the

data transfer time from j to i. Note that
∑

k∈V
∑

t∈T t xt
ik

is the start time of task i;
∑

k∈V
∑

t∈T (t+ Rjk)x
t
jk is the

completion time of task j plus one.

Each zij is a 0-1 variable indicating whether tasks i and

j will be co-located. Specifically, zij = 0 means that both

tasks i and j are assigned to the same VM, and zij = 1
means otherwise. Suppose task i depends on j (lij = 1).

When task i and j are not co-located, Ujizij = Uji; when

they are co-located, Uijzij = 0, in which case there is no

need to transfer the data from task j to task i. Thus, Ujizij
is the data transfer time from task j to task i regardless of

whether the two tasks are co-located.

We next describe the conditions that the zij variables must

satisfy in order to have the intended physical meaning (about

co-location). For ease of presentation, we introduce another

set of binary variables vik, defined by

vik =
∑

t∈T
xt
ik, ∀i ∈ S, ∀k ∈ V. (7)

Note that each vik indicates whether task i is assigned to

VM k, with vik = 1 if and only if task i is assigned to VM

k.

141

We will write the constraints that ensure zij = 0 if and

only if task i and task j are assigned to the same VM. We

first require

−|V|zij ≤
∑

k∈V
kvik −

∑

k∈V
kvjk ≤ |V|zij , ∀i, j ∈ S. (8)

When zij = 0, (8) implies
∑

k∈V kvik =
∑

k∈V kvjk, which

implies vik = vjk for some k. When zij = 1, (8) poses no

constraints: It is always satisfied for our case where the sets

of binary variables {vik}k and {vjk}k each have exactly one

1. It is easy to see that, for such {vik}k and {vjk}k,

1− |V| ≤
∑

k∈V
kvik −

∑

k∈V
kvjk ≤ |V| − 1.

The next set of constraints ensures that when zij = 1,

task i and task j are not assigned to the same VM:

|
∑

k∈V
kvik −

∑

k∈V
kvjk| ≥ zij , ∀i, j ∈ S. (9)

In order to use standard MIP solvers, we need to convert

(9) to equivalent linear constraints. First, for each pair of

i and j, (9) is equivalent to the following two disjunctive
constraints:

∑

k∈V
kvik −

∑

k∈V
kvjk ≥ zij (10)

or
∑

k∈V
kvik −

∑

k∈V
kvjk ≤ −zij . (11)

To combine such disjunctive inequalities into normal (con-

junctive) inequalities, for each pair of i and j, let θij be a

0-1 variable, taking the value 1 if (10) is active and the value

0 if (11) is active. We then have, for each pair of i and j,
∑

k∈V
kvik −

∑

k∈V
kvjk ≥ zij − |V|(1− θij) (12)

∑

k∈V
kvik −

∑

k∈V
kvjk ≤ −zij + |V|θij . (13)

When θij = 1, (12) is the same as (10) and (13) always

holds. When θij = 0, (13) is the same as (11) and (12)

always holds.

7) Ready Time Constraint: Each workflow has a ready

time, which is the earliest time when it is ready to be

executed. This normally means that the prerequisites of the

workflow are satisfied. For instance, for a workflow that

conducts hourly or daily data analysis, the workflow depends

on the data from the previous hour or day, and it is only

ready after the required data is available in the system.

The ready time of a workflow w is denoted by Aw. We

require:
∑

k∈V

∑

t∈T
t xt

jk ≥ Aw , ∀w ∈ W, ∀j ∈ w. (14)

That is, no task of a workflow w can be scheduled to start

earlier than Aw.

8) Deadline Constraints: Deadline constraints are very

important in workflow scheduling, since the deadline is one

of the most important aspects of SLA. Violating a workflow

deadline may reduce the usefulness of the workflow results,

incur late penalty, cause loss of profit, and in some situations

even render the entire workflow worthless.

One of the commonly used notions of deadline is a hard

deadline, where a workflow is required to be finished by

its deadline. Hard deadlines apply to situations where a late

workflow is not only worthless but may incur steep penalty.

In the case where there is no possible way to satisfy all

workflow deadlines, the scheduler needs to generate warning

in advance so that some workflows are rejected when they

enter the system, a process known as admission control.

A workflow w is completed by its deadline Dw if and

only if every task j of workflow w is completed by Dw.

Thus, the deadline constraints can be written as
∑

k∈V

∑

t∈T
(t+Rjk − 1)xt

jk ≤ Dw, ∀w ∈ W, ∀j ∈ w. (15)

C. Putting It Together: the Min-Cost Problem

Let Pk be the leasing price or other cost to operate VM k
(such as due to power consumption). Our objective here is

to minimize the total price or operating cost. The complete

problem formulation is as follows:

min
∑

k∈V
Pk yk (Min-Cost)

s.t. (1)(2)(3)(4)(5)(6)(7)(8)(12)(13)(14)(15)

xt
jk, yk, zij , vik, θij ∈ {0, 1}, ∀i, j ∈ S, ∀k ∈ V, ∀t ∈ T .

III. MORE ADVANCED FORMULATIONS

A. Soft Deadline and Profit Maximization

Instead of hard deadline constraints, there are alternatively

models that impose “soft” deadline constraints. More gen-

erally, we will consider the following profit-maximization

problem, where the objective is to maximize the difference

between the total value gained from completing the work-

flows and the total cost.

Suppose that the completion of a workflow generates a

value that depends on its completion time relative to its ready

time. Specially, consider the workflow w with ready time

Aw. Let hw : {1, 2, . . .} → R be a non-increasing value
function, where hw(s) represents the value gained when

workflow w is finished at time Aw + s − 1. We assume

hw(1) > 0 for each w.

In this setup, there may still be a deadline Dw. But, it

is understood as a soft deadline. For instance, we can set

hw(s) = m1 > 0 for 1 ≤ s ≤ Dw−Aw+1 and hw(s) ≤ m2

for s > Dw−Aw+1, where m1 and m2 are constants with

m1 > m2. Then, there is a constant gain when workflow w
is finished by the deadline Dw. Depending on the values of

hw for s > Dw − Aw + 1, there is either a reduced gain,

142

no gain, or a penalty if the workflow is finished after the

deadline.

The value-function-based approach is far more flexible

and useful than the hard-deadline problems. It allows the

system to execute late workflows at a reduced gain or with

a penalty. The gain or penalty may depend on the tardiness of

the workflow. Moreover, a hard-deadline problem becomes

a special case if, for each workflow w, we set hw(s) to

some negative value with sufficiently large magnitude for

s > Dw −Aw + 1.

The hard and soft deadlines can be easily combined into

a single problem, where some workflows enjoy deadline

guarantee and others take the value-function-based approach.

We next give the formulation. For each workflow w ∈ W
and each time t ∈ T , define a binary variable ut

w. The

intention is to have ut
w = 1 if and only if workflow w

is completed at time t. Then, the completion time of the

workflow can be written as
∑

t∈T tut
w.

The profit-maximization problem is as follows:

max
∑

w∈W

∑

t∈T
hw(t−Aw + 1)ut

w −
∑

k∈V
Pkyk (Max-Profit)

s.t.
∑

k∈V

∑

t∈T
(t+Rjk − 1)xt

jk ≤
∑

t∈T
tut

w,

∀w ∈ W, ∀j ∈ w (16)

(1)(2)(3)(4)(5)(6)(7)(8)(12)(13)(14).

The decision variables are now xt
jk, yk, zij , vik, θij and ut

w.

Compared with the min-cost problem, the constraints (16)

are added and the deadline constraints (15) are removed.

Remark. Recall that
∑

k∈V
∑

t∈T (t + Rjk − 1)xt
jk is the

completion time of task j. Expression (16) says that the

workflow completion time must be an upper bound for the

task completion times for all the tasks of the workflow. For∑
t∈T tut

w to be the completion time of workflow w, at

least one of the inequalities (for some j ∈ w) in (16) must

be binding, i.e., becomes equality. However, in the above

formulation, there are no expressions enforcing the binding

requirement. If hw is strictly decreasing for every w, then

any optimal solution must satisfy the binding condition; for

otherwise, the objective value can be increased by setting

ut
w = 1 for some earlier time t and some w, which leads to a

reduction of
∑

t∈T tut
w. If hw is non-increasing for some w,

it is possible that, in an optimal solution, all the inequalities

in (16) are strict for some w; that is,
∑

t∈T tut
w > tw, where

tw denotes the true workflow completion time. In that case,

it must be that hw has identical values for t = tw − Aw +
1, tw −Aw + 2, . . . ,

∑
t∈T tut

w −Aw + 1.

B. On-Demand VM Payment Model

Amazon AWS has two VM leasing models with different

pricing schemes. One is long-term lease with a lower per-

hour cost, which is charged regardless of whether the VM

is used or not. The other is the on-demand or pay-as-you-

go model, where a customer can turn on or off VMs as

his workload varies in order to save money. However, the

per-hour cost is higher with the on-demand model.
The formulations in earlier sections are suitable for the

long-term lease model. We next present a formulation that

captures the on-demand payment model. For the on-demand

model, the main issue is that the time slot size is usually

much shorter than one hour, e.g. 5 minutes or 1 minute. As

the payment granularity is an hour, a VM will incur one-

hour cost even if it is actually used for only one time slot.

An optimal schedule will minimize such undesirable usage

of the VMs.
Suppose the duration of a time slot is Δ minutes and

suppose Δ is a factor of 60. Then, each hour contains

L � 60/Δ time slots. We organize the time slots into

M � �T/L� time frames, with each frame consisting

of L times lots. The set of time frames is denoted by

M = {1, 2, . . . ,M}. For ease of presentation, we assume

T is divisible by L so that M = T/L.
We extend the yk variables to the ymk variables, with ymk =

1 if and only if VM k is used/active on time frame m. We

will specify constraints that replace those in (2).
For ymk to have the intended meaning, we require

mL∑

t=(m−1)L+1

∑

j∈S

t∑

r=max(1,t−Rjk+1)

xr
jk ≤ Lymk ,

∀k ∈ V, ∀m ∈M. (17)

To see this is correct, suppose ymk = 0, which means VM k
is not used on the time slots t = (m−1)L+1, . . . ,mL. That

is, for each such t, each task j cannot be running on VM k at

time t, which is the case if and only if the start time of task

j does not fall in the set {max(1, t−Rjk+1), . . . , t}. From

(17), ymk = 0 implies
∑t

r=max(1,t−Rjk+1) x
r
jk = 0 for each

j ∈ S and each t ∈ {(m−1)L+1, . . . ,mL}, which further

implies xr
jk = 0 each r ∈ {max(1, t−Rjk + 1), . . . , t} for

the given j and t.
Next, consider the case of ymk = 1. By the non-

overlapping constraints in (5), for each k ∈ V and each

t ∈ {(m− 1)L+ 1, . . . ,mL},
∑

j∈S

t∑

r=max(1,t−Rjk+1)

xr
jk ≤ 1.

Thus, for each k ∈ V ,

mL∑

t=(m−1)L+1

∑

j∈S

t∑

r=max(1,t−Rjk+1)

xr
jk ≤ L.

Therefore, in the case of ymk = 1, (17) poses no additional

constraints.
1) Min-Cost Formulation: Under the on-demand payment

model, the min-cost problem can be formulated as follows.

min
∑

k∈V

∑

m∈M
Pk y

m
k

s.t. (1)(2)(3)(4)(5)(6)(7)(8)(12)(13)(14)(15)(17).

143

Table II
AMAZON EC2 VM TYPES

VM Type vCPU Memory (GB) On-Demand $ Reserve $
m4.large 2 8 0.126 0.085

m4.xlarge 4 16 0.251 0.172
m4.2xlarge 8 32 0.503 0.342
m4.4xlarge 16 64 1.005 0.684

m4.10xlarge 40 160 2.514 1.709
m4.16xlarge 64 156 4.022 2.735

The decision variables are now xt
jk, y

m
k , zij , vik, and θij .

The max-profit problem under the on-demand payment

model can be similarly formulated by incorporating (17).

The Amazon AWS long-term lease requires monthly

or yearly contract. To compare the two payment models,

we would have to know the long-term workflow pattern.

Alternatively, we can assume the same set of workflows

repeats daily. The latter is particularly relevant for daily big

data analytics.

IV. NUMERICAL EVALUATIONS AND COMPARISON

In this section, we report numerical experiments on the

workflow problems. The goal is to evaluate the effectiveness

of the MIP approach for solving them.

The VM types that we used (see Table II) are a subset

of the VM types offered by Amazon EC2. The on-demand

pricing and one-year reserved pricing are listed in the last

two columns in US dollars per hour. For each of our

experiments, we provide a different set of VMs of the types

in Table II for the scheduling algorithm to choose from. All

the experiments were run on a PC with an AMD 3.5 GHz

quad-core CPU and 8GB of memory. Gurobi 7.0 was used

as the MIP solver.

In Section IV-A, we compare the performance of our

MIP approach with a notable, related workflow scheduling

algorithm. Section IV-B compares the results obtained for

the two different payment models. In Section IV-C, we

evaluate the runtime of the MIP algorithm and discuss

possible improvement.

A. Comparison with Heuristic Algorithm

Here, we compare the performance of the MIP approach

against the IC-PCP algorithm reported in [6]. IC-PCP is a

critical-path-based heuristic algorithm for scheduling work-

flows with deadline constraints. Its objective is to minimize

cost under the on-demand payment model. Thus, it is

appropriate to compare IC-PCP with MIP for the min-cost

problem that we formulated. Note that the IC-PCP algorithm

is less capable than the MIP-based approach. It works for a

single workflow, and it does not consider the data transfer

time between dependent tasks. To make a fair comparison,

we used the scientific workflows described in [6], [17]

and ignored data transfer between tasks. Each experiment

contains only one workflow of ‘LIGO’, ‘Montage’, ‘SIPHT’,

or ‘Epigenomics’

Figure 2. Performance comparison on the min-cost problem

We set the time slot size to be 5 minutes and a charging

period (an hour) contains 12 time slots. We round fractional

numbers up so that each task takes an integer number of

time slots to finish.

Fig. 2 shows the comparison results of the two ap-

proaches. The total costs are normalized with the total cost

from the MIP algorithm being 100.

The first two experiments in Fig. 2 are both for the SIPHT

workflow, with different sets of VMs and deadlines. The

first one is given 6 m4.4xlarge VMs; the second one is

given a mix of 4 m4.xlarge, 4 m4.2xlarge and 4 m4.4xlarge

VMs. The MIP algorithm gives optimal solutions in all

circumstances, provided the problem is feasible. But, the

critical-path-based algorithms such as IC-PCP only perform

well when the VMs are the same or similar in capabilities.

The main reason is that scheduling and path selection in

those algorithms are largely based on estimating the task

completion times. When the VMs are heterogeneous, i.e.,

having very different capabilities, the execution times of the

tasks depend on the assigned VM types, and that dependency

is not treated in IC-PCP. This leads to the use of highly

inaccurate estimates in the algorithm, which in turn leads to

sub-optimal selection of paths and poor assignment of tasks,

resulting in much larger costs. In experiments 3 and 4, which

use the MONTAGE workflow and have heterogeneous VMs

and tight deadlines, IC-PCP failed to find feasible schedules,

while the MIP algorithm not only found feasible schedules

but also optimal ones. In experiments 5 and 6, all the VMs

are of the same type for each experiment.

We have the following general observations from the

results.

• The MIP algorithm consistently finds optimal solutions

whenever the problem is feasible.

• Critical-path-based algorithms rely heavily on accurate

estimation of task/path completion times in order to

make reasonable scheduling choice. When the VMs are

heterogeneous in capabilities, it is difficult to accurately

estimate the execution times without knowing the actual

VM assignments; thus the scheduling decision may be

far from being optimal.

144

Figure 3. Performance with different payment models

• Even when using the same type of VMs, the heuristic

algorithm does not give consistent performance. For

example, IC-PCP returns 11% to 43% higher costs

across the experiments. Since the workflow problem

needs to satisfy multiple difficult constraints, simple

heuristics are unable to take care of all these constraints

while optimizing the objective function.

B. Comparison of Different Payment Models

Out of the two payment models in Section IV-B, cus-

tomers can easily compare their costs by experimenting with

the formulations we provided and determine which payment

model is more suitable for their workflows and use cases.

In this set of experiments, we use three types of workflows

shown in Fig. 1. They each contain 4, 8 and 15 tasks,

respectively. Here, we have moved away from the scientific

workflows described in [17], but towards more contemporary

big-data analytic workflows, such as MapReduce workflows.

In such a setting, each workflow is more likely to have a few

to a few dozens large tasks and each task often consists of

many smaller, independent sub-tasks that can run in parallel.

In each of the experiments, we use the MIP algorithm on a

mixed set of workflows from Fig. 1 and generate results for

both the on-demand payment model and the reserved (long-

term lease) model. Each workflow has its own ready time

and deadline. The data transfer times between dependent

tasks are also taken into consideration. We set the time

horizon to 24 hours to better imitate the daily workflow

activities in industry.

Among the six experiments, the second and fourth use

input with bursty workflow requests. That is, a large number

of workflow requests take place within a short period of time

and the rest of time in the 24 hours is relatively quiet. As

we can see from the results on the total cost in Fig. 3, the

on-demand model suits this use case well. It yields a lower

cost for the customer, since more VMs can be requested

during the high-activity hours and idle VMs are turned off

during the low-activity hours. The other four experiments

each have evenly distributed workflow requests. As a result,

the long-term lease model leads to a lower cost and relative

Figure 4. Runtime of MIP algorithm

high utilization through the entire 24-hour time. Such direct

comparison can help customers make better choices of the

payment model based on their workflow request patterns.

C. Runtime and Scalability of MIP Algorithm

Any non-trivial class of workflow scheduling problems

is almost certainly NP-hard, which implies that any optimal

algorithm, including the MIP algorithms, will likely be time-

consuming as the problem size becomes large. To evaluate

the scalability of the MIP approach on the formulated

problems, we experimented with different problem sizes.

The runtime results are shown in Fig. 4.

As we can see from the figure, the algorithm runtime is

fairly short when the problem size is small. The first three

experiments each finished within a few seconds to a minute.

However, when the problem size increases, the runtime

increases rapidly. The last experiment has 500 workflows

and 50 available VMs. It took more than 1865 seconds to

finish.

The long runtime for large problems is still acceptable

when the workflow pattern is relatively static each day, as

in many industrial use cases. The computation only needs to

be done once, or done infrequently. Overall, with the way we

set up the parameters (such as the time slot size), the MIP

approach is suitable when there are a few hundred daily

workflows, each with dozens of tasks, and the number of

VMs are dozens to hundreds.

To reduce the algorithm runtime and widen the applicabil-

ity of MIP, there are several possibilities for improvement.

• Combine similar or parallel tasks into one task within

a workflow. This leads to fewer tasks in the workflow

and hence fewer variables in the MIP problem.

• Reduce the time horizon or increase the time slot size.

Both can reduce the number of time slots, thus, the

number of variables.

• Use non-uniform time slot sizes, while keeping the time

horizon unchanged. For instance, one can use finer time

slot sizes during busy business hours, and coarser time

slot sizes during quieter time.

145

• Decompose a large problem into multiple smaller prob-

lems, each of which schedules a subset of the work-

flows on a subset of the VMs. The smaller problems can

be solved in parallel on multiple servers. Although such

decomposition introduces sub-optimality, each of the

smaller scheduling problems is still solved optimally.

V. CONCLUSIONS

The goal of this paper is to explore the suitability of

using MIP formulations and algorithms to schedule complex

workflows in the cloud. As explained throughout the paper,

such workflow scheduling problems can be very challenging

because they involve many difficult constraints. It is not easy

to develop good heuristic algorithms for solving such prob-

lems. Known heuristic algorithms generally work on simpler

versions of the problems, and even in those cases, often fail

to find feasible solutions and/or are under-achieving in terms

of the optimization objective.

From this study, we can conclude that for problems up to

certain size, the MIP approach is entirely applicable. With

MIP, one can describe the problem precisely and then resort

to MIP algorithms to find not only feasible but optimal

solutions. For use cases where the problems are solvable

by MIP, there is little need to look for heuristic algorithms.

It is only when the use cases generate large problems that

heuristic algorithms become useful. As explained at the end

of Section IV-C, one can also use MIP-based heuristics, such

as decomposition, to solve large problems.

The workflow scheduling problems considered here are

of the in-advance reservation type. To cope with workflow

dynamics or to deal with a large number of small workflows

or small tasks, real-time dynamic scheduling algorithms are

still needed. All big-data analytic platforms such as Hadoop

have the latter type of schedulers, which are usually based

on simple heuristic algorithms.

ACKNOWLEDGMENT

The research is supported in part by the National Science

Foundation of US under grant STC-1562485.

REFERENCES

[1] G. Juve, E. Deelman, G. B. Berriman, B. P. Berman, and
P. Maechling, “An evaluation of the cost and performance
of scientific workflows on Amazon EC2,” Journal of Grid
Computing, vol. 10, no. 1, pp. 5–21, Mar. 2012.

[2] M. Rodriguez and R. Buyya, “Deadline based resource pro-
visioning and scheduling algorithm for scientific workflows
on Clouds,” IEEE Transactions on Cloud Computing, vol. 2,
no. 2, pp. 222–235, April 2014.

[3] Hadoop, http://hadoop.apache.org/.

[4] Y. Wang and W. Shi, “Budget-driven scheduling algorithms
for batches of MapReduce jobs in heterogeneous clouds,”
IEEE Transactions on Cloud Computing, vol. 2, no. 3, pp.
306–319, July 2014.

[5] L. Zeng, B. Veeravalli, and X. Li, “Scalestar: Budget con-
scious scheduling precedence-constrained many-task work-
flow applications in cloud,” in 2012 IEEE 26th International
Conference on Advanced Information Networking and Appli-
cations, March 2012, pp. 534–541.

[6] S. Abrishami, M. Naghibzadeh, and D. H. Epema, “Deadline-
constrained workflow scheduling algorithms for infrastructure
as a service clouds,” Future Generation Computer Systems,
vol. 29, no. 1, pp. 158–169, 2013.

[7] J. Sahni and D. Vidyarthi, “A cost-effective deadline-
constrained dynamic scheduling algorithm for scientific work-
flows in a Cloud environment,” IEEE Transactions on Cloud
Computing, vol. PP, no. 99, 2015.

[8] L. A. Wolsey and G. L. Nemhauser, Integer and Combinato-
rial Optimization. Wiley-Interscience, 1999.

[9] T. Sandholm and K. Lai, “Dynamic proportional share
scheduling in Hadoop,” in Proceedings of the 15th Interna-
tional Conference on Job Scheduling Strategies for Parallel
Processing, ser. JSSPP’10, 2010.

[10] L. F. Bittencourt and E. R. M. Madeira, “HCOC: a cost
optimization algorithm for workflow scheduling in hybrid
clouds,” Journal of Internet Services and Applications, vol. 2,
no. 3, pp. 207–227, 2011.

[11] M. Mao and M. Humphrey, “Auto-scaling to minimize cost
and meet application deadlines in cloud workflows,” in In-
ternational Conference for High Performance Computing,
Networking, Storage and Analysis (SC), Nov 2011.

[12] M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, “Cost-
and deadline-constrained provisioning for scientific workflow
ensembles in IaaS clouds,” in Proceedings of the International
Conference on High Performance Computing, Networking,
Storage and Analysis (SC ’12), 2012.

[13] P. Hoenisch, C. Hochreiner, D. Schuller, S. Schulte,
J. Mendling, and S. Dustdar, “Cost-efficient scheduling of
elastic processes in hybrid clouds,” in IEEE International
Conference on Cloud Computing (CLOUD), June 2015.

[14] A. Ruiz-Alvarez, I. K. Kim, and M. Humphrey, “Toward
optimal resource provisioning for cloud MapReduce and
hybrid cloud applications,” in 2015 IEEE 8th International
Conference on Cloud Computing, June 2015, pp. 669–677.

[15] L. Thai, B. Varghese, and A. Barker, “Budget constrained ex-
ecution of multiple bag-of-tasks applications on the cloud,” in
2015 IEEE 8th International Conference on Cloud Computing
(CLOUD). IEEE, 2015, pp. 975–980.

[16] J. Jiang, S. Ma, B. Li, and B. Li, “Symbiosis: Network-
aware task scheduling in data-parallel frameworks,” in IEEE
INFOCOM, April 2016, pp. 1–9.

[17] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, M.-H.
Su, and K. Vahi, “Characterization of scientific workflows,”
in Third Workshop on Workflows in Support of Large-Scale
Science (WORKS), 2008. IEEE, 2008, pp. 1–10.

146

