
A Distributed Hybrid Scheme for Unstructured
Peer-to-Peer Networks

Yong Tang Zhan Zhang Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, Florida 32611–6120
{yt1, zzhan, sgchen}@cise.ufl.edu

Guangbin Fan
Communication Technology Lab

Intel China Research Center, Beijing, China
guangbin.fan@intel.com

Abstract— Peer-to-peer (P2P) networks have gained a lot of
popularity in recent years. While structured (DHT) networks
provide better response time and smaller diameter, which are
the advantages over unstructured networks, they are vulnerable
to frequent node failure/joins/leaves. There is always a tradeoff
for any P2P network to achieve all of these goals. In this
paper, a distributed hybrid scheme is proposed for unstructured
P2P networks, which combines Markov random walks and
peer clustering to achieve a better tradeoff. The scheme has a
short response time for most of the queries that belong to the
same interest group, while still maintaining a smaller network
diameter. More important, we propose a totally distributed
clustering algorithm, which means better resilience to network
dynamics. The performance of our systems is demonstrated by
extensive simulations.

I. INTRODUCTION

Over the past several years we have seen a rapid growth of
the applications in Peer-to-Peer (P2P) systems such as data
sharing, directory lookup, software distribution, timeshared
storage, and distributed indices [1]. The fundamental challenge
of constructing a P2P network is to achieve faster response
time, smaller network diameter, better resilience to network
dynamics, and higher security.

Most recent P2P proposals [1], [2], [3], [4], [5], [6], [7]
use distributed hash tables (DHT) to provide data location
management in a strictly structured way. Although they offer
better performance in response time and network diameter,
they are not resilient to frequent node leaves/joins/failure. In
addition, DHTs are inflexible in providing generic keyword
searches because they have to hash the keys associated with
certain objects [8], and they are more vulnerable to the
existence of malicious nodes since the identifier associated
with the data item is not mapped by the node that provides it.

In unstructured networks such as Gnutella and KaZaA,
nodes are interconnected in a random manner, which offers
high resilience for the whole network to be tolerable to
frequent node leaves/joins/failure. However, basic unstructured
networks rely on flooding for user’s queries which is expen-
sive in computation and communication overhead. Therefore,
scalability has always been a major weakness for unstructured
networks [9], [10]. Other P2P architectures such as Morpheus
[11] and KaZaA [12] improve the search in their design
by designating super-nodes to cache the indices of others.
However, introducing the super-nodes causes other problems

such as load balancing for P2P networks. Recently, searching
through random walks has been proposed [8], [13], [14]. The
main problem of random walks is the high network diameter
(delay). Although multiple random walks is a way to lower
the network diameter, the approach is still problematic when
the number of initiated messages is large [14].

It is difficult to simultaneously satisfy all of these require-
ments and there is a tradeoff in the design space of P2P
systems. We believe unstructured systems are more promising
due to the inherent restrictions of structured P2P networks.

The work presented in this paper takes the unstructured
approach and tries to deliver better tradeoff in design space,
especially the fast response time and low diameter that a typ-
ical unstructured one lacks. The philosophy behind the design
scheme is based on the observation that nodes with similar
interest are more likely to share data items among them. We
define the concept of similar interest as an association between
two nodes. The network is partitioned into clusters with high
intra-cluster association. Fast response time and low diameter
are achieved by doing random walk on inter-cluster path while
flooding the same cluster. More importantly, all these can be
done without assuming the global knowledge for each node.
At the same time, desirable properties of unstructured network
have been retained in our system.

II. ASSOCIATION GRAPH

A. Problems and Motivation

Most of the recent research have been focusing on construct-
ing the P2P network based on the content of the data items in
each node e.g., [15], [16]. Interest shortcut [15] exploits the
locality of interest among different nodes. Although the idea
is smart, it is asymmetric, that is, node u is interested in data
items on node v does not mean vice versa. The concept is also
vague. It is difficult to make a subtle, quantitative definition
based on it. The associative overlay [16] groups the nodes
sharing the same guided rule. However, it relies on a global
unique list of guided rules. Even if such a list is available, it
has to be updated constantly in order to deal with the dynamics
of the interest shift in a P2P environment.

A right step toward the measurement of the similarity on two
nodes’ interests in a distributed environment is the concept of
indexing through semantic space [17]. In this approach, each
node is assigned a vector in the latent semantic space. The

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

1-4244-0355-3/06/$20.00 (c) 2006 IEEE

30

metric of dissimilarity (distance) is defined as the inner product
of the two vectors that correspond to two nodes. Such a method
can be applied to DHT-based P2P networks [17]. It can also
be used in unstructured P2P networks where nodes that are
semantically close to each other form the cluster. Networks
with node clustering outperform randomly connected ones by
using random walks [13].

There are several unresolved issues for the method above
in P2P networks. First of all, the dimensionality in a semantic
space is typically high, which means the overhead might be
intolerable. Although Singular Value Decomposition (SVD)
was used [17] to derive low-dimensional representations, the
method is not scalable in terms of both memory consumption
and computation time [18]. Secondly, the establishment of the
semantic space requires the global information of all data items
within the network to form the input matrix for SVD, which is
impractical in a typical P2P network considering the possible
massive number of nodes and the dynamics of the networks.
Finally, the data items resided in a node may not necessarily
reflect the node’s interest. In addition, one node may have
many data items covering a variety of distinct topics. It is
conceivable that fitting these topics into one single vector is
difficult unless the dimensionality of the semantic space is
higher than total number of distinct topics.

With the all these drawbacks of the existing approaches
mentioned, We propose a P2P system that tries to solve the
drawbacks of mentioned approaches. The basic design scheme
of our system is to cluster nodes with similar interest. Each
node is aware whether or not the neighbors belong to the same
cluster. Upon receiving a query message from the neighbor
outside the same cluster, the node will flood the query message
within the same cluster while at the same time forward the
query message to one of its inter-cluster neighbors randomly.
In other words, query messages are handled by intra-cluster
flooding and inter-cluster random walks. The logic behind is
that the total number of clusters is greatly smaller than the
total number of all nodes, thus the network diameter of inter-
cluster random walks is limited while intra-cluster flooding is
more efficient and can be scaled up with limited cluster size.

B. Weighted Association Between Nodes in P2P Networks

Suppose there are n data items D = {d1, d2, ..., dn}
available in the whole P2P network. Node u accessed a set
of nu data items Du ⊂ D and peer v accessed a set of nv

data items Dv ⊂ D, with nu, nv ≤ n. If node u and node v
share similar interests, then it is very likely that they accessed
same data items more or less previously. By saying “similar
interest”, we actually mean that two nodes u and v have a
common subset of accessed data items, i.e., Du ∩ Dv �= ∅.

As is illustrated in Figure 1, in a P2P network, those nodes
with identical interests should access the same data items
both before and in the future. Those nodes whose interests
are totally different will never access the same data item.
Therefore, the size of the common subset Du ∩ Dv can be
served as a metric measuring to what extent the interests of
two nodes are similar.

Fig. 1. Association representing similar interests between nodes. left:
identical interests, center: totally distinct interests, right: in-between

We formally define association as the measurement of
similar interests between nodes. Nodes u and v are assigned
with two access vectors with n elements respectively, i.e., V u

and V v . Each element within the assigned access vectors is
from the set {0, 1}, with 0 at the i-th row indicating that the
i-th data item was not accessed before and 1 vice versa. The
association Au,v , defined as follows, is the inner product of
access vectors V u and V v , where V vT indicates the transpose
of V v .

Au,v = V u · V v = V uV vT

To further explain our idea, we give an example based on
Figure 1 (right). As we can see, the access vectors assigned
to nodes u and v are

V u =

1
1
.
.
0

and V v =

0
1
.
.
1

Therefore, the association between nodes u and v can be
computed by

Au,v = V u · V v =

1
1
.
.
0

·

0
1
.
.
1

= V uT V v = 1

The equation above clearly demonstrates why it is appropri-
ate to use inner product to compute the similarity of interests
(association) between nodes. As is shown in the equation, the
inner product of access vectors is the summation of all the
products at each row. Only when both of the elements at the
same row are 1’s, will the product of this row contribute to
the total summation. This is the case when both two nodes
accessed the same data items.

The problem with this definition is that different properties
of data items have not been taken into consideration. For
instance, data item 1 might be a very large media file of several
hundreds MBs while data item 2 might be only a PDF file
with several MBs, In addition to that, each peer has to have a
complete list of all available data items.

We slightly modify the association into weighted association
to account for these issues. In this definition, the rows in the
access vector that corresponds to the data items not accessed

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

31

by u and v will be removed. A diagonal matrix with (i, i)-
th value wi,j specifying the weight for i-th data item is
introduced. Suppose the weight of the data items in Figure. 1 is
0.5, 0.2, 0.3 for data items 1, 2 and n, the weighted association
is defined as follows.

Au,v
w = V uT WV v

=
(

1 1 0
)

0.5 0 0
0 0.2 0
0 0 0.3

0
1
1

= 0.2

Here W is normalized by the summation of the total weight
to cancel out the influence of the total number of data items.

The definition of association is advantageous in manifold.
First, it is more elegant than interest shortcut. Not only are
we looking for the locality of the interest, but also the exact
meaning of the similar interest has been defined. Second,
instead of having a global unique list, two peers only need
to have a list of data items shared by them, i.e., Du ∪Dv , to
compute the association. Third, there is no ambiguity between
the node’s interest and the data items resided in it, as is the
case in latent semantic indexing. Instead, similarity of interest
is defined as the common subset of the data items that these
two nodes accessed. Finally, the definition is symmetric, that
is, we have Au,v

w = Av,u
w , which is more appropriate in term

of the definition of the similarity for interests between two
nodes.

C. Association Graph

A weighted association graph is a weighted undirected
graph G = (V,E) consisting of a set V of nodes and a
set E of weighted edges connecting pairs of nodes. The
weight w(u,v) of edge (u, v) specifies to what extent node
u has similar interest with node v. More strictly, the weight
is defined as the weighted association between node u and
node v, obtained from the query history of the nodes. Such a
graph is an overlay structure built on top of unstructured P2P
networks such as Gnutella.

Problem arises during the construction process. It is im-
possible to compare each pair of nodes in order to obtain the
associations between nodes. We have to find a way to start with
and limit the number of node pairs dealt with. We introduce
the concept of topology adaption here. In this strategy, the
associations are first computed between the nodes and their
direct neighbors of their underlying network. After that, each
time a query message is processed, the association between
the querying node itself and the node that owns the data items
will be computed. The newly obtained association is inserted
into the list of the previously stored addresses of nodes and
their associations. The stored node with the lowest association
is dropped.

By assuming that interests of nodes will not shift in a
limited time frame, we can piece together a view of the interest
relationships on the P2P network after extracting the graph
from the history. The interest relationship between nodes in

the past provides further directions for our predictions in the
future.

The association graph is to construct an unstructured P2P
network with good searching properties. Since nodes with
similar interests tend to visit each other frequently in P2P
networks, the web graph based on the weighted association
will likely connect those nodes with weights larger than other
nodes. If we think of an edge with a weight greater than one as
multiple edges connecting two nodes, then those nodes with
similar interest will be connected with higher degrees than
average. To use interest-based web graph serving our goal, we
make the assumption that, if node u is “interested” in node v
and node v is “interested” in node w, then it is likely that u
is “interested” in w, compared to another random node. Thus,
nodes in the same community will form clusters by nature.
In fact, our methods is a better solution than most of the
existing algorithms [13] in that it can be implemented in a
totally distributed way.

III. MARKOV RANDOM WALKS AND DISTRIBUTED

CLUSTERING ALGORITHM

A. Design Scheme: A Hybrid of Random Walks and Message
Flooding

Random walks have been proposed to replace the flooding
techniques [14], it reduces the message overhead at the cost
of increasing the network diameter (delay). [13] considered
node (peer) clustering as a way to increase the performance
of random walks. Node clustering means dense connectivities
among nodes in the same community, and vice versa. The
association graph itself is node clustering if we consider the
edge with weight w between two nodes as w independent
edges with weight 1. Thus, it can be fully utilized by slightly
modifying the typical random walks.

Consider the association graph G = (V,E) with weighted
association between node i and j as Ai,j

w , the transition prob-
abilities pi,j for the random walk is defined as proportional to
the weight of the edges.

pi,j =
Ai,j

w∑
k Ai,k

w

If the transition matrix P is organized with its i, j-th element
as pi,j , then rows in P sum to 1 as P is row stochastic. The
transition probabilities are generally not symmetric because
the normalization of the association matrix varies.

Although the transition matrix P of the whole graph is
discussed, it is only for the purpose of representation. There
is no need to compute the whole matrix for any one of the
nodes in the network. For any node i it is enough to only
keep a transition vector pi = (pi1, pi2, ..., pin) describing the
transition probabilities for its n direct neighbors 1, 2,n.

The underlying philosophy of Markov random walks is that
there is a preference in the searching process for those nodes
that are likely to share similar interests with the node that
initiates the query. In fact, in a real P2P environment, when a
user issues a request, the user will check the cache containing
the addresses of nodes that answer the previous queries [19].

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

32

inter-cluster edge

intra-cluster edge

x intra-cluster flooding

inter-cluster random walk

y

Fig. 2. Hybrid Scheme: Combining message flooding and random walk

One of the main disadvantages of random walks for data
item searching is the high network diameter (delay) compared
to typical flooding techniques. The fundamental of our design
scheme is to combine random walks and message flooding to
have a better tradeoff intuitively.

The design scheme can be best illustrated by Figure 2. The
network is partitioned into clusters by labeling each edge as
inter-cluster or intra-cluster. When a user of node x makes
a request, the system will rely on two different strategies
following two different kinds of edges at the same time. For
intra-cluster edges, the query message will be forwarded to
every node within the cluster by flooding. For the node x that
initiates the search, the query message will be forwarded to
one of the inter-cluster neighbors (connected by inter-cluster
edges) randomly. The random walk will repeat each time a
node receives a query message from its inter-cluster neighbor
or initiated by itself. In the case that the node has no other
inter-cluster neighbor besides the one from which the node
receive the message (e.g., node y in the figure), the message
will be marked and forwarded to one of the node’s intra-cluster
neighbors until an inter-cluster edge exists.

It is expected that the majority of the queries will be satisfied
by an intra-cluster search while an inter-cluster search is more
likely to succeed for those queries looking for data items
outside the main interest scope of the user.

B. A Fully Distributed Clustering Algorithm

It is of the most importance to have a fully distributed
clustering algorithm that is able to label the inter- and intra-
cluster edges when only the information from the direct
neighbors is available. Over the past years, clustering in a
graph has been studied intensively [20]. However, they are not
suitable in a P2P environment in general. First, these methods
are basically centralized since a global knowledge of the whole
network is required. Second, these methods require a metric
describing the pairwise distance between any two nodes. In a
P2P network a node can only obtain such a metric for their
direct neighbors or limited number of nodes. It is impossible
for one single node to store every node within the whole P2P
network.

In [21], a centralized clustering algorithm based on the
Markov random walks has been proposed. We revisit the
Markov random walk and try to find a distributed format of
the clustering algorithm that can be used in P2P networks.
Following the notations described above, we use Prt(j|i) to

denote the transition probability that node i traverses node j
after t steps. Since we already know that the one step transition
probability matrix P , Prt(j|i) can simply be calculated by a
matrix power:

Prt(j|i) = [P t]ij

Prt(j|i) indicates the probability for a Markov random walk
starting at i and ending at j with exactly t steps. To calculate
the probability for a Markov random walk starting at i and
ending at j within t steps, all possible steps should be summed
up as

t∑
k=1

Prk(j|i)

Apparently, if two nodes i and j (not necessary the direct
neighbor) shares similar interests, then a Markov random walk
starting at i will have a larger possibility

∑
Prk(j|i) to hit j

with in a limited step t. If i and j share no similar interest,
then the process will have a lower possibility since here a
Markov random walk that starts at i will likely return to i
before reaching j. If we want to partition the nodes within the
network into clusters by their interest, then

∑
Prk(j|i) can

be served as a good metric for pairwise distance between any
two nodes, even if only the information of direct neighbors
(one step transition probabilities) is known.

∑
Prk(j|i) is not

suitable for pairwise metric because it is not symmetric. A
symmetrical, collaborating one is used instead:

f(i, j) =
∑

Prk(j|i)
∑

Prk(i|j)
The distance restriction t works as TTL to control the

diameter of the cluster and thus the total network diameter
(delay) to fit the case in our proposed scheme. Furthermore,
a threshold, threshold for

∑
Prk(j|i) has to be introduced

to determine whether or not u and v belong to the same
cluster. However, it also introduces arbitrariness in deciding
the clusters. This problem can be solved by repeating Markov
random walk several times so that the distinction between
intra-links and inter-links will be sharpened. Only a very small
number threshold → 0 is needed for the threshold in this
case.

We formally propose a distributed clustering algorithm
applying the approach discussed above. Instead of computing∑

Prk(j|i) in a centralized way by transition matrix, the
Markov random walk process is simulated to obtain the
probability between any two direct neighbor peers and decide
if the link connecting these two peers is an intra-cluster link
or an inter-cluster link. The algorithm works as follows.

First, at node i, for each edge (i, j), a ticket that corre-
sponds to t is generated. The ticket consists of a source ID
sourceID = i, time-to-live parameter TTL, and a value
value specifying the probability a random walk will pass
through this edge. The value is the weight (weighted asso-
ciation) of the edge (i, j) normalized by the total weight for
any edge originated from i, that is,

value =
Ai,j

w∑
j Ai,j

w

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

33

Upon receiving of the ticket from one of its neighbor, node
j will send the ticket back to the node sourceID if there is
an edge between sourceID and j. Then node j will check to
see if TTL has been set to zero. If the TTL is zero, the ticket
will be dropped. If the the TTL is not zero, node j will reduce
the TTL value by 1. The ticket will be flooded to every edge
that node j connects. For any one of the edge (j, k), the value
in the ticket will be multiplied by the probability that node j
will chooses (j, k) in a Markov random walk. That is, value
will be replaced by value′ with

value′ = value × Aj,k
w∑

k Aj,k
w

At the end of the process, any one of the node, e.g., i,
will have collected all tickets (with sourceID = i) passing
through hops that is less than the TTL. They should also know
which neighbor forwards the ticket back. Node i can easily
sum up the value in the ticket for every edge connecting to its
neighbors. The two nodes i, j can either make a decision about
whether or not the edge (i, j) is intra-cluster by comparing the
obtained value with a threshold, or further forward the ticket
with the value summed up to their corresponding edges.

We want to emphasis that, although a distributed clustering
algorithm [22] has already been proposed, it is believed that
the algorithm proposed in this paper is a better solution. In
[22] each node has to maintain a table for every message
passing by. It is not a totally distributed algorithm because
originators have to be selected first and better performance
can only be achieved by placing one originator for each cluster
before hand. In contrast, our algorithm is stateless and totally
distributed, in which there is no head node or authority in a
cluster. It indicates that our algorithm can adapt to the network
dynamics efficiently.

IV. SIMULATION

In this section, the performance of the clustering is studied
by simulations. If not explicitly defined, the default value
of the number of nodes is 10, 000, the average number of
neighbors each node has is 20, the threshold (threshold) is
0.025, the TTL is 5, the average query number is 50, the
number of nodes in a interest group is 100 and for each node
90% of its queries falls into its own interest group.

The performance of the flooding, random walk, and clus-
tering algorithms are compared, with respect to the number
of hops and messages. In Figure 3, it is observed that in
the clustering algorithm, the number of hops needed for
the majority of the queries is significantly reduced to about
10, when compared with the random walk algorithm. As is
expected, the flooding algorithm needs a smaller number of
hops for almost every queries than the clustering algorithm.
However, the clustering algorithm is still slightly better if a
query falls into the interest group itself. In addition to that,
the clustering algorithm works much better than the other two
algorithms with respect to the number of messages, as is shown
in Figure 4. Even if the query does not fall into the interest of
the node itself, there is still a great probability that the query

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 5 10 15 20 25 30

th
e

pe
rc

en
ta

ge
 o

f
qu

er
ie

s
re

tu
rn

ed

the number of hops

Clustering
Flooding

Randomwalk

Fig. 3. The percentage of queries returned vs. the number of hops

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 200 400 600 800 1000 1200 1400 1600
th

e
pe

rc
en

ta
ge

 o
f

qu
er

ie
s

re
tu

rn
ed

the number of messages

Clustering
Randomwalk

Fig. 4. The percentage of queries returned vs. the number of messages

will be returned within a limited number of messages. The
total number of messages is decided by how far away between
the interest group of the initiating node and the interest group
of the targeted node. If a query falls into the interest of the
node itself, the response time is very short for the clustering
algorithm. For other cases, a longer response time is acceptable
as long as these cases do not happen frequently.

How the cluster size is affected by various parameters is
also investigated. In Figure 5, when the threshold is large, the
cluster size approaches to 1. In this situation, the clustering
algorithm is similar to the random walk. When the threshold

 0

 50

 100

 150

 200

 250

 300

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

th
e

cl
us

te
r

si
ze

threshold

Clustersize vs. Threshold (t)

Fig. 5. Threshold vs. cluster size

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 40 60 80 100 120 140 160

th
e

cl
us

te
r

si
ze

the average group size

t=0.010
t=0.020
t=0.030
t=0.040
t=0.050

Fig. 6. Query number vs. cluster size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 10 20 30 40 50 60 70

th
e

cl
us

te
r

si
ze

the average query number

t=0.010
t=0.020
t=0.030
t=0.040
t=0.050

Fig. 7. Query number vs. cluster size

is small, the cluster intends to cover the whole network, the
clustering algorithm is similar to the flooding algorithm. Thus,
the value of the threshold plays an important role. In fact, in
this paper, the threshold is set to be a system-wide parameter.
A more delicate approach is to enable each member in the
network to decide its threshold independently based on its
query times, and the probability variation of its neighbors.

How the group size affects the cluster size is shown in
Figure 6. It is observed that when the average group size is
increased, the cluster size increases as well. Furthermore, when
the threshold is larger than or equal to 0.3, the cluster size
increases dramatically along with the increment of the average
group size, which has been discussed in the last section.

Figure 7 shows the changes of the number of queries
with respect to the cluster size. When the number of queries
increases, the cluster size decreases dramatically. It means
that, for a random network topology, a structured cluster can
be formed within a short time. It also indicates that it is
more advantageous to enable a node to decide its threshold
independently.

V. CONCLUSION

In this paper, a hybrid method for unstructured P2P net-
works that combines the Markov random walk and the
clustering algorithm has been proposed. It achieves a better
tradeoff among response time and network diameter of the P2P

network. A totally distributed clustering algorithm is also pre-
sented. The algorithm gives P2P networks better resilience to
network dynamics. It can potentially be used in other scenarios
when centralized clustering is not possible. The performance
of the algorithms is demonstrated by simulations.

REFERENCES

[1] I. Stoica, R. Morris, D. Liben-Nowell, D. R. Karger, M. F. Kaashoek,
F. Dabek, and H. Balakrishnan, “Chord: a scalable peer-to-peer lookup
protocol for internet applications,” IEEE/ACM Trans. Networking,
vol. 11, no. 1, pp. 17–32, 2003.

[2] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Schenker, “A
scalable content-addressable network,” in ACM SIGCOMM’2001. ACM
Press, 2001, pp. 161–172.

[3] B. Y. Zhao, L. Huang, J. Stribling, S. C. Rhea, A. D. Joseph, and
J. Kubiatowicz, “Tapestry: A resilient global-scale overlay for service
deployment,” IEEE J. Select. Areas Commun., vol. 22, no. 1, pp. 41–53,
2004.

[4] A. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Middle-
ware’2001, Nov. 2001.

[5] C. G. Plaxton, R. Rajaraman, and A. W. Richa, “Accessing nearby copies
of replicated objects in a distributed environment,” Theory of Computing
Systems, vol. 32, no. 3, pp. 241–280, 1999.

[6] D. Malkhi, M. Naor, and D. Ratajczak, “Viceroy: a scalable and dynamic
emulation of the butterfly,” in ACM PODC’2002. ACM Press, 2002,
pp. 183–192.

[7] A. Kumar, S. Merugu, J. Xu, and X. Yu, “Ulysses: A robust, low-
diameter, low-latency peer-to-peer network,” in IEEE ICNP’2003, Nov.
2003.

[8] Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker,
“Making gnutella-like p2p systems scalable,” in ACM SIGCOMM’2003.
ACM Press, 2003, pp. 407–418.

[9] J. Ritter. (2001) Why gnutella can’t scale. no, really. gnutella.html.
[Online]. Available: http://www.darkridge.com/ jpr5/doc/

[10] K. Sripanidkulchai. (2001, Feb.) The popularity of gnutella queries
and its implications on scalability. gnutella.html. [Online]. Available:
http://www.cs.cmu.edu/ kunwadee/research/p2p/

[11] Morpheus. (2002) Morpheus file sharing system. [Online]. Available:
http://www.musiccity.com/

[12] KaZaA. (2002) Kazaa file sharing network. [Online]. Available:
http://www.kazaa.com/

[13] C. Gkantsidis, M. Mihail, and A. Saberi, “Random walks in peer-to-peer
networks,” in IEEE INFOCOM’2004, Mar. 2004.

[14] Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker, “Search and replication
in unstructured peer-to-peer networks,” in Proceedings of the 16th
International Conference on Supercomputing (ICS ’2002). ACM Press,
Sept. 2002, pp. 84–95.

[15] K. Sripanidkulchai, B. Maggs, and H. Zhang, “Efficient content location
using interest-based locality in peer-to-peer systems,” in IEEE INFO-
COM’2003, Mar. 2003.

[16] E. Cohen, A. Fiat, and H. Kaplan, “Associative search in peer to peer
networks: Harnessing latent semantics,” in IEEE INFOCOM’2003, Mar.
2003.

[17] C. Tang, Z. Xu, and S. Dwarkadas, “Peer-to-peer information re-
trieval using self-organizing semantic overlay networks,” in ACM SIG-
COMM’2003. ACM Press, 2003, pp. 175–186.

[18] C. Tang, S. Dwarkadas, and Z. Xu, “On scaling latent semantic indexing
for large peer-to-peer systems,” in ACM SIGIR’2004. ACM Press, 2004,
pp. 112–121.

[19] A. Oram and A. Oram, Peer-to-Peer: Harnessing the Power of Disrup-
tive Technologies. O’Reilly & Associates, Inc., 2001.

[20] R. Kannan, S. Vempala, and A. Vetta, “On clusterings: Good, bad and
spectral,” J. ACM, vol. 51, no. 3, pp. 497–515, 2004.

[21] D. Harel and Y. Koren, “Clustering spatial data using random walks,”
in ACM SIGKDD ’2001. ACM Press, 2001, pp. 281–286.

[22] L. Ramaswamy, B. Gedik, and L. Liu, “Connectivity based node
clustering in decentralized peer to peer networks,” in Proceedings of
the third IEEE Conference on Peer-to-Peer Computing (P2P ’2003),
2003.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE ICC 2006 proceedings.

35

