
Guided Multiple Hashing: Achieving Near Perfect
Balance for Fast Routing Lookup

Xi Tao Yan Qiao Jih-Kwon Peir Shigang Chen
Department of Computer Information Science Engineering

University of Florida

Zhuo Huang
Facebook Inc.

Menlo Park, CA

Shih-Lien Lu
Intel Research Labs

Intel Corp.

Abstract—The routing and packet forwarding function is at the
core of the IP network-layer protocols. The throughput of a router
is constrained by the speed at which the routing table lookup
can be performed. Hash-based lookup has been a research focus
in this area due to its O(1) average lookup time, as compared
to other approachs such as trie-based lookup which tends to
make more memory accesses. With a series of prior multi-
hashing developments, including d-random, 2-left, and d-left,
we discover that a new guided multi-hashing approach holds the
promise of further pushing the envelope of this line of research to
make significant performance improvement beyond what today’s
best technology can achieve. Our guided multi-hashing approach
achieves near perfect load balance among hash buckets, while
limiting the number of buckets to be probed for each key
(address) lookup, where each bucket holds one or a few routing
entries. Unlike the localized optimization by the prior approaches,
we utilize the full information of multi-hash mapping from keys
to hash buckets for global key-to-bucket assignment. We have
dual objectives of lowering the bucket size while increasing empty
buckets, which helps to reduce the number of buckets brought
from off-chip memory to the network processor for each lookup.
We introduce mechanisms to make sure that most lookups only
require one bucket to be fetched. Our simulation results show
that with the same number of hash functions, the guided multiple-
hashing schemes are more balanced than d-left and others, while
the average number of buckets to be accessed for each lookup is
reduced by 20–50%.

I. INTRODUCTION

Hashing provides an efficient mechanism to organize, look
up, and update a large information table based on a key value,
which has been used in a wide variety of network applications
[1], [2], [3]. In particular, hash-based lookup has been an
important research direction on routing and packet forwarding,
among the core functions of the IP network-layer protocols.
While there are other alternative approaches for routing table
lookup such as trie-based solutions, this paper’s focus is on
hash-based solutions, which have the advantages of simplicity
and O(1) average lookup time, whereas trie-based lookup
tends to make much more memory accesses.

Single-hashing however suffers from the collision problem,
where multiple keys are hashed to the same bucket and cause
uneven distribution of keys among the buckets. It takes variable
delays in looking up keys located in different buckets. For
hash-based network routing tables [1], [2], [3], [6], it is critical

to perform fast lookup for the next hop routing information.
In today’s backbone routers, routing tables are often too big
to fit into on-chip memory of a network processor. As a
result, off-chip routing table access becomes the bottleneck
for meeting the increasing throughput requirement on high-
speed Internet [7], [8]. The unbalanced hash buckets further
worsen the off-chip access. Today’s memory technology is
more efficient to fetch a contiguous block (such as a cache
block) at once than individual data elements separately from
off-chip memory. A heavy-loaded hash bucket may require
two or more memory accesses to fetch all its keys. However,
in order to accommodate the most-loaded bucket for a constant
lookup delay, fetching a large memory block which can hold
the highest number of keys in a bucket increases the critical
memory bandwidth requirement, wastes the memory space,
and lowers the network throughput [2], [6], [9], [10].

Methods were proposed to handle the hash collision problem
for balancing the bucket load by reducing the maximum
number of keys in a bucket among all buckets. One approach
is to use multiple hashing such as d-random [11] which hashes
each key to d buckets using d independent hash functions
and stores the key into the least-loaded bucket. The 2-left
scheme [1], [9] is a special case of d-random where the buckets
are partitioned into left and right regions. When inserting a
key, a random hash function is applied in each region and
the key is allocated to the least-loaded bucket (to the left in
case of a tie). The multiple-hashing approach balances the
buckets and reduces the fetched bucket size for each key
look up. However, without the knowledge of which bucket
that a key is located, d-random (d-left) requires probing all
d buckets. As the bottleneck leans on the off-chip memory
access, accessing multiple buckets slows down the hash table
access and degrades the network performance [8], [10].

To remedy probing d buckets, extended Bloom Filter[3]
uses counters and extra pointers to link keys in multiple
hashed buckets to avoid lookups of multiple buckets. However,
it requires key replications and must handle complex key
updates. The recently proposed Deterministic Hashing [6]
applies multiple hash functions to an on-chip intermediate
index table where the hashed bucket addresses are saved. By
properly setting up the bucket addresses in the index table, the
hashed buckets can be balanced. This approach incurs space978-1-4799-1270-4/13/$31.00 c©2013 IEEE

overhead and delays due to indirect access through the index
table. In [10], an improved approach uses an intermediate table
to record the hash function IDs, instead of the bucket addresses
to alleviate the space overhead. In addition, it uses a single
hash function to the index table to ease the update complexity.
However, with limited index table and hashing functions, the
achievable balance is also limited. In another effort to avoid
collision, the perfect hash function sets more rigid goal to
achieve one to one mapping between keys and buckets. It
accomplishes the goal using complex hash functions encoded
on-chip with significant space and additional delays [12], [13].
It also requires changes in the encoded hash function upon a
hash table update.

In this paper, we propose a new multiple-hashing method,
named guided multiple hashing, denoted as d-ghash, for
balancing the hash buckets while limiting the number of
bucket access for key lookup. Unlike d-random [11], which
places each key into the least-loaded bucket progressively for
localized balance among the hashed buckets, d-ghash achieves
global balance among all buckets based on the complete
placement information after all keys are hashed into buckets
d times using d independent hash functions. In other words,
the decision of individual key placement is deferred until the
knowledge of the complete placement is available.

There are two criteria for placing the keys into buckets.
First, the maximum number of keys in buckets should be as
small as possible. We define the optimal bucket load as the
lower bound on the maximum number of keys in a bucket,
denoted as Ωp. Clearly, Ωp = dn/me, where n is number of
keys and m is the number of buckets. d-ghash ensures that
the maximum number of keys in a bucket is close to Ωp. In
order to achieve this, it assigns each key to one of the hashed
buckets and removes duplicates from other buckets after the
complete placement information is known. Reassignment may
be needed for buckets exceeding the optimal load. Second, in
order to reduce bucket access, d-ghash creates as many empty
buckets as possible, called companion empty buckets, or c-
empty buckets. A small array called the empty array is built to
indicate if a bucket is a c-empty bucket. As it is unnecessary
to access an empty bucket to find a key, the number of the
bucket accesses for a lookup is reduced.

To further reduce lookup time, a target array is established
to guide the lookup of a key. Basically it records the hash
function ID that each key uses to locate the assigned bucket.
We call the d-ghash scheme with a target array the enhanced
d-ghash, to separate from the base d-ghash that does not have
the target array. Upon looking up a key, the hash function ID
is retrieved from the target array based on the key value, and
then the corresponding hash bucket is fetched from the off-
chip memory. Only when the key is absent from this bucket,
the remaining buckets are examined. Collision may happen in
the target array. Using a sufficient target array, however, it has
limited impact as we will discuss in Section IV.

In summary, the proposed d-ghash makes two important
contributions. First, d-ghash achieves near perfect balance

using multiple hash functions. By deferring individual key
assignment, it is able to achieve global balance. Second, d-
ghash further utilizes and arranges the available bucket space
to reduce the number of buckets required to look up a key.
It creates as many empty buckets as possible when removing
duplicate keys during the assignment to avoid probing such
empty buckets. It also records the hash function to the bucket
where the key is located to guide the lookup. These two
techniques together can reduce the bucket access significantly
in comparison with other multiple-hashing approaches.

Performance evaluation shows significant advantages of
using the guided multiple-hashing approach. Given different
ratios of the number of keys, buckets, and hash functions,
d-ghash out-balances existing single-hash and d-left hashing
schemes by producing smaller bucket load among all buckets.
For example, given 200,000 keys, d-ghash can achieve perfect
balance with a maximum of one key per bucket using 4 hash
functions and 275,000 buckets while other scheme cannot
obtain the perfect balance even with 500,000 buckets. Mean-
while, enhanced d-ghash has the ability to reduce 20–50% of
the bucket access for a key lookup in comparison with the d-
left approaches. We also show that a similar conclusion can be
made when applying d-ghash to several real network routing
tables [7]. Results show that enhanced 4-ghash reduces 37–
50% bucket access of 4-left for a key lookup and enhanced 2-
ghash reduces 20–23% bucket access of 2-left. Simulations and
experiments based on real routing table trace also demonstrate
the robustness of our algorithm.

The remaining paper is organized as follows. We will first
provide the background and motivation of using multiple hash
functions to accomplish specific objectives in the hash table in
Section II. Section III describes the detailed algorithm of the
proposed guided multiple-hashing method. This is followed
by the performance evaluation and comparison of the state-of-
the-art hashing methods in Section IV. Section V provides a
routing table experiment based on real Internet traces. Related
works are give in Section VI and Section VII concludes the
paper.

II. BACKGROUND AND MOTIVATION

In this section, we describe the challenges of a hashing-
based information table using a single hash function. We also
bring up the motivation and applications of using a multiple-
hashing approach for organizing and accessing a hash table.
It is well-known that hash collision is an inherent problem
when a single random hash function is used, which causes
uneven distribution of keys among the hash buckets in a non-
deterministic fashion. The multiple-hashing technique, on the
other hand, uses d independent hash functions to place a key
into one of d possible buckets. The criteria of selecting the
target bucket for placement is flexible and can be controlled to
accomplish a specific objective. One well-known objective of
using multiple hash functions is load balancing, i.e. to balance
the keys in the buckets [1], [5], [9], [11], [14], [15]. To achieve
this objective with two hash functions, for example, each key

2

is placed in the bucket with smaller number of keys. The power
of balancing the buckets with two choices was reported in [9].
In comparison with single hashing, the maximum number of
keys in a bucket can be reduced from ((1+o(1)) lnn/ ln lnn)
to (ln lnn/ ln 2 + O(1)) when placing n keys into n buckets
[11]. However, due to the two choices, the exact location of a
key is unknown and both buckets need to be probed to look
up a key.

Another known objective of multiple hashing sets an oppo-
site criteria for reducing the fill factor of the hash buckets
[9], [16]. The fill factor is measured by the ratio of non-
empty buckets. Instead of placing a key in the bucket with
smaller number of keys for load balancing, this approach
places the key in the bucket with non-zero number of keys. The
objective of this placement is to maximize the amount of empty
buckets. One potential application is to apply the low fill-factor
hashing method to a Bloom filter [9], [16]. A Bloom filter [17]
is an efficient bit-map data structure B[1], ..., B[m] with m
bits for performing membership queries of a set of n keys,
S = {x1, x2, ..., xn}. B[1], ..., B[m] are set to zero initially.
Each key x is hashed to B k times using k independent
hash functions H1, H2, ...,Hk and set B[Hi(x)] = 1 where
1 ≤ i ≤ k. When querying whether y is a member in the key
set, we can check if all B[Hi(y)] = 1, 1 ≤ i ≤ k. Any zero
in B[Hi(y)] guarantees y is not a member. A false positive
occurs when y satisfies the membership query, but is actually
not a member. With more zeros remained in the Bloom filter,
the critical false positive rate can be reduced. To create more
zeros in establishing the Bloom filter, however, multiple sets
of hash functions are needed for different keys since all the
hashed k bits for each key must be set during the setup of
the Bloom filter. Therefore, the multiple hashing concept is
actually applied for choosing a set of hash functions out of
multiple groups to maximize the number of zeros in the Bloom
filter after recording k ‘1’s for every key.

To demonstrate the power of multiple hashing in accom-
plishing different objectives for the hash table, we compare
the simulation results of four hashing schemes: single hashing
(single-hash), 2-hash with load balancing (2-left), 4-hash with
load balancing (4-left), and 2-hash with maximum zero buckets
(2-max-0). We simulate 200,000 randomly generated keys to
be hashed to 100,000 buckets. The distribution of keys in
buckets is plotted in Figure 1. We can observe substantial
differences in the key distribution among the four hashing
schemes. The maximum number of keys in a bucket reach
to ten for single-hash and 2-max-0. Meanwhile, 2-max-0
produces 2.5 times empty buckets than single-hash does. 2-
left and 4-left are more balanced with four and three as the
maximum numbers of keys in a bucket, respectively. It’s easy
to see that increasing the number of hash functions from two
to four helps improving the balance.

In this paper, we investigate a new objective for allocating
keys in hash buckets using the multiple-hashing approach. The
goal is to balance the keys in the buckets to reduce the bucket
load so that the amount of data in a bucket to be fetched

TABLE I
NOTATION AND DEFINITION

n Total number of keys

m Total number of buckets

B[i] Set of keys in i-th bucket

v(B[i]) Number of keys of the i-th bucket

s
indices of the buckets in B sorted in ascending order
of v(B[i])

Hi i-th hash function

Ωp Optimal bucket load, dn/me
Ωa Achievable bucket load

nu
Total number of keys in under-loaded buckets
(bucket load less than Ωa)

bu Number of under-loaded buckets

θ Memory usage ratio

Fig. 2. A simple d-ghash table with 5 keys, 8 buckets and 2 hash functions.
(The shaded bucket is a c-empty bucket. The final key assignment is as
illustrated.

from off-chip memory is minimized. In addition, we want the
average number of buckets to be probed for looking up a key to
be as small as possible to alleviate the disadvantage of multiple
hashing, which needs to probe multiple buckets.

III. d-ghash HASHING SCHEME

In this section, we describe the detailed algorithms of
the guided multiple-hashing scheme that consists of a setup
algorithm, a lookup algorithm, and an update algorithm. As-
sume we have m buckets B1, ..., Bm and d independent hash
functions H1, ...,Hd. Each key x is hashed and placed into all
d buckets, BHi(x), 1 ≤ i ≤ d. The set of keys in bucket
Bi is denoted by B[i], and the number of keys in bucket
Bi is v(B[i]), 1 ≤ i ≤ m. The bucket load Ωa is defined
as the maximum number of keys in any bucket. We define
the memory usage ratio as: θ = (Ωa ×m)/n to indicate the
memory requirement of the hash table. Other terminologies are
self-explanatory and are listed in Table I. For better illustration
of d-ghash, we use a simple hashing table with 5 keys and 8
buckets. All keys are hashed to the buckets using two hashing
functions, where buckets B0 to B7 have 1, 0, 1, 2, 3, 0, 1, 2
keys as indicated by the arrows in Figure 2.

A. The Setup Algorithm

Since the objective is to minimize the bucket load while
approaching to a single bucket access per lookup, the setup
algorithm needs to satisfy two criteria: (1) achieving near

3

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

single-hash 2-left 4-left 2-max-0

n
u

m
b

er
 o

f
b

u
ck

et
s

0
1
2
3
4
5
6
7
8
9

10

Fig. 1. Distribution of keys in buckets of four hashing algorithms.

perfect balance, and (2) maximizing the number of c-empty
buckets. Recall that a c-empty bucket serves as a multiple-
hashing target of one or more keys, but the key(s) is placed
into other alternative buckets that make c-empty bucket access
unnecessary.

Given n keys and m buckets, a perfect-balance hashing
scheme achieves optimal bucket load Ωp = dn/me. However,
the perfect balance may not be achieved under our or other
multi-hashing schemes because even with multiple hashing,
some buckets may still probabilistically be under-loaded, i.e.
zero or less than Ωp keys are hashed to the bucket. And
this translates to some other buckets being squeezed with
more keys. Increasing the number of hash functions reduces
under-loaded buckets and helps approaching to the perfect
balancing. Our simulation shows that with 4 hash functions,
the achievable balance is the same as or very close to Ωp.

The first step in the setup algorithm is to estimate Ωa, the
achievable balance. The idea is to count the number of under-
loaded buckets and the number of keys inside. If the remaining
buckets can not hold the rest of the keys with Ωa keys in each
bucket, we increase Ωa by one. Details are shown in Algorithm
1. We then use Ωa as the benchmark bucket load for key
assignment. We sort all buckets in B resulting a sorted index
array, s, such that v(B[s(i)]) ≤ v(B[s(i+ 1)], 1 ≤ i ≤ m− 1.
In the simple example of Figure 2, Ωa = Ωp = dn/me = 1.

The next step is key assignment, which consists of two
procedures, creating c-empty buckets, and balancing key as-
signment. For creating c-empty buckets, the procedure removes
duplicate keys starting from the most-loaded buckets to maxi-
mize their services as companion buckets to reduce the bucket
access. A key can be safely removed from a bucket if it exists
in other bucket(s). As shown in Algorithm 2, the procedure
goes through all buckets whose initial load are greater than Ωa

and tries to remove keys from them. In the illustrated example

Algorithm 1: Achievable Ωa

1 initialize Ωa = dn/me;
2 nu = 0; bu = 0; S = ∅;
3 for i = 1 to m do
4 // count buckets and keys in under-loaded buckets
5 if v(B[i]) < Ωa then
6 nu = nu+ no. of distinct keys in B[i] not in S;
7 bu = bu + 1;
8 add distinct keys in B[i] to S;
9 nk = n− nu; bk = dnk/Ωae;
10 if bu + bk > m then
11 Ωa = Ωa + 1; go back to (2);

Algorithm 2: Create c-empty buckets

1 set count(key) = d for all keys;
2 repeat based on the sorted list s
3 find next most-loaded bucket with largest v(B[s(i)]);
4 if v(B[s(i)]) > Ωa then
5 for each key x in bucket do
6 if count(x)> 1 then
7 delete key in the bucket;
8 count(x) = count(x)−1;

in Figure 2, all 3 keys in B4 are successfully removed and B4

becomes empty. Next, we check B3 and B7, each of which has
2 keys. Note that both K2 and K4 in B3 can be removed if B3

is emptied first. As a result, K2 and K3 cannot be removed
from B7 and exceed Ωa. All buckets with the bucket load
exceeding Ωa will be a target for reallocation as described
next.

After emptying the buckets, the key assignment procedure
assigns each key to a bucket starting from the least-loaded
bucket as described in Algorithm 3. Once a key is assigned,
its duplicates are removed from the remaining buckets. During

4

Algorithm 3: Balanced key assignment

1 // Assign keys:
2 repeat based on the sorted list s
3 find next unassigned bucket with smallest v(B[s(i)]);
4 if v(B[s(i)]) ≤ Ωa then
5 assign all keys in B[s(i)];
6 remove keys in B[s(i)] from other buckets;
7 update s;
8 until all buckets B[i] are either assigned or v(B[i]) > Ωa;
9
10 // Reassign overflow buckets:
11 repeat based on the sorted list s
12 find next maximum load bucket v(B[s(i)]) > Ωa;
13 for each key x in B[s(i)] do
14 if exists i, such that 0 < v(B[Hi(x)]) < Ωa

15 then reassign x to B[Hi(x)];
16 else choose the smallest of all v(B[Hi(x)])

17 then reassign x to that bucket;
18 if all buckets B[i] satisfies v(B[i]) ≤ Ωa, then stop;
19 if any bucket with v(B[i]) > Ωa

20 go back to (11) and iterate r times;
21 if exceed r times then
22 Ωa = Ωa + 1; redo key assignment;

the assignment, buckets with more than Ωa keys are skipped
in order to maintain the achievable balance. A re-assignment
of the buckets with load greater than Ωa is necessary after all
the buckets are assigned. During re-assignment, the keys in the
overflow buckets are attempted to be relocated to other buckets.
In our experiment, we use Cuckoo Hashing [5] to relocate
keys from an overflow bucket to an alternative bucket using
multiple hashing functions. If all alternative buckets are full,
an attempt is made to make room in the alternative buckets.
For simplicity, however, such attempts stop after r tries, where
r can be any heuristic number. A larger r brings better balance
at the expense of longer setup time. In the illustrated example,
K2 in B7 is relocated to B3 to reduce the bucket load of B7,
hence, the optimal load is achieved.

In case that the perfect balance is not achievable, Ωa is
incremented by one and the key assignment procedure repeats.
It is important to note that the priority of the key assignment
is to achieve perfect balance. Therefore, the keys that are
previously removed from an empty bucket can be reassigned
back in order to accomplish the perfect balance such that the
number of keys are less than or equal to Ωa in all buckets. It is
also important to know that in order to reduce the bucket load,
we can decrease the ratio of n/m, i.e. to increase the number
of buckets for a fixed number of keys. However, increasing the
number of buckets inflates the memory space requirement as
the memory usage ratio can be calculated by θ = (Ωa×m)/n
for a constant bucket size for efficient fetch of a bucket from
off-chip memory.

Algorithm 4: Key lookup

1 the lookup key x is hashed using {Hi};
2 use {Hi(x)} as indices to get d bits from empty array;
3 let e = number of 1s in d bits from the empty array;
4 retrieve a hash function ID t from the target array;
5 if e = 1 then fetch the only non-empty bucket;
6 else if e > 1 then
7 lookup the bucket B[Ht(x)];
8 if x is not found then
9 lookup remaining nonempty buckets till found

B. The Lookup Algorithm

In order to speed up the lookup of keys, we introduce a
data structure called the empty array, which is a bit array
of size m indicating whether a bucket is empty or not. If a
bit in the empty array is ‘0’, it means that the corresponding
bucket is empty; otherwise it is not empty. Upon looking up
a key x, the bits of indices H1(x), ...,Hd(x) in the empty
array are checked. If there is only one of the hashed buckets
is non-empty, we simply fetch that bucket and thus complete a
lookup. If there are two or more non-empty buckets, we access
them one by one until we find the key. Algorithm 4 gives the
details. In the worst case, all d bits are ones and d buckets are
examined before we find the key. As discussed above, creating
c-empty buckets helps reduce bucket accesses per lookup, thus
alleviates the lookup cost.

To further enhance our algorithm, we introduce another data
structure, the target array, to record the hash function ID once a
key is hashed to two or more non-empty buckets. To separate
from the algorithm described above, we call it enhanced d-
ghash algorithm. The algorithm only using the empty array is
called base d-ghash algorithm. The recorded ID indicates the
bucket that the key is most-likely located. The empty array has
m bits while the size of the target array varies depending on
the number of keys. Suppose m = 200K, and we use 200K-
entry target array, then the empty array takes 25KB and target
array 25KB for enhanced 2-ghash and 50KB for enhanced 4-
ghash. These two small arrays can be placed on chip for fast
access. Multiple keys may collide in the target array. When
a collision occurs, the priority of recording the target hashing
function is given to the key which hashes to more non-empty
buckets. Given a fixed number of keys, we can adjust the
number of buckets (m) and hash functions (d) to achieve a
specific goal of the bucket size and the number of buckets to
be fetched for looking up a key. More discussions will be in
Section IV.

C. The Update Algorithm

There are three common types of hash table updates: inser-
tion, deletion, and modification. It is straightforward to delete
or to modify a key in the hash table. For deletion, the key
is probed first by fetching the bucket from off-chip memory.
The key is then removed from the bucket before the bucket
is written back to memory. If the key is the last one in the

5

bucket, the corresponding bit in the empty array is set to zero.
For modification of the associated record of a key, the key and
its associated record are fetched. The new record replaces the
old one before the bucket is written back to memory. Those
two types of updates do not involve the modification of the
target array.

The key insertion is slightly complicated. All hashed buckets
are probed and the key is inserted into the least-loaded, non-
empty bucket with the number of keys < Ωa. If all non-empty
buckets are full, the key is inserted into an empty bucket if
it is also hashed. The empty array is updated accordingly. In
case that all hashed buckets are full, the Cuckoo Hashing is
applied to make a room for the new key, i.e., “rehashing” a
key in one of the hashed buckets to another alternative bucket.
During key relocations, both the empty and the target arrays
are updated accordingly.

There are two options in case a key cannot be inserted
without breaking the property of v(B[i]) ≤ Ωa, i.e., all its
hashed/rehashed bucket loads are greater than or equal to Ωa.
First, set Ωa = Ωa + 1 and insert the key normally; Second,
initiate an off-line process to re-setup the table. Normally, the
possibility that a key cannot be inserted is small, and we should
use the second option to prevent the bucket size from growing
fast. However, if this operation happens very frequently, it
implies that most of the buckets are “full”, i.e. the average
number of keys in buckets are approaching Ωa. In this case
we should use the first option. By increasing the maximum
load by one, all buckets gain one extra space to store another
key.

IV. PERFORMANCE EVALUATION

The performance evaluation is based on simulations for
seven hashing schemes: single-hash, 2-left, 4-left, base 2-
ghash, enhanced 2-ghash, base 4-ghash, and enhanced 4-
ghash. Note that we do not include d-random in the evaluation,
because it is outperformed by d-left both in terms of the
bucket load and the number of bucket accesses per lookup. We
simulate 200,000 randomly generated keys to be hashed into
100,000 to 500,000 buckets. To test the new multiple hashing
idea, we adopt the random hash function in [18] which uses
a few shift, or, and addition operations on the key to produce
multiple hashing results. For relocation, we try to relocate keys
in no more than ten buckets to other alternative buckets in
the Setup Algorithm and no more than two in the Update
Algorithm. We first compare the bucket load and the average
number of bucket accesses per lookup by varying n/m. Then
we normalize the number of keys per lookup based on the
memory usage ratios to understand the memory overhead for
different hashing schemes. In addition, we demonstrate the
effectiveness of creating c-empty buckets to reduce the bucket
access. We also give a sensitivity study on the number of
bucket accesses per lookup with respect to the size of the target
array. Lastly, we evaluate the robustness of d-ghash scheme by
using two simple probabilistic models.

Figure 3 displays the bucket loads of the hashing schemes.

 0

 2

 4

 6

 8

 10

 12

 14

 150000 300000 450000

m
ax

 n
o
.
o
f

k
ey

s
in

 b
u
ck

et
s

(Ω
)

number of buckets (m)

single hash
2-left
4-left

2-ghash
4-ghash

Fig. 3. Bucket loads for the five hashing schemes. The enhanced d-ghash
scheme and base d-ghash scheme has the same bucket load.

Note that enhanced d-ghash and base d-ghash have the same
bucket load. The only difference between the two is that
enhanced d-ghash uses a target array to reduce the number of
bucket accesses per lookup. The results show that d-ghash has
the least bucket load, and hence achieves best balance among
the buckets. This is followed by d-left. More hash functions
improve the balance for both d-ghash and d-left. With 275,000
buckets, 4-ghash accomplishes perfect balance with the bucket
load of a single key. No other simulated scheme can achieve
such balance with up to 500,000 buckets. 2-ghash performs
slightly better than 4-left as the former needs 150,000 buckets
to reduce the bucket load to two keys while the latter requires
175,000 buckets. This result demonstrates the power of d-
ghash in balancing the keys over that of d-left. The single-hash
scheme is the worst. The bucket load is six even with 500,000
buckets. Note that bucket load is an integer, but we slightly
adjust the integer values to separate the curves of different
schemes for easy read.

In Figure 4, we evaluate the lookup efficiency of the seven
hashing schemes. Single-hash only accesses one bucket per
lookup. The d-left scheme looks up a key from the left-most
bucket. In case that the key is not found, the next bucket to
the right is accessed until the key is located. Since the key
is always placed in the left-most bucket to break a tie, the
number of bucket accesses per lookup is quite low, 1.68 ∼
2.36 for 4-left and 1.27 ∼ 1.44 for 2-left. The base 4-ghash
and base 2-ghash reduce the number of bucket accesses per
lookup to 1.25 ∼ 2.18 and 1.11 ∼ 1.44 respectively with a 5–
34% and 0–14% reduction. With a target array of 1.5n entries,
the enhanced 4-ghash and the enhanced 2-ghash can further
reduce the number of bucket accesses per lookup to as low as
1.03 ∼ 1.23 and 1.01 ∼ 1.11 respectively with a 38–51% and
21–24% reduction.

It is interesting to see that the number of bucket accesses
per lookup for d-ghash does not decrease continuously when
the number of buckets increases. We can observe a sudden
jump at m = 125, 000 and m = 275, 000 for 4-ghash. This
is due to the fact that the optimal bucket load drops from
three to two when m = 125, 000 and from two to one when
m = 275, 000. As the average number of keys per bucket is
very close to the optimal bucket load, it is hard to create c-

6

 0.5

 1

 1.5

 2

 2.5

 3

 150000 300000 450000

n
o
.
o
f

b
u
ck

et
 a

cc
es

se
s

p
er

 l
o

o
k
u

p

number of buckets (m)

4-left
base 4-ghash

2-left
base 2-ghash

enhanced 4-ghash
enhanced 2-ghash

single hash

Fig. 4. Number of bucket accesses per lookup for d-ghash.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12

av
g

.
n

o
.
o

f
k

ey
s

memory usage ratio (Ω*m/n)

single hash
2-left
4-left

base 2-ghash
enhanced 2-ghash

base 4-ghash
enhanced 4-ghash

Fig. 5. Average number of keys per lookup based on memory usage ratio.

empty buckets. Therefore, there are sudden decreases in the
amount of c-empty buckets at those two points. As a result,
4-ghash experiences more bucket access for key lookup. The
same reason goes for 2-ghash.

In order to reduce the bucket load for a fixed number of keys,
we can increase the number of buckets. However, increasing
buckets inflates the memory space requirement. In Figure 5,
we plot the average number of keys per lookup based on the
memory usage ratio, where the average number of keys is the
product of the bucket load and the average number of buckets
per look up. The results clearly show the advantage of the d-
ghash scheme. Enhanced 4-ghash accomplishes a single key
per bucket with 275,000 buckets which are only 37% more
than the number of keys. With slightly larger than one key
per lookup, enhanced 4-ghash requires the least amount of
memory to achieve close to one key access per lookup.

Besides the perfect balance, d-ghash creates c-empty buckets
to maximize the number of keys hashing to empty buckets.
Figure 6 shows the effectiveness of the c-empty buckets for
reducing the bucket access. In this figure, y-axis indicates
the average number of non-empty buckets that each key is
hashed into. In comparison with d-left, d-ghash reduces non-
empty buckets more significantly, resulting in smaller number
of bucket access. For d-left, the number of non-empty buckets

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 150000 300000 450000

n
o
.
o
f

n
o
n
em

p
ty

 b
u
ck

et
s

number of buckets (m)

4-left
4-ghash

2-left
2-ghash

Fig. 6. The average number of non-empty buckets for looking up a key.
This parameter is the same for enhanced d-ghash scheme and base d-ghash
scheme.

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 150000 300000 450000n
o
.
o
f

b
u
ck

et
 a

cc
es

se
s

fe
tc

h
ed

 p
er

 l
o
o
k
u
p

number of buckets (m)

target = n
target = 1.25n

target = 1.5n
target = 1.75n

target = 2n

Fig. 7. Sensitivity of the number of bucket accesses per lookup for enhanced
4-ghash with respect to the target array size.

decreases as the number of buckets increases. This is due to the
fact that d-left assigns each key to the least-loaded bucket. d-
ghash, on the other hand, creates c-empty buckets by removing
keys away from those buckets with more keys hashed into.
As a result, there are fewer non-empty buckets for looking
up each key. It is interesting to observe that the ability to
create c-empty buckets depends heavily on the optimal bucket
load and the ratio of keys and buckets. For example, when
the number of buckets is 250,000, the optimal bucket load
is 2 for 200,000 keys that leaves plenty of room to create
many c-empty buckets. However, when the number of buckets
increases to 275,000, the optimal bucket load drops to 1 that
leaves little room for the c-empty buckets. Hence, the average
number of non-empty buckets increases for each key to be
hashed into.

Moreover, we show a sensitivity study of bucket access per
lookup with respect to the size of the target array. We vary the
size of the target array from n to 2n entries using enhanced
4-ghash and the result is shown in Figure 7. As expected,
larger target array reduces the collision, resulting in a smaller
number of bucket accesses. We pick 1.5n entries as the target
array size in earlier simulations which has the best tradeoff in
terms of space overhead and bucket access per lookup.

Finally, we evaluate the robustness of our scheme. We
first set up a table using 200,001 keys, 200,000 buckets,
and 300,000 target array entries. The achievable bucket load
Ωa is 2 in this setting. We simulate two update models:

7

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 0 100000 200000 300000 400000 500000 600000
 0

 1

 2

 3

 4

 5
n

o
.

o
f

b
u

ck
et

 a
cc

es
se

s
p
er

 l
o
o

k
u

p

p
er

ce
n
ta

g
e

o
f

re
h

as
h

 t
im

es
(%

)

number of update operations

Heavy Insertion, bucket access

Balanced Update, bucket access

Heavy Insertion, rehash percentage

Balanced Update, rehash percentage

Fig. 8. Changes in the number of bucket accesses per lookup and rehash
percentage for two update models using enhanced 4-ghash. Bucket accesses
per lookup lines correspond to the left Y axis. Rehash percentage lines
correspond to the right Y axis.

(1) Balanced Update: 33% insertion, 33% deletion, and 33%
modification; and (2) Heavy Insertion: 40% insertion, 30%
deletion, and 30% modification. We run for 600K updates and
record the rehash percentage of all the update operations and
the number of bucket accesses per lookup. The results are
presented in Figure 8. The top two lines reflect the number
of bucket accesses per lookup under Heavy Insertion model
and Balanced Update model respectively. We notice increases
for both lines. The number of bucket accesses per lookup
increases continuously to 1.37 for Heavy Insertion, an increase
of 25% than the original number. While for Balanced Update,
the number first increases up to 1.25 and then drops to 1.21,
with an increase of 10% in the end. The bottom two lines
are rehash percentages of the whole update operations. These
two lines give a clear view that if the insertion is heavy, we
will come across more rehashes. For Balanced Update, the
rehash percentage stays almost the same at 0.5%. There is a
slight increase in Heavy Insertion rehash percentage. Since the
rehash percentages for both models are less than 2% and the
rehash operation involves keys in no more than two buckets,
we believe d-ghash is able to handle these rehashes without
incurring too much delay.

V. ROUTING TABLE EXPERIMENT

Finally, we apply our algorithm to a real routing table
application. We use five routing tables downloaded from the
Internet backbone routers: as286 (KPN Internet Backbone),
as513 (CERN, European Organization for Nuclear Research),
as1103 (SURFnet, the Netherlands), as4608 (Asia Pacific
Network Information Center, Pty. Ltd.), and as4777 (Asia
Pacific Network Information Center) [7], with 276K, 291K,
279K, 283K, 281K prefixes respectively after removing the
redundant prefixes.

To handle the longest prefix matching problem, hash-based
lookup adopts the controlled prefix expansion[19] along with
other techniques [20], [21], [22]; it is observed that there are
small numbers of prefixes for most lengths, and they can be

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 120000 160000 200000 240000

n
o
.

o
f

b
u

ck
et

 a
cc

es
se

s
p
er

 l
o
o

k
u

p

number of buckets (m)

4-left
base 4-ghash

2-left
base 2-ghash

enhanced 4-ghash
enhanced 2-ghash

Fig. 9. Number of bucket accesses per lookup for experiments with five
routing tables.

dealt with separately, for example, using TCAM, while other
prefixes are expanded to a limited number of fixed lengths.
Lookup will then be performed for those lengths. In this
experiment, we expand the majority of prefixes (with lengths
in the range of [19, 24]) to two lengths: 22 bits and 24 bits.
Assuming the small number of prefixes outside [19, 24] are
handled by TCAM, we perform lookups against lengths 22
and 24. Because there are more prefixes of 24-bits long after
expansion, we present the results for 24-bit prefix lookup.

There are 159,444 ,159,813, 159,395, 159,173 and 159,376
prefixes of 24-bits long from the five routing tables, respec-
tively. We use these prefixes to setup five tables separately and
vary the number of buckets from 100K to 250K with a target
array of 150K entries.

We find the number of bucket accesses per lookup for d-
ghash and d-left scheme. The results are obtained based on the
average of the five tables. As shown in Figure 9, both base
4-ghash and base 2-ghash performs better than the respective
d-left scheme. The maximum reduction rate for base 4-ghash
than 4-left is about 36% when m = 210,000 and base 2-
ghash 12% when m = 250,000. The average number of bucket
accesses per lookup for enhanced 4-ghash scheme is almost
one bucket less than 4-left, with up to 50% reduction. For
enhanced 2-ghash, there is an average of 20% reduction over
2-left. We also notice that there is a jump for 4-ghash at m =
220,000 and another one for 2-ghash at m = 130,000. This is
due to the change in Ωa, as mentioned before.

In the second experiment, we setup our hash tables with the
routing table as286 downloaded at Juanuary 1st, 2010 from
[7] and use the collected update trace of the whole month
of January, 2010 to simulate the update process. To make
experiments simple, we also choose prefixes with the length of
24. There are 159,444 24-bit prefixes in the table. The update
trace contains 1,460,540 insertions and 1,458,675 deletions for
those 24-bit prefixes. We vary the number of buckets from
110K to 150K. For all these settings, the achievable bucket
load Ωa is 2 for enhanced 4-ghash. We also use a fixed 150K-
entry target array.

8

TABLE II
ROUTING TABLE UPDATES FOR enhanced 4-ghash

Number of buckets 110K 120K 130K 140K 150K

Rehash percentage re-setup 0.23% 0.13% 0.08% 0.05%

 1

 1.1

 1.2

 1.3

 1.4

 0 500000 1e+06 1.5e+06 2e+06 2.5e+06
 0

 0.02

 0.04

 0.06

 0.08

 0.1

n
o

.
o
f

b
u
ck

et
 a

cc
es

se
s

p
er

 l
o

o
k
u

p

p
er

ce
n

ta
g
e

o
f

re
h

as
h

 t
im

es
(%

)

number of update operations

avg. bucket access
rehash percentage

Fig. 10. Experiment with the update trace using enhanced 4-ghash. Bucket
access per lookup line correspond to the left Y axis. Rehash percentage line
correspond to the right Y axis.

As shown in Table II, if we use 110K buckets, we need a
re-setup for the whole table. If we use 120K buckets, we don’t
need a re-setup, but have to rehash 0.23% of the whole update
operations, which is about 0.5% of the 1.4 million insertions.
And if we increase the number of buckets, we will rehash less.
When using 150K buckets, we have close to 0.05% chance of
rehash. We also show the lookup efficiency change in Figure
10 with m = 150K. The update trace used has nearly the
same number of insertions and deletions, which is similar to
a Balanced Update model used in Section IV. We can view
that the rehash percentage grows continually to 0.05%. The
number of bucket accesses per lookup increases and decreases
through the update process, with a 7% increase in the end.

VI. RELATED WORK

Using multiple hash functions to place keys in buckets
is known to better balance hash table buckets than using a
single hash function. There are many studies using multiple
hash functions to improve load balancing [1], [5], [9], [11],
[14], [15]. The recent proposed Deterministic Hashing [6] uses
multiple hash functions of each key to an on-chip intermediate
index table where the hashed bucket addresses are saved. This
approach incurs space overhead in building the index table and
delays due to indirect access through the index table. In addi-
tion, it also faces complexity in handling key updates. In [10],
an improved approach uses the same intermediate index table
to balance the buckets. In contrast to these approaches which
go through an intermediate table for balancing the buckets,
d-ghash allocates keys directly into multiple hashed buckets
and then remove duplicate keys to achieve a perfect balance.
A minimal perfect hash function [13], [23] accomplishes a
one-to-one collision-free mapping when the number of buckets
matches the number of keys. The delay of searching for the
perfect hash function as well as the difficulty in handling the
complicated hash table update involved in the perfect hash

function itself make it difficult for practical use. The goal of
the proposed d-ghash is not to create or use a minimal perfect
hash function; instead, it accomplishes near-perfect balance
among the hash buckets using a small number of simple hash
functions.

VII. CONCLUSION

A new guided multiple-hashing method, d-ghash is intro-
duced in this paper. Unlike previous approaches which select
the least-loaded bucket to place a key progressively, d-ghash
achieves global balance by allocating keys into buckets after all
keys are placed into buckets d times using d independent hash
functions. d-ghash calculates the achievable perfect balance
and removes duplicate keys to achieve this goal. Meanwhile,
d-ghash reduces the number of bucket accesses for looking up
a key by creating as many empty buckets as possible without
disturbing the balance. Furthermore, d-ghash uses a table to
encode the hash function ID for the bucket where a key is
located to guide the lookup and to avoid extra bucket access.
Simulation results show that d-ghash achieves better balance
than existing approaches and reduces the number of bucket
accesses significantly.

VIII. ACKNOWLEDGMENT

This work is supported in part by the National Science
Foundation under grant CNS 1115548.

REFERENCES

[1] A. Broder and M. Mitzenmacher, “Using Multiple Hash Functions to
Improve IP Lookups,” Proc. IEEE INFOCOM, 2001.

[2] S. Demetriades, S. C. M. Hanna, and R. Melhem, “An Efficient
Hardware-Based Multi-hash Scheme for High Speed IP Lookup,” Proc.
IEEE HOTI, 2008.

[3] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash
Table Lookup Using Extended Bloom Filter: An Aid to Network
Processing,” Proc. ACM SIGCOMM, 2005.

[4] Brodnik, A. Munro, and J. I., “Membership in Constant Time and
Almost-Minimum Space,” SIAM Journal on computing, vol. 28, no. 5,
pp. 1627–1640, 1999.

[5] P. R. Rodler and F. F., “Cuckoo Hashing,” Journal of Algorithms, vol. 51,
pp. 122–144, 2004.

[6] Z. Huang, S. C. David Lin Jih-Kwon Peir, and S. M. I. Alam, “Fast
Routing Table Lookup Based on Deterministic Multi-hashing,” IEEE
ICNP 18th Intl. Conf., pp. 31–40, 2010.

[7] “Routing Information Service,” http://www.ripe.net/ris, 2009.
[8] C. Hermsmeyer, H. Song, R. Schlenk, R. Gemelli, and S. Bunse,

“Towards 100G packet processing: Challenges and technologies,” Bell
Labs Technical Journal, vol. 14, no. 2, 2009.

[9] S. Lumetta and M. Mitzenmacher, “Using the Power of Two Choices to
Improve Bloom Filters,” Internet Mathematics, vol. 4, no. 1, pp. 17–33,
2007.

[10] Z. Huang, J.-K. Peir, and S. Chen, “Approximately-Perfect Hashing:
Improving Network Throughput through Efficient Off-chip Routing
Table Lookup,” Proc. IEEE INFOCOM, 2011.

[11] Y. Azar, A. Broder, A. Karlin, and E. Upfal, “Balanced Allocations,”
Proc. 26th ACM Symn. on Theory of Computing, pp. 593–602, 1994.

[12] R. Sprugnoli, “Perfect hashing functions: a single probe retrieving
method for static sets,” Comm. ACM, 1977.

[13] F. C. Botelho, R. Pagh, and N. Ziviani, “Simple and space-efficient
minimal perfect hash functions,” WADS, 2007.

[14] B. Vocking, “How Asymmtry Helps Load Balancing,” Proc. 40th IEEE
Symn. on FCS, pp. 131–141, 1999.

[15] A. Kirsch and M. Mitzenmacher, “On the Performance of Multiple
Choice Hash Tables with Moves on Deletes and Inserts,” Communi-
cation, Control, and Computing, 46th Conf., 2008.

9

[16] F. Hao, M. Kodialam, and T. V. Lakshman, “Building high accuracy
bloom filters using partitioned hashing,” Proc. ACM SIGMETRICS,
vol. 35, pp. 277–288, 2007.

[17] B. Bloom, “Space / Time Trade-offs in Hash Coding with Allowable
Errors,” Comm. ACM, vol. 13, no. 7, pp. 422–426, 1970.

[18] T. Wang, “http://burtleburtle.net/bob/hash/integer.html.”
[19] V.Srinivasan and G. Varghese, “Fast Address Lookups Using Controlled

Prefix Expansion,” ACM Transactions on Computer Systems, 1999.
[20] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest Prefix

Matching Using Bloom Filters,” Proc. ACM SIGCOMM, 2003.
[21] B. Chazelle, R. R. J. Kilian, and A.Tal, “The Bloomier filter: an efficient

data structure for static support lookup tables,” Proc. ACM 15th SIAM,
2004.

[22] J. Hasan, S.Cadambi, V.Jakkula, and S. Chakradhar, “Chisel: A Storage-
efficient, Collision-free Hash-based Network Processing Architecture,”
ISCA, 2006.

[23] M. L. Fredman and J. Komlos, “On the Size of Separating Systems and
Families of Perfect Hash Functions,” SIAM. J. on Algebraic and Discrete
Methods, 1984.

10

