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Abstract— We propose and implement a set of efficient on-
line algorithms for a router to sample the passing packets and
identify multi-attribute high-volume traffic aggregates. Besides
the obvious applications in traffic engineering and measurement,
we describe its application in defending against certain classes of
DoS attacks. Our contributions include three novel algorithms.
The reservoir sampling algorithm employs a biased sampling
strategy that favors packets from high-volume aggregates. Based
on the samples, two efficient algorithms are proposed to iden-
tify single-attribute aggregates and multi-attribute aggregates,
respectively. We implement the algorithms on a Linux router and
demonstrate that the router can effectively filter out malicious
packets in stateful DoS attacks.

I. INTRODUCTION

A traffic aggregate is a collection of packets sharing some
common attributes, i.e., they have the same values in one
or more header fields. For example, all packets to the same
destination address form an aggregate. All SYN packets to the
address/port of a server form a more specific aggregate. The
traffic volume of this aggregate will surge when the server is
under a SYN-flooding attack.

The function of identifying high-volume aggregates pro-
vides a powerful tool for network diagnosis and engineer-
ing. When a router is overloaded, instead of punishing all
packets, the router can selectively drop more packets from
the aggressive high-volume aggregates while providing better
quality of service to other aggregates that behave normally.
In another example, a global traffic assessment based on
the traffic aggregates provides valuable information for traffic
engineering. Identifying high-volume aggregates is also im-
portant in defending against DoS attacks, which is the focus
of this paper. In many DoS attacks, the malicious traffic
concentrates in certain high-volume aggregates, typically with
specific destination addresses, ports, and flags in the packet
headers. A router can filter out those high-volume aggregates
to reduce the collateral damages on the same routing path.
Some anti-DoS mechanisms [1], [2] impose restrictions on the
source addresses that the attackers may forge in the malicious
packets. In this case, a router can block out attack packets
within multi-attribute high-volume aggregates with specific
source/destination addresses to protect legitimate packets. In
the following, we will describe the existing anti-DoS defense

mechanisms, review the prior art in aggregate identification,
and discuss our contributions.

The goal of a DoS attack is to exhaust the resources of a
server and consequently inhibit it from performing the normal
functions. The typical offense strategy is to flood the server
with a stream of overwhelming packets. The existing defense
mechanisms fall in two broad categories, host-based defense
at the end systems and router-based defense at the routers.

Host-based mechanisms. Many anti-DoS defense mecha-
nisms are designed to restrict the attackers from forging arbi-
trary source addresses. Cookies are typically used to force the
attack sources to complete a cryptographic exchange before
accessing any resources. SYN-cookie [1] relies on a stateless
three-way handshake to defeat the SYN-flooding attack, which
attempts to overflow the server’s listen queue with excessive
SYN packets. The client-puzzle approach [2] requires the
clients to solve cryptographic puzzles before establishing the
TCP connections. The attackers could be overwhelmed by the
server since the more connections the attackers initiate, the
more computation they need to perform. Cookies can also be
used in conjunction with the http redirection messages to de-
fend against SYN-flooding attacks [3] without the modification
of the TCP protocol.

The cookie exchange approach fails under a stateful DoS
attack with the attacker resides on the routing path between the
server and the forged source addresses. The attacker keeps the
state information about each forged connection request, sniffs
the network traffic for the responding cookie from the server,
and uses the intercepted cookie to complete the connection.

Router-based mechanisms. Ingress filtering [4] requires
the edge routers of stub networks to inspect the outbound
packets and drop packets whose source addresses do not
belong to the stub networks. Therefore, an attacking host
in a stub network can only use its real address or forge
source addresses belonging to the same stub network. SYN-dog
[5] identifies SYN-flooding sources by installing a software
agent at the leaf routers of the stub networks. The agent
identifies the attack source from its stub network based on
the difference between outbound SYN packets and inbound
SYN/ACK packets. Another router-based mechanism is called
route-based filtering [6]. The router will drop the packet
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received from a link that is not on any routing path between
the source and destination of the packet.

IP traceback has been studied extensively in recent years as
well [7], [8]. Its purpose is to identify the origins of packets
with forged source addresses. The aggregate-based congestion
control (ACC) was proposed to rate-limit attack traffic [9], [10]
and progressively push the limit to some neighbor routers to
form a dynamic rate-limit tree.

The network-based data streaming methods inspect the pass-
ing packets, extract information by using limited storage, and
allows queries for the estimated size (rate) [11] of each flow.
To make the measurement, the flows have to be well defined
in the first place, e.g., bundles of connections to different
destinations. This paper solves a different problem. To begin
with, the router is not configured with any specification about
the aggregates (or flows) to be measured. Instead, it inspects
the passing packets and dynamically form (or identify) the
boundary of the current high-volume aggregates.

Our contributions. The packets from a DoS-attack form
high-volume aggregates, which are often identified by the
sets of destination address ranges, destination ports, flags, and
source address ranges. For a DoS attack against a specific
server, the destination of the high-volume aggregate will be a
single address. For a DoS attack against an access link, the
destination can be multiple address ranges. Many anti-DoS
mechanisms restrict the scope of source-address spoofing but
does not eliminate it. For example, we have discussed that
stateful DoS attacks can forge source addresses behind the
attackers even when cookies are used. Both ingress filtering
and route-based filtering allow the forgery of source addresses
in a narrowed space. Some DoS attacks are launched through
zombies whose own addresses are used.

Our goal is for a gateway router to automatically identify the
dimensions (attributes) of those high-volume aggregates and
to make the range on each dimension as narrow as possible.
To achieve this goal, we propose a set of efficient on-line
algorithms employing a biased sampling strategy. We design
a base algorithm that identifies a list of single-attribute high-
volume aggregates by using limited, fixed memory space. The
algorithm is expanded for multi-attribute high-volume aggre-
gates. The most related work is MULTOPS [12] which uses
a completely different technique to identify single-attribute
aggregates restricted to the class boundaries (i.e., class A,
B, or C networks). Our algorithms generate multi-attribute
aggregates with a finer granularity, allowing arbitrary address
ranges. The experiments based on a Linux implementation
demonstrate the effectiveness of the algorithms.

II. IDENTIFICATION OF HIGH-VOLUME AGGREGATES

This section presents the algorithms for identifying multi-
attribute high-volume traffic aggregates. First we discuss how
to take samples from the streaming traffic passing by a router.
We present a naive random sampling algorithm and then

describe our reservoir sampling algorithm to deal with single-
attribute and multi-attribute aggregates.

A. Naive Random Sampling

We present the naive random sampling to identify the high-
volume aggregates from the incoming packets. Before we
describe the algorithm, a special structure called traffic map
is introduced. A traffic map take samples of the incoming
packets and record a selected attribute (e.g., source address)
of the samples. Consider a traffic map M with size |M |. The
following basic algorithm is used to maintain the randomness
of the samples from the incoming packets.

Algorithm 1 NaiveRandomSampling(M )

1: Insert the attribute values of the first |M | packets to M .
2: for i = |M |+ 1 to ∞ do
3: wait for a new packet e to appear
4: with probability |M |/i, use the attribute value of e to

replace a randomly selected one in M

5: end for

The benefit of the above algorithm is that at any time, the
set M is a true, uniformly random sampling of the traffic.
The biggest problem is that the number of attribute values
(e.g., number of addresses) stored in the map is limited by
|M |.

During the attack, not all packets are required to identify
the high volume aggregates. Instead, we are more concerned
with those traffic flows that have a high “concentration” over
a limited range of the IP addresses and a high “volume” over
a period of time. In other words, a DDoS attack traffic has the
following characteristics:

spatial locality The high-volume traffic aggregates from the
DDoS attacks will always have a higher density (number of
packets per address/port) from limited address/port space than
the normal, isotropic traffic from the entire Internet.

temporal locality The high-volume traffic aggregates from
DDoS attacks are more likely to continue in the most recent
period of time.

In the following subsections, we describe new algorithms
that utilize these localities.

B. Reservoir Sampling Algorithm and Identification of Single-
Attribute Aggregates

The attacking traffic is often a collection of high-volume
aggregates on limited address/port space. By identifying and
controlling high-volume traffic aggregates at the congested
routers, the networks behind those routers are relieved to some
extent from the malicious traffic. In this section, we describe
a reservoir sampling algorithm. The algorithm automatically
converges a master traffic map to the address/port ranges of
the high-volume aggregates based on the attribute statistics of
the incoming packets. The attribute can be the source address,
the destination address, the source port, or the destination port.
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Two traffic maps are used. A temporary traffic map performs
random sampling and record those addresses (or port numbers)
that appear most frequently in recent period of time. An entry
e in the temporary traffic map consists of an attribute value
a (e.g., address) and a counter c, that is, e = (a, c). When
a is first sampled, the entry is created with c = 1. When a
packet sampled later carries the attribute value a, c is increased
by one. The content of temporary traffic map is periodically
merged into a master traffic map, which keeps those ad-
dress/port ranges that have a high traffic concentration. Rather
than representing the attribute values as a collection of IP
addresses (or port numbers), the master traffic map uses a set
of prefixes 1 representing address (or port) ranges. An entry e

in the master traffic map consists of a prefix p and a counter
c, that is, e = (p, c). We denote lcp(p1, p2) as the longest
common prefixes of p1 and p2.

Attribute values of randomly sampled packets are first
placed in the temporary traffic map. After the temporary traffic
map is full, the new attribute value that is sampled will replace
the existing map entry that has the smallest counter (i.e., the
least number of matching packets in the past).

The entries in the temporary traffic map will be merged
to the master traffic map periodically. Let b be the size of the
temporary traffic map B and λ be the size of the master traffic
map M . An algorithm for merging B into M is given below.
After inserting B into M , the algorithm repeatedly finds two
entries that share the longest common prefix and replaces the
two entries by the common prefix until the size of M returns
to λ.

Algorithm 2 UpdateMasterTrafficMap(M , B)
1: M ←M ∪B

2: for i = 1 to b do
3: e1 = (p1, c1), e2 = (p2, c2) ← two entries in M that

share the longest common prefix
4: M ←M ∪ {(lcp(p1, p2), (c1 + c2))} − {e1, e2}
5: end for

The time complexity of Line 3 is O(λ2) and the time
complexity of the whole algorithm is O(bλ2). In the following,
we present a faster algorithm with time complexity O((λ +
b) log(λ + b)).

During the sorting in Line 1, each prefix in M is treated as
a 32-bit number with the appropriate number of trailing zeros.
The time complexity of Line 1 is O((λ + b) log(λ + b)). The
complexity of Line 2 is O(λ+b). Line 3 can be done by sorting
the common prefixes with a complexity of O((λ + b) log(λ +
b)). The complexity of Lines 5-10 is constant. Therefore, the
total time complexity of the algorithm is O((λ+b) log(λ+b)).

When defending against a DoS attack, a firewall may be
configured to block all packets that match the prefixes in the

1An address prefix specifies the address space of a subnet. A port prefix
can be defined similarly.

Algorithm 3 UpdateMasterTrafficMap(M , B)
1: M ← sort(M,B)
2: compute common prefixes between adjacent entries in M ′

3: C ← the set of b longest common prefixes
4: for each p ∈ C do
5: let e1 = (p1, c1) and e2 = (p2, c2) be the two entries

sharing p

6: if p1 (or p2) is a prefix of p2 (or p1) then
7: remove e2 (or e1)
8: else
9: replace e1 and e2 by (p, c1 + c2) in M

10: end if
11: end for

master traffic map. One problem is that the master traffic map
may also contain attribute values form normal packets that
happen to be sampled by the temporary traffic map. Once
those attribute values (e.g., source addresses of normal users)
are inserted into the master traffic map, the subsequent packets
carring them will be blocked. To prevent normal traffic from
being blocked indefinitely, if the number of packets blocked
by an entry in the master traffic map is below a threshold for a
period of time, the entry is removed from the map. With such
a bias, the master traffic map is in favor of retaining those
attribute values that belong to the high-volume aggregates of
the attack traffic due to their higher traffic density.

C. Identification of Multi-Attribute Aggregates

One of the most important differences between our method
and the ACC method is the ability to identify multi-attribute
high-volume aggregates. Multi-attribute aggregates are cou-
pled with different attributes instead of aggregated only by the
destination addresses in the ACC mechanism. While there is a
possibility that high-volume aggregates in a DoS attack share
the same destination address, there are cases when aggregates
are grouped by source addresses, port numbers, etc., as well.
An example is the traffic aggregates in a stateful DDoS attack.
A stateful DDoS attack is a way of attacking a specific server
even if cookie exchange approach has been enabled. In such
an attack, the attacker can initiate a stateful attack by forging
the source addresses within the same LAN or downstream
LANs. The cookie information can be obtained by sniffing by
sniffing the traffic passing by. In this case, the aggregates of the
attacking traffic are decided by the destination IP address from
the victim server and the source IP addresses from the sniffed
LANs. The purpose of finding multi-attributes is to identify the
aggregates at a high resolution such that the normal, isotropic
traffic is less likely to be effected if we want to restrict the
high volume aggregates.

The method of finding multi-attribute aggregates is a se-
quential process. In our algorithm, it includes the following
steps. First, for each attributes a1, a2, ..., ai, independent n-
entry master traffic maps M1, M2, ..., Mi based on these
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Algorithm 4 MergeTrafficMap(M , M1, M2, ..., Mk)
1: M ←M1

2: for i = 2 to k do
3: merge M and Mi, M ′ ←M ×Mi

4: from n2 entries in M ′, select n entries with the highest
counter density (c/s), where s is the space size of
counter c.

5: entries in M is replaced with these n entries.
6: end for

attributes are established. Suppose the first traffic map M1

is copied to the output traffic map M . M and M2 are selected
and their cartesian product forms a new traffic map M ′ with
n2 entries. Among the n2 entries of M ′, only the n most
dominant entries, that is, those entries with the highest counter
density in one attribute, are selected to from the new generated
n-entry master traffic map, as is shown in Algorithm 4. The
process is repeated in a similar way until only one traffic map
M remaining.

We give an example to better understand the algorithm.
We take two attributes, the source IP address and the
destination IP address 2 to identify aggregates. Two traffic
maps based on the independent attributes, Msrc and Mdest,
are built in the method. Suppose there are two entries in each
traffic map. Msrc has Msrc,1 = (128.100.100.0/24, 30)
and Msrc,2 = (130.100.100.0/24, 20). Mdest has
Mdest,1 = (128.100.100.0/24, 40) and Mdest,2 =
(130.100.100.0/24, 10). The first element in an entry is
an address range, and the second element is a counter that
records the number of samples that are taken so far belonging
to this address range. The cartesian product of Msrc and
Mdest will form a new traffic map M ′ with four entries:
(Msrc,1,Mdest,1), (Msrc,1,Mdest,2), (Msrc,2,Mdest,1), and
(Msrc,2,Mdest,2)

The total number of samples in the above example is
30 + 20 = 40 + 10 = 50. The percentage falling in
(Msrc,1,Mdest,1) is estimated as 30

50 · 40
50 . There are 28 · 28

different address pairs in (Msrc,1,Mdest,1). The traffic density
per address pair in (Msrc,1,Mdest,1) can be measured by

50× 30
50
· 40
50
× 1

28 · 28
= 24/216

The traffic densities for the other three entries in M ′ are
6/216, 16/216, and 4/216, respectively. Therefore, the two
entries with the highest densities, (Msrc,1,Mdest,1) and
(Msrc,2,Mdest,1), are selected to replace the original M .

III. IMPLEMENTATION

Our proposed prototype is implemented in a 1GHz Pentium
III machine utilizing Netfilter in Linux Kernel 2.4.20 currently.
Netfilter is a framework allowing packet manipulation inside

2Although IP addresses are used as examples of the attributes, the attributes
are not limited to IP addresses. They can be port numbers as well.

Device Driver

circular
log

master
blocking

list

configuration
&parameter

Monitoring
Kernel Module

inspect IP address

interface hook point

Administratia GUI Administratia GUI

Server

Client

User Space

Kernel Space

Attacker

���
���
���

���
���
���

��
��
��

��
��
��
����

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
��

�
�
�
�
��

(a) Architecture (b) GUI

Fig. 1. System Architecture and Administratia GUI

the kernel. As is shown in Figure 1, our prototype together
with the administratia utilities are implemented as several in-
dependent components for distributed runtime configurations:
a kernel module registered to the hook points of the Netfilter,
which performs monitoring of the network packets passing by,
a user space Java GUI for configuration, and a character device
driver that is responsible for logging and communicating with
the GUI. Those network packets passing by will be checked
and sampled by the monitoring kernel module. The master and
temporary traffic map are established based on the attribute
values of the sampled packets. To protect the servers against
DDoS attacks, the system can be initiated automatically to
drop packets from spaces in master traffic map whenever the
network traffic exceeds the maximum allowed rate. It can also
be initiated manually through the Java GUI. A snapshot of the
GUI is provided in Figure 1.b.

The proposed system in this paper is deployed on the
routers independently at the firewall level. Though we did
not discuss the cooperative deployment of the system, it can
be more effective with the help of other routers across the
whole Internet. One possible cooperative strategy is to work
with the pushback mechanism where the downstream router
will send an request to the upstream router. The upstream
router will build its own traffic map and the restriction on
traffic aggregates is more effective here since the total possible
address (or port) space has been reduced to a fraction of the
232. We will not discuss it in detail since it is out of our scope.

IV. EXPERIMENT

The testbed architecture of our experiments is shown in
Figure 1.a. There are two types of generated traffics. One is the
normal, isotropic traffic generated by the client machine with
randomly selected source addresses, the other is the attacking
traffic generated by the attacker machine emulating stateful
DDoS attacks. The source addresses of the attacking traffic in
our experiments are selected by the following configurations.
There is a total of 150 independent attacking sources. 50 of
them come from Class B networks, 50 of them come from
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Fig. 2. Experimental Results

Class C networks, and the rest addresses come from different
single sources. Reserved address spaces (e.g., 127.*.*.*) are
excluded. During the experiments, the size of the master traffic
map and the temporary traffic map are set as 1500 and 1000
respectively. In our experiments, the normal traffic is generated
with with randomly selected source addresses from the whole
Internet with a cumulative rate of 40,000Hz and taking up to
80% of the router’s capacity.

Different cumulative rates of the attacking traffic have
been selected in our experiments to show their influence on
our system. Figure 2.a are three typical results from our
experiments. In the top plot, the the attacking traffic has a
cumulative rate of 40,000Hz, which means 50% of the packets
passing by belong to the attacking traffic. In the middle and
bottom plots, the ratio has been adjusted to 75% and 90%,
respectively. As is shown, most packets in normal traffic are
continuously passing by our system without being inserted
into the master traffic map, while more and more packets in
attacking traffic are identified and recorded, therefore can be
dropped to protect the public server. The complete address
space of the attacking traffic is able to be covered by the
master traffic map in minutes during the experiments.

Figure 2.b are the results showing the ratio of the normal

packets that successfully pass the router during the DDoS
attacks. In our experiments, the system is triggered to perform
the targeted filtering based on the master traffic map as long
as the incoming traffic rate exceeds the capacity of the router
and will continue until the rate drops back within the router’s
capacity. The results in these three plots demonstrate that our
system is able to allow most of the normal packets passing by
while blocking the majority of the attacking traffic in fairly
small amount of time after DDoS happens. By comparing
Figure 2.b with Figure 2.a, we conclude that, while increasing
the ratio of the attacking traffic facilitates the establishment
of the master traffic map more accurately, the final accepted
normal traffic has been decreased.

V. CONCLUSION

We propose a new system implemented on the router to
protect public servers from DDoS attacks by identification
and restriction of the high-volume multi-attribute aggregates
of the packets passing by. The goal is achieved by utilizing
the spatial and temporal localities of the traffic aggregates in
DDoS attacks. In the proposed algorithm, only those packets
with the most interests are recorded in order to reduce the
overhead. Our experiments demonstrate the effectiveness of
the proposed system. The system may also be implemented
with other approaches, e.g., the pushback mechanism, to
protect the public servers from DDoS attacks more effectively.
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