
Defending Against Internet Worms: A
Signature-Based Approach

Yong Tang Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville. FL 3261 1-6120, USA
{ytl, sgchen)@cise.ufl.edu

Abstrmt- With the capability of infecting hundreds of thou-
sands of hosts, worms represent a major threat to the Internet,
The defense against Internet worms is largeiy an open problem.
This paper investigates two important problems. Can a localized
defense system detect new worms that were not seen before
and, moreover, capture the attack packets? How to identify
polymorphic worms from the normal background traffic? We
have two major contributions here. The first contribution is
the design of a novel double-honeypot system, which is able to
automatically detect new worms and isolate the attack traffic.
The second contribution is the proposal of a new type of position-
aware distribution signatures (PADS). which fit in the gap be-
tween the traditional signatures and the anomaly-based systems.
We propose two algorithms based on Expectation-Maximization
(EM) and Gibbs Sampling for efficient computation of PADS
from polymorphic worm samples. The new signature is capable of
handling certain polymorphic worms. Our experiments show that
the algorithms accurately separate new variants of the MSBlaster
worm from the normal-traffic background.

Key Words: System Design

1. INTRODUCTION

An Internet worm is a self-propagation program that au-
tomatically replicates itself to vulnerable systems and spread
across the Internet. It represents a huge threat to the network
community [l], [21, [3], [4], [SI. [61, [7]. While much recent
research concenkrates on worm propagation models C81, 191,
[lo], [I 11, [12], the defense against worm attacks is largely
an open problem due to the fact that worms are able to
spread substantially faster than humans can respond. As a
result, though worm attacks fall into the category of network
intrusions. most intrusion detection techniques are not suitable
with worm attacks. In most cases, the defense against the
worm attack can only be done reactively after the damage
has already happened.

Some worm defense mechanisms, which are mainly rate-
limit based [3], [131. were proposed recently trying to defend
against aggressive worms based on their aggressive behaviors.
Moore et al. studied the effectiveness of w o m containment
technologies (address blacklisting and content pltaring) and
concluded that such systems must react in a matter of minutes
and interdict nearly all Internet paths in order to be successful

[2]. Williamson proposed to modify the network stack so
that the rate of connection requests to distinct destinations is
bounded [13]. The main problem here is that this approach
becomes effective only after the majority of all Internet
hosts is upgraded with the new network stack. Although the
deployment on any host may benefit the Internet community,
it does not provide immediate anti-worm protection to the host
itself. This gives little incentive for an individual organization
to upgrade their hosts without an Internet-wide coordinated
effort, as their security depends on the same action taking by
the rest of the Internet. In our previous work, a distributed anti-
worm architecture (DAW) has been proposed [3]. By lightly
restricting the connection-failure rates from worm-infected
hosts while allowing the normal hosts to make successful
connections at any rate, DAW is able to slows down the
worm’s propagation rate significantly within a single ISP.

Most existing worms that cause huge impacts so far have
very aggressive behaviors. They try to spread the Internet at the
highest speed. However, it is actually a less challenging work
to deal with them becuase their aggressiveness can be easily
identified by comparing them with normal traffic behaviors. A
good example is the Slammer worm whose propagation has
been largely restricted at the later stage because of the network
failures (some networks shut down under the extreme load).
While Slammer spread greatly faster than Code Red. it infected
fewer machines [SI. For future worm attacks, it is conceivable
that worms can be modified in a stealthy way in order to avoid
the detection of rate-limit based systems mentioned above.
The worm can slow down the propagation rate purposely and
surreptitiously compromise a vast number of systems [2].

We briefly introduce the general network intrusion detection
systems related to the worm detection here as they might give
us some insight to design our systems on anti-worm defense,
especially for stealthy worms. There exist several approaches
for intrusion detection. Anomaly-based systems [41, [141, [I51
derive the statistical features of normal traffic. Any deviation
from the profile will be treated as suspicious. Though such
systems can detect previously unknown attacks, they also lead
to high false positives as the behavior of legitimate activities
is largely unpredictable. On the other hand, misuse derection
systems look for particular, explicit indications of attacks such
as the pattern of malicious traffic payload. They can detect the
existence of known worms but fail on those that are new.

Most deployed worm-detection systems are signature-

1384 0-7803-896&9/051%20.00 (C)2005 IEEE

mailto:sgchen)@cise.ufl.edu

basud. which belongs to the misuse-detection category. They
look €or specific byte sequences (called attuck signarures) that
are known to appear in the traffic generated by certain attacks.
Normally, attack signatures are manually identified by human
experts through careful analysis of the byte sequence from
captured attack traffic. A good signature should be the one that
consistently shows up in the attack traffic but rarely appears
in normal traffic.

The signature-based approaches [161, [171 have the advan-
tage over the anomaly-based systems in that they are simple
and able to operate online in real time. The problem is that
they can only detect known attacks with identified signatures
that are produced by experts. Automated signature generation
for new attacks is extremely difficult due to three reasons.
First of all, in order to create an attack signature, we must
identify and isolate the attack traffic from the legitimate
traffic. Automatic identification of new worms is of the most
importance, which is the foundation of other defense measures.
Secondly. the signature generation must be general enough to
capture all attack traffic of certain types while at the same
time specific enough to avoid the overlap with the contents
of legitimate traffic in order to reduce false-positives. There
lacks a systematic solution for this problem, which has so far
been handled in an ad-hoc way based on human judgement.
Finally, the system must be flexible enough to deal with the
polymorphism in the attack traffic. Otherwise, worms may be
programmed to slightly modify the instances of themselves
deliberately each time they replicate, thus easily fool the
defense system.

This paper attempts to address the above problems. We
design a novel double-honeypot system which is deployed in
a local network for automatic detection of worm attacks from
the Internet. The system is able to isolate the attack traffic
from he potentially huge amount of normal traffic on the
background. It not only allows us to trigger warnings but also
record the attack instances of an on-going worm epidemic.
We summarize the polymorphism techniques that a worm may
use to evade the detection by the current defense techniques. A
new type of position-aware dislribution signature (PADS) that
is capable of detecting polymorphic worms of certain types
is then discussed. The signature is a collection of position-
aware byte frequency distributions, which is more flexible than
the traditional signatures of fixed strings and more precise
than the position-unaware statistical signatures. We describe
how to match a byte sequence against the “non-conventional”
PADS. Two algorithms based on Expectation-Maximization
Cl81 and Gibbs sampling [I91 has been discussed for efficient
computation of PADS from polymorphic wonn samples. The
experiments based on variants of the MSBlaster worm are
performed. The results show that our signature-based defense
system can accurately separate new variants of the worm from
the normal background by using the PADS signature derived
from the past samples.

The rest o f the paper is organized as follows. Section I1
proposes a double-honeypot system that can detect worm
activities. Section 111 studies the worm polymorphism. Sec-

tion IV proposes a position-aware distribution signature, and
presents the algorithms for calculating such a signature and
using the signature to identify worm in a byte sequence.
Section V presents the experiment results. Section VI draws
the conclusion and discusses the future work.

I T . DOUBLE-WOSEYPOT SYSTEM

‘4. Motivation
The spread of a malicious worm is often an Internet-wide

event. The fundamental difficulty in detecting a previously un-
known worm is due to two reasons. First, the Internet consists
of a large number of autonomous systems that are managed
independently, which means a coordinated defense system
covering the whole Internet is extremely difficult to realize.
Second, it is hard to distinguish the worm activities from
the normal activities, especially during the initia! spreading
phase. Although the worm activities become apparent after a
significant number of hosts are infected, it will be too late
at that time due to the exponential growth rate of a typical
worm [SI, [91, [lo], [ll], [12]. In contrast to some existing
defense systems that require large-scale coordinated efforts, we
describe a double-honeypot system that allows an individual
autonomous system to detect the ongoing worm threat to
its servers without external assistance. Most importantly. the
system is able to detect new worms that are not seen before.

Before the architecture of our double-honeypot system is
presented, we give a brief introduction of the honeypot here.
Developed in recent years, honeypot is a monitored system
on the Internet serving the purpose of attracting and trapping
attackers attempting to penetrate the protected servers on a
network [20], [Zl]. Honeypots fall into two categories. A
high-interaction honeypot operates a real operaling system
and applications. A low-inreraction honeypot simulates only
part of the system serving as a traffic sink. In general. any
network activities observed on honeypots can be considered
as suspicious and i t is possible to capture the latest i n n -
sions based on the analysis of these activities. However,, the
information provided by the honeypots is often mixed with
normal network activities as legitimate users might access the
honeypots by mistake. Hours or even days are necessary for
experts to manually identify the existance of new worm types,
which is insufficient as a worm may have infected the whole
Internet in such a period of time.

The double-honeypot system proposed in this paper is
designed to detect new worms automatically. The novelty of
this system is its ability to distinguish worm activities from
normal network activities without the involvement of experts.
Furthermore, it is purely a local system. Its effectiveness does
not require a wide deployment, which is a great advantage
over many existing defense systems 121, [131.

The design of our system is based on the worm’s self-
replication characteristics. The nature of the worms is that an
infected host will try to find and infect more victims, which is

1385

Outbound Honeypot

Local Network

Gate Translater

Inbound Honeypot

Fig. 1. Using double-honeypt detecting Internet worms

how a worm spreads itself. Therefore, outbound connections
initiated from the compromised hosts are a common character-
istic shared by all worms. Suppose we deliberately configure
a honeypot to never initiate any outbound connections. Now if
the honeypot suddenly starts to make outbound connections, it
only means that the honeypot must be under foreign control. If
the honeypot can be compromised, it might try to compromise
the same systems on the Internet in the way it was compro-
mised, Therefore, the situation is either a real worm attack or
can be turned into a worm attack if the attacker behind the
scene chooses to do so. We shall treat the two equally as a
worm threat.

B. System Architecture

Figure 1 illustrates the double-honeypot system. It is com-
posed of two independent honeypot arrays, the inbound array
and the outboimd array. together with two address translators,
the gate translator and the internul trunslarur. A honeypot
array consisks of one or multiple honeypots, which may run on
separate physical machines or on virtual machines simulated
by the same computer [21]. Each honeypot in the array runs a
server identical to a local server to be protected. A honeypot in
the inbound (outbound) array is called an inbound (ourbound)
honqpor. Our goal is to attract a worm to hit an inbound
honeypot before it compromises the local system. When the
inbound honeypot attempts to compromise other machines by
making outbound connections, its traffic is redirected to an
outbound honeypot, which confirms the compromise of the
inbound honeypot and captures its attack traffic.

An inbound honeypot should be implemented as a high-
interaction honeypot with the purpose of accepting connec-
tions from outside world in order to be compromised by the
worms that may pose a threat to the local server. An outbound
honeypot should be implemented as a low-interaction honey-
pot so that it can remain uninfected when it records the worm
traffic.

The gate translator is implemented at the edge router betwen
the local network and the Internet. The gate translator samples
the unwanted inbound connections, and redirects the sampled
connections to inbound honeypots that run the server software
the connections attempt to access (e.g., destination ports
80/8080 for a web server). There are several ways to determine
which connections are "unwanted". The gate translator may
be configured with a list of unused addresses. Connections
to those addresses are deemed to be unwanted. It is very
common nowadays for an organization to expose only the
addresses of its public servers. The gate translator may be
configured with those publicly-accessible addresses. When a
service connection (e.g., to port 80) is not made to one of the
servers, it is unwanted and redirected to an inbound honeypot.
Suppose the size of the local address space is N and there are
h publicly-accessible servers on a particular destination port.
Typically, N >> h . For a worm that randomly scans that port,
the chance for it to hit an inbound honeypot first is fiz!', and
the chance for it to hit a server first is h , With a ratio of

, it is dmost certain that the worm will compromise the
inbound honeypot before it does any damage to a real server
within the network.

Once an inbound honeypot is compromised, it will attempt
to make outbound connections. The internal translator is
implemented at a router that separates the inbound array from
the rest of the world. It intercepts all outbound connections
from an inbound honeypot and redirects them to an outbound
honeypot of the same type, which will record and analyze the
traffic.

We give the following example to illustrate how the system
works. Suppose that the IP address space of our network
is 128.10.10.0/128. with one public web server I' to be
protected, The server's IF address is 128.10.10.1. Suppose an
attacker outside the network initiates a worm attack against
systems of type Y . The worm scans the IP address space
for victims. It is highly probable that an unused IP address,
e.g. 128.10.10.20, will be attempted before 128.10.10.1. The
gate controller redirects the packets to an inbound honeypot of
type Y , which is subsequently infected. As the compromised
honeypot participates in spreading the worm, it will reveal
itself by making outbound connections and provide the attack
traffic that will be redirected to an outbound honeypot of the
system.

We should emphasis that, the double-honeypot system is
greatly different from a typical honeypot system. A typical
system receives traffic from all kinds of sources, including
those from the normal users. It is a difficult and tedious task to
separate attack traffic from normal traffic, especially for attacks
that are not seen before. It is more than often that, only after
the damage of the new attacks is surfaced, the experts rush to
search the recorded data for the trace of attack trafiic. In our
system, when an outbound honeypot receives packets from an
inbound honeypot, it knows for sure that the packets are from
a malicious source. The outbound honeypot does not have to
face the potentially huge amount of normal background traffic
that a traditional honeypot may receive.

N - h - .

1386

111. POLYMORPHISM OF INTERNET WORMS

The double-honeypot system presented in the last section
provides a means to capture the byte sequences of previous
unknown Internet worms without manual analysis from the
experts. The byte sequences can then be used to generate
worm signatures, and future connections carrying them will
be automatically blocked. This is a great advantage over the
current systems because it can be done before new worms
make a significant damage on the network.

The attackers will try every possible way to extend the life
time of Internet worms. In order to evade the signature-based
system, a polymorphic worm may appear differently each time
i t replicates itself, This section discusses the polymorphism of
Internet worms, while Ihe next section attempts to provide a
solution against certain common polymorphism techniques.

There exist many techniques to make polymorphic worms.
One technique relies on self-encryption with a variable key.
This can be achieved by encrypting the body of the worm.
which erases both signatures and statistical characteristics of
the worm byte string. When a copy of the worm and the
decryption routine is sent to another machine, the encrypted
text is first turned into a regular worm program by the
decryption routine. The program will then be executed to
infect other victims and (possibly) damage the local system.
However, the encrypted text tends to follow a uniform byte
frequency distribution [22] , which itself is a statistical feature
that can be captured by anomaly detection based on deviation
from normal-traffic distributions [4], [l5]. Moreover, if Che
same decryption routine is always used, the byte sequence in
the decryption routine can be served as the worm signature.

A more complex method of polymorphism is IO change the
decryption routine each time a copy of the worm is sent to
another vulnerable host. This can be achieved by maintaining
several decryption routines in one worm. When the worm
tries to make a copy, only one routine is randomly selected

. and the rest routines are incorporated into the encryption
text. The number of different decryption routines is limited
by the total length of the worm. For example, consider a
buffer-overflow attack that attempts to copy malicious data to
an unprotected buffer. Over-sized malicious data may cause
severe memory corruption outside of the buffer, leading to
system crash and spoiling the compromise. Given a limited
number of decryption routines, it is possible to identify all of
them as attack signatures after enough samples of the worm
have been obtained.

Another polymorphism technique is called garbage-code
insertion. It inserts garbage instructions into the copies of
a worm. For example, a number of nop (i.e., no operation)
instructions can be inserted into different places of the worm
body, thus making it more difficult to compare the byte
sequences of two instances of the same worm. However, from
the statistical point of view, the kequencies of the garbage
instructions can differ greatly from those of normal traffic. In
that case, anomaly-detection systems 143, [15] can be used
to identify the existence of the worm. Furthermore, some

garbage instructions such as nop can be easily identified
and removed. For better obfuscated garbage, techniques of
executable analysis [23] can be used to identify and remove
those instructions that will never be executed.

The instruction-substitution technique replaces one instruc-
tion sequence with it different but equivalent sequence. Unless
the substitution is done over the enure code without compro-
mising the code integrity (which is a great challenge by itself).
it is likely that shorter signatures can be identified. The code-
transposition technique changes the order of the instructions
with the help of jumps. The excess jump instructions provide a
statistical clue, and executable-analysis techniques can help to
remove the unnecessary jump instructions. Finally, the register-
reassignment technique swaps the usage of the registers. which
causes extensive “minor” changes in the code sequence.

The space of polymorphism techniques is huge and still
growing. With the combinations of different techniques, a
cure-all solution is unlikely. The pragmatic strategy is to enrich
the pool of defense tools, with each being effective against
certain attacks. The current defense techniques fall in two main
categories. misuselsignature matching and anomaly detection.
The former matches against known patterns in the attack
uaffic. The latter matches against the slatistical distributions
of the normal traffic. We propose a new hybrid approach based
on a new type of signatures, consisting of position-aware byte
frequency distributions. Such signatures can tolerate extensive,
“local” changes as long as the “global” characteristics of the
signature remain. Good examples are polymorphism cased
by register reassignment and modest instruction Substitution.
We do not claim that such signatures are suitable for all
attacks. On the other hand, it may work with executable-
analysis techniques to characterize certain statistical patterns
that appear after garbage instructions and excess jumps are
removed.

Iv. ALGORITHMS FOR SIGNATURE DETECTION

A. Background
Most deployed defense systems against Internet worms are

signature-based. They rely on the exact matching of the packet
payload with a database of fixed signatures. Though effective
in dealing with the known attacks, they fail to detect new
or variants of the old worms, especially the polymorphic
worms whose instances can be carefully crafted to circumvent
the signatures [23]. In addition, the manual identification of
signatures may take days if not longer.

To address these problems, several anomaly-based systems
[4], [15] use the byre frequency distribution (BFD) to identify
the existence of a worm. Their basic approach is to derive a
byte frequency distribution from the normal network traffic.
When a new incoming connection is established, the payload
of the packet is examined. The byte frequency distribution of
the current connection is computed and compared with the
derived byte frequency distribution of the normal traffic. A

1387

large deviation will be deemed as suspicious. The problem is
that an intelligent attacker could easily cheat the system by
attach the worm body to a lengthy normal, legitimate session.
Since the majority of the payload is from legitimate operations,
its byte frequency distribution will not vary much from the
normal traffic. As the worm byte sequence is diluted in normal
traffic. its statistic characlers are smoothed out.

Both signature-based and anomaly-based systems have their
pros and cons. The signature-based systems work well against
the technique of attaching worm to normal traffic, but thcy are
weak against polymorphism techniques, On the other hand, the
anomaly-based systems is able to handle polymorphism only
when the worm is largely separated from the background and
does not carry too much garbage instructions that distort the
distribution.

Our system inherits the positive aspects of both signamre-
based and anomaly-based systems. It is based on a new defense
technique that is complementary to the existing ones. We
define a relaxed, inexact form of signatures so that the system
has the flexibility against certain polymorphism. The new
signature is called the posirion-aware dismribution signalure
(PADS for short). It includes a byte frequency distribution
{instead of a fixed vdue) for each position in the signature
“string”. The idea is to focus on the generic pattern of
the signature while allowing some local variation in specific
positions.

Consider a polymorphic worm with register reassignment
(Section 111). Because registers are used extensively in ex-
ecutables, swapping registers is effective against traditional
signatures. However, when a signature is expressed in position-
aware distributions, not only are the static elements in the
executable captured, but the set of likely values for the
variable elements are also captured. Hence, PADS allows a
more precise measurement of “matching”. A similar example
is instruction substitution, where the mutually replaceable
instructions (or sequences) can be represented by the position-
aware distributions.

The goal of our system is to use double honeypols to capture
the worm attack traffic, based on which PADS is derived and
used to detect inbound worm variants that are targeted at the
local systems. It provides a quick and automatic response that
complement the existing approaches involving human experts.
Based on PADS, the defense system will be able to identify
the new variant of a worm at its first occurrence, even if such
a variant has not been captured by the system previously.

ox00 0.001 0.001 0.001 0.500 0.100
ox01 0.001 0.001 0.001 ... 0.200 0.500
(3x02 0.005 0.001 0.001 ... 0.001 0.100

Oxfe 0.100 0.001 0.001 .._ 0.001 0.001
Oxff 0.001 0.700 0.700 .._ 0.001 0.001

TABLE I
AN EXAMPLE OF A PADS SIGNATURE WITH WIDTH 14’ = 10

... I.. I .I. . ..

CbE[0..2551.fp(b) = 1. We use (f ~ , f 2 , ...f W) to characterize
the probabilistic distribution of the worm, where TV is the
width of the signature in terms of the number of bytes. Let
fo(b) be the byte frequency disuibution of the legitimate traf-
fic, The PADS signature is defined as 0 = (fo, fl: f 2 , ...f w) .
which consists of a normal signature fo and an anomalorts
sigaafure (fl, f 2 , ...fw). Table I gives an example of a PADS
signature with width W = 10.

Consider a set of byte sequences S = {SI,&, ..., Sn),
where Si, 1 I i 5 n, is the byte sequence of an incoming
connection. We want to decide whether Si is a variant of the
worm by matching it against a signature 0. Let li be the.length
of Si. Let si,l, si ,2 , ..., si,Lj be the bytes of Si at position
1, 2, ..., l i , respectively. The value of each byte belongs to
[0..255]. Let seg(Si, ai) be the W-byte segment of Si starting
from position ai. The matching score of seg(Si , a i) with the
anomalous signature is defined as

W

M (Q , s ~ , Q) = n f p (S i , a . + p - i)
p = 1

which is the probability for seg(Si,ai) to occur, given the
two-dmensional distribution 8. Similarly, the matching score
of seg(Si, ai) with the normal signature is defined as

W -
b d (e , si, ai) JIO(Si,ai+p-l)

p= 1

We want to find a position ai that maximizes M (8 , Si, a i)
and minimizes x(0, Si, ai) . To quantify this goal, we com-
bine the above two scores in order to capture both the
“similarity” between seg(Si, U) and the anomalous signature,
and the “dissimilarity” between seg(Si,ai) and the normal
signature. A (0 , Si, a i) is the matching score of seg(Si, ai)
with the PADS signature.

B. Posilion-Aware Distribution Signature (PADS)

We fmt describe what is a PADS signature, then explain
how to match a byte sequence against a signature, and finally
motivate how to compute such a signature based on captured
worm sequences.

At each byte position p of a FADS signature, the proba-
bilistic byle-frequency distribution is a function f,(b), where
b E [0..255], which is the set of possible values for a byte.

The matching score of the byte sequence S, with the
signature is defined as the maximum A(@, Si, u i) among all
possible positions ai, that is,

Alternatively, we could use the logarithm of A as the score,
which makes it easier to plot our experiment results. Our final

1388

matching score of Si with the PADS signature 0 is defined
as

1 - lV+ 1 I+- 1 fp(Si ,U,4P-I) (2)
- - max CT;i;;l~g

a ,= l p = 1 fdSi, ai -k P - 1)

The W-byte segment starting from that maximizes
a(@, Si) is called the significant region of Si, which is
denoted as Ri. The matching score of the significant region
is also the matching score of the whoie byte sequence by
definition.

For any incoming byte sequence Si. if n(Q: Si) is greater
than a threshold value, a warning about a (possibly variant)
worm attack is issued. Addirional defense actions may be
carried out, e.g., rejecting the connection that carries Si. The
threshold is typically set at 0. From the definition of R,
above zero means that Si is closer to the anomalous signature
(f l , f2, ...f w); below zero means that Si is closer to the
normal signature f a .

Next we discuss how to calculate 0 based on the previously
collected instances of a worm, Suppose we have successfully
obtained a number n of variants of a worm from the double-
honeypot system. Each variant is a byte sequence with a
variable length. It contains one copy of the worm. possibly
embedded in the background of a normal byte sequence. Now
let S = {SI, S2, ...: Sn} be the set of collected worm variants
and we will reuse the notations defined previously. Our goal
is to find a signature with which the matching scores of the
worm variants are maximized. We attempt to model it as the
classical “missing data problem” in statistics and then apply
the expectation-maximization algorithm (EM) to solve it.

To begin with, we know neither the signature, which is the
underlying unknown parameter, nor the significant regions of
the variants, which are the missing data. Knowing one would
allow us to compute the other. We have just showed how
to compute the significant region of a byte sequence if the
signature 0 is know. Next we describe how to compute the
signature if the significant regions of the variants are known.

Now we compute the byte frequency distribution for each
byte position of the significant regions. At position p E E], the maximum likelihood estimation of the frequency
f p (z) . x f [O ... 25-51, is the number c (p , . -) of times that x
appears at position p of the significant regions, divided by 12.

- $ 2 &(2) = -
n.

-
One problem is that f ,(x) will be zero for those byte values

3: that never appear at position p of any significant region.
However, consider that our calculation is based on a limited
coIlection of the variants and f,(z) is only the maximum
likelihood estimation of the frequency, we are not absolutely
confident that the actual frequencies are zero unless we obtain
all variants of the wom. For better flexibility. we appty B
“pseudo-count” to the observed byte count cp,, . That is, the

-

byte frequency f,(x> is defined as

where b is a small predefined pseudo-count number.
We have established that the PADS signature and the

significant regions can lead to each other. We do not know
either of them, but we know that the significant regions are
those segments that can maximize he matching score with the
signature. This “missing data problem” can be solved by an
iterative algorithm, which first makes a guess on components
of the significant regions, computing the signature, using the
signature to compute the new components of the significant
regions, and repeating the process until convergence.

In the following, we show how to use the expectation-
maximization algorithm and the optimized Gibbs sampling
algorithm to compute the PADS signature from a collection of
worm variants captured by our double-honeypot system. We
want to stress that, though comparing the signature with the
payload of the incoming connections is online, the signature
itself is computed off-line. There is no real-time requirement.

C. E.~pectarion-Maximizalion A l g o r i t h
Expectation-Maximization (EM) [IS] is an iterative proce-

dure to obtain the maximum-likelihood parameter estimations.
Given a set of byte sequences S , we lacks the significant
regions R I , Rz, ..., Rn of SI, S,, ..., S,,, which are the missing
data in our problem. The underlying parameter 8 of our data
set is also unknown. The EM algorithm is to first calculate the
expected value of the missing data from the estimate of the
parameter. The expectation of the missing data is then used
obtain the new maximum likelihood estimate of the parameter.
The expectation step and the maximization step are iterated
until convergence after the initialization.

In OUT case, we need to calculate the expectation of the
significant region from the estimate of 8. However, for any
sequence S, with length I,, every possible position a, E
[l..l,-W+l] can be considered as a candidate of the starting
position for the significant region of S,. As is defined in (11,
the matching score for each candidate position is A(Q, S,, a,),
given estimate 8. The probability that a position a, is the
starting position of the significant region in S, is proportional
to A(@, S,, a,) 1181. That is,

Therefore, the expectation of the significant region can be
described as

I--W+1

E(R,) = ‘E’ R, x
a,=l

1389

To better understand the concept. we give a simple example
to show how to calculate the expectation of the Significant
region R, . Suppose sequence S, contains 3 hytes: 0x00,
0x02 and 0x04. The width of the signature is assumed as 2
for simplicity. There are two possible starting positions of the
significant reion R,, namely 0 and 1, in sequence S,. We
can obtain the matching scores that correspond to these two
positions given the estimate of 0. The probability that the
significant region starts ai 0 and 1 can also be calculated. We
assume Pr(0) = 0.25, Pr(1) = 0.75. Now the expectation
of the significant reigon for S, ‘is actually a position-aware
byte-frequency distribution as well. At position p = 1 of the
expected significant region. it contains 0.25 count of byte Ox00
and 0.75 count of byte 0x02. At position p = 2 of the expected
significant region, it contains 0.25 count of byte Ox02 and 0.75
count of byte 0x04. In the previous subsection, we described
how IO compute 8 when count of the byte can only be integer.
It can be easily accomodated to compute 0 when the expected
significant regions are used, where the count of the byte are
not integer. Therefore, from the expectation of the significant
region, we are able to compute the maximum likelihood of
the parameter 0.

The formal description of EM algorithm is presented in the

initialization. The starting positions al, a?, . . . I a, of the
significant regions For worm variants SI, S z , ..., S, are as-
signed randomly. They define the initial guess of the significant
regions RI , 122, R,. The maximum likelihood estimate of
the signature 0 is calculated based on the initial significant
regions.

Expectation. The new guess of the significant regions is
calculated based on the estimated PADS signature 0. We
use the expectation E (R 1) , E (&) , .+., E(RZ,) to replace the
initial significant region R I , R2, ..., Rn, based on the method
discussed above.

Maximization The new maximum likelihood estimate of
the signature (parameter) s is calculated based on the current
expected significant regions. The old estimate 0 is replaced
with the new estimate s. Refer to Section IV-€3 for how the
PADS signature is computed.

The algorithms terminates if the average matching score fl
is within (1 + E) of the previous iteration, where E is a small
predefined percentage.

Starting with a large signature width W , we run the above
algorithm to decide the signature as well as the significant
regions. If the minimum matching score of all significant
region deviates greatly from the average score. we repeat the
algorithm wirh a smaller W . This process repeats until we
reach a signature that matches well with the significant regions
of all colfected worm variants.

following:

D. Gibbs Sampling Algorithnr
One main drawback of the EM algorithm is that it may get

struck in a local maxima. There is no guarantee that the global
maxima can be reached. In order to solve the problem, many

legitimate traffic payload / I / malicious payload segment

significant region garbage payload

Variants of the plymorphc worm Fig. 2.

strategies have been proposed. One approach is to start with
multiple random parameter configurations and look for the best
among different results obtained. Another is to pre-process
the data with some other methods and choose “good” initial
configuration. In recent years, the simulated annealing 1241
approach attracted great attention. Simply speaking, each time
when the hidden data are updated, there is a small probability
that a worse case is made randomly, which provides a chance
for the algorithm to jump out of a local maxima. One example
of the simulated annealing is the Gibbs Sampling Algorithm
[19], which we will use to compute the PADS signature below,

The algorithm is initialized by assigning random starting
positions for the significant regions of the worm variants.
Then one variant is selected randomly. T h i s selected variant is
temporarily excluded from S. The signature is calculated based
on the remaining variants. After that, the starting position
for the significant region of the selected variant is updated,
according to a probabilistic distribution based on the matching
scores at different positions. Note that the chosen position may
not be the best one. The algorithm will proceed with many
iterations until a convergence criterion is met.

The detailed description of the Gibbs sampling algorithm is
given below.

Initialization. The starting positions a l , u2, ..., a, of the
significant regions for worm variants SI, S2, ..., S, are
assigned randomly.

Predictive update. One of the n. worm variants, S,, is
randomly chosen. The signature 0 is calculated based on the
other variants, S - S,.

The algorithms terminates if the average matching score is
within (1 + E) of the previous iteration, where E is a small
predefined percentage.

Sampling step, Every possible position a, f [l..l,-W+l]
is considered as a candidate for the next starting position
for the significant region of S,. The matching score for
each candidate position is A(O,S,,a,) as defined in (1).
The next starting position for the significant region of S, is
randomly selected. The probability that a position a, is chosen

1390

is proportional to A(@, &, uz) . That is,

The next iteration starts.

E. Signatirre wifh Miiltiple Separated Siring5
Thus far the signature is assumed to be a continuous string

(where each string position is associated not with a byte value
but with a byte frequency distribution). The definition can be
easily extended for a signature to contain k(> I) separated
strings, which may have different lengths. The significant
region of a byte sequence also consists of multiple separated
segments, each having a starting position and corresponding
to a specific string in the signature. The matching score
A(0,Si,ai17ai2, ...) should now be a function of a set of
stafting positions, and the significant region is defined by
the set of starting positions that maximizes the matching
score. Because it remains that the signature and the significant
regions can be computed from each other, the EM algorithm
and the Gibbs Sampling algorithm can be easily modified to
compute a signature with k strings.

V. EXPERIMENTS

The effectiveness of our algorithms in detecting polymor-
phic worms i s demonstrated by experiments. The malicious
payload of the MS Blaster worm, which is 1 .SKB long, is used
in the experiments. It exploits a vulnerability in Microsoft's
DCOM RPC interface. Upon successful execution, MS Blaster
worm attempts to retrieve a copy of the file msblast.exe
from a previously infected host [25]. In the experiments, we
artificially generate the variants of the MS Blaster worm based
on the olymorphism techniques discussed in Section 111.

S l , S2, ..., S5 in Figure 2 shows the examples of the
polymorphic worm design. Each variant of the polymorphic

- ' 'worm consists of three different types of regions. The black
regions are segments of the malicious payload in MS Blaster
worm. Garbage payloads, which are represented as the regions
with solid lines, are generated and inserted into different
locations of the malicious payloads randomly. The ratio of
the malicious payload and the garbage payload is 9:I'. In
addition to garbage payload. we preceed each variant with a
legitimaie traffic payload from a normal session, represented
by the regions with dotted lines. The length of the legitimate
traffic varies from 2KE3 to 20KB.

During the experiments. EM and Gibbs sampling algorithm
are used to identify the significant regions in different samples
of the polymorphic worm. The significant regions start at a l ,
a2, ... a5 in Figure 2. By combining the significant regions
together we obtain the PADS signature of the polymorphic

T l u s ratio is not shown proportionally in Figure 2 for better illustration.

6

5

2

1

0
0 5 10 15 20 25 30 35 40

number of per sequence iterations

Fig. 3.
Sampling algorithms.

The influence of different initial configurations to EM and Gibbs

gl
E
C

0
10 100 1000

width W of the signature

75

10

Legitimate Traffic (Gibbs)
Legitimate Traffic (EM)

Malicious Traffic (Gibbs)
Malicious Traffic (EM)

Threshold

-5
10 100 1000

width W of ~e signafure

Fig. 4.
Sampling algorithms.

The influence of different widths of the signatures to EM and Gibbs

1391

15

10

4 z 5
r,

0

-5

Gibbs -
EM

0 5000 10000 15000 20000 25000

total length of the byte sequence

Legtimate Traffic (Gibbs) +

Legitimate Traffic (EM) x

Malicious Traffic (Gibbs) *
Malicious Traffic (EM) 0

Threshold -- - - - ~~

0 5000 10000 15000 20000 25000

total length of the byte sequence

Fig. 5. The influence of different total lengths of the variants EM and Gibbs
Sampling algorithms.

worm. The signature is then used to detect new variants of
the worm from a mixture of worm connections and normal
connections.

Figure 3 presents the performance of EM and Gibbs sam-
pling algorithm with respect to iterative cycles. As is men-
tioned in Section N, during each iterative cycle EM algorithm
updates the significant regions of all variants, while Gibbs
sampling algorithm only adjusts one starting position of the
significant region from a randomly selected variant. To make a
fair comparison, we use the number of per sequence ilerutions,
which is defined as the average number of the iterations
each sequence undergoes. to count the iterative cycles during
the process. Both EM and Gibbs sampling algorithms have
been initialized randomly. Compared with EM algorithm,
Gibbs sampling algorithm can always find the global maxima
eventually, though takes a longer time. In addition to that,
Gibbs sampling algorithm will not stabilize even in global
maxima. Due to the inuinsic nature of the algorithm, there is
still a slight possibility that the start position of any sequence
can be changed to non-maximal places, thus leads to the
fluctuation of b e matching score (n) during the process of

3 000

2500
2
=j 2000
-
00
VI
rcl

.-

1500 f

2 1000

2
500

0

1.2

I

0.8

0.6

0.4

0.2

max !en of signature -

\
i

0 20 40 60 80 100
number of sample variants

n
0 20 40 60 80 100

number of sample variants

Fig. 6.
substrings.

The performance of signature-based system using longest common

the iterations.
Figure 4 and Figure 5 show the matching scores (Q) under

different signature widths and different byte-sequence lengths,
respectively, In each experiment, we generate 200 variants
of the MS Blaster worm. We use 100 of them to serve
as the training data and run iterative algorithms to identify
the PADS signature. The rest 100 variants are mixed wilh
100 legitimate traffic payloads to test the performance of the
signature. The upper figures in Figure 4 and Figure 5 show
the average Q of the signatures against the training data, the
lower figures show, the average I1 of the signatures against
the testing data. with legitimate traffic always below zero
and malicious traffic always above zero. Therefore, with a
threshold of 0, worm variants are distinctively seperated from
the legitimate traffic. Our experiment shows that our methods
are able to successfully identify the variants of the worm with
no misidentification.

Figure 4 also shows that increasing the width of the sig-
nature W will decrease the average matching score of the
signature against new variants of the worm. The reason is that
increasing the width of the signature means the significant

1392

0.1

0.08

h

8 0.06 Y
T
,b
3

4 0.04
P

0.02

0
0

0.06
9

4 0.04

D-
2

lj

I normal -

-

~

50 100 1 CO 200 250
bpc value

0.08

h

8 0.06 s
ry

0.1
worm -

0.08

-

~

0.02

0
0 50 100 1 50 200 250

byte value

Fig. 7. Thz byte frequency distributions of normal Oeft) traffic and wonn body (right) traffic.

0.1
1:l ~

0.1

0.08

x
2 0.06
8 * Q-

0.04
A

0.02

0
0 50 100 150 200 250 0

byte value

1.9 -

50 100 I50 200 2 50
byte value

Fig. 8,
bcdy is attached to a legitimate traffic payload with 9 times the length of worm body.

?he hyte frequency distributions of variants of the worm. Left: worm body is attached to an equal length legitimate traffic payload. Right: worm

region inside a variants is able to contain more normal traffic
or garbage payload and decreases the matching score. Figure
5 shows that increasing the length of the attached normal
traffic payload in the worm, which has been widely used by
some polymorphic worms to elude the anomaly-based systems,
provides no help to avoid detection in our system. The reason
is that only the best match of the significant region is used in
ow algorithm.
In comparision, we also perform experiments with some

existing methods. Figure 6 shows the results based on the
longesr cummon substrings method [ZOI. In these experiments,
we identify the longest common substrings using the worm
variants from our training data. The longest common substring
is then served as the signature to detect the worm variants in
the test data. As we can see, as the number of the training
variants increase, the length of Ihe longest common substring
decreases. As a result, whiIe the false negative ratio decreases,
the false positive ratio increases dramatically. Without the

requirement of exact matching, a FADS signature is able to
retain much more (particularly statistical) characteristics of a
polymorphic worm.

Figure 7 and Figure 8 show the position-unaware byte
frequency distributions over the entire byte sequences of the
training data. The left of Figure 7 is the byte frequency
distribution from the legitimate connection session. The right
of Figure 7 is from the payload of the MS Blaster worm. As
we can see, these two distributions are greatly different. There
should be no trouble to distinguish the malicious payload from
the normal traffic. However, if we attach the worm body to
a legitimate traffic payload, the difference is not so appreant.
As is shown In Figure 8, when we attach the worm body LO
a really long legitimate traffic, e.g., 9 times the length of the
malicious traffic (right of Figure 8). it will not be a easy task
to distinguish the variants of the worm from the payloads of
normal, legitimate connection sessions. Even i f some methods
can distinguish these two under such ratio, the attackers can

1393

certainly make the situation worse by increasing the ratio to
a very large number. Such an example further demonstrates
the importance using position-aware distribution signature in
defending against polymorphic worm attacks.

VI. CONCLUSION AND FUTURE WORK

In this paper, we provide a new defense system to delect
the attacks of malicious Internet worms. The key idea is to
capture the samples of the Internet worm using proposed
double-honeypot system before the proiected server has been
compromised. Those IP addresses that are unreachable from
the outside are used to attract and trap the attackers. The
system is especially useful in large networks where large
number of unreachable IP addresses exist.

Our system is able to defend against polymorphic worms.
After collecting a number of variants of polymorphic worm,
the system uses iterative algorithms to find the PADS signature
of the worm, which is used to detect future worm attacks
even if new variants have not been captured before. In our
experiment, a 100% accuracy has been achieved to detect the
variants of MSBlaster worm which means all malicious traffic
can be detected and all legitimate traffic can pass through the
system with no false positives.

The system is completely automatic. It requires no involve-
ment of human experts, which is typically the drawback of
the regular signature-based system. The system also tolerates
some modifications of the worm where both signature- and
anomaly-based systems may fail.

In our future work, we plan to evaluate the system in a
live environment We also need some further improvement of
our proposed iterative algorithms. For example, what should
we do to distinguish several different worms from a mixture
collection of the variants of these worms. The research in these
directions will provide a more robust and reliable system to
defend against future worm attacks.

REFERENCES
S . Staniford, V. Paxson, and N. Weaver, “How to Own the Internet
in Your Spare Time!” in Proceedings of the f l rh USENIX Securio
Symposium (Security ’2W2), San Francisco. California, USA, Aug.
2903.
D. Moore. C. Shannon, G. M. Voelker. and S . Savage, “Internet
Quarantine: Requirements far Containing Self-Propagating Code:’ in
Proceedings of lhe 22“* Anrural Jomt Conference of the IEEE Cam-
puter and Comnicut ions Societies (INFOCOM ‘20031, San Francisco,
California, USA, Apr. 2003.
S. Chen and Y. Tang, “Slowing Down Internet Worms .” in Proceeding
of the 24fh Intematioml Conference on Distributed Compuring and
System (ICDCS ’2004),, TokyoJapan, Mar. 2004.
C. Kruegel and G. Vigna, “Anomaly Detection of Weh-based Attacks,’‘
in Proceedings of the loth ACM Conference 011 Computer and Com-
muk+utiun Secunv (CCS’ZW3). Washington D.C.. USA: ACM Press,
Oct. 2033, pp. 251-261.
D. Moore. V. Paxson. S . Savage, C. Shannon, S. Stamford, and
N. Weaver. “Inside the Slammer Worm,” IEEE Magazine of Secttrio
and Privacy, pp. 33-39. July 2003.

C. Cowan. C. Pu. D. Maier. J. Walpole, P. Bakke, S . Reattie, A. Grier,
P. Wagle. Q. Zhang. and H. Hinton, “StackGuard: Automatic Adaptive
Detection and Prevention of Buffer-Overflow Attacks.” in Proceedings
Of the T t h USENIXSecun’@ Conference (Security ‘1998). San Antonro,
Texas. USA. Jan. 1998, pp. 63-78.
M. Eichin and I. Rochlis, .’With Microscops and Tweezers: An Analysis
of the Internet Virus of Novemkr 1988,” in Proceedings of the 1989
IEEE Sy?posiirm on Security wid Privacy. Oakland. California. USA,
May 1989, pp. 326344.
C . C. Zw. W. Gong. and D. Towsley. “Code Red Worm Propagation
Modeling and Analysis,“ in Proceedings of the gth .4CM Conference
on Compufer atid Communicaiions SecuriQ (CCS ‘2002). Washington,
DC. USA: ACM Press, Nov. 7002, pp. 138-147.
C. C. Zou. L. Gao. W. Gong. and D. Towsley, “Monitoring and
Early Warning for Internet Worms+” in Proceedings ofthe loth .4CM
Conferencc on Cumpurer and Communicatiofi Securic (CCS ‘2003).
Washington D.C., USA: ACM Press. Oct. 2003, pp. 19C-199.
2. Chen. L. Ciao, and K. Kwiat, “Modeling the Spread of Activz
Worms;’ in Proceedings of ?he 22nd Anniuzl Joirif Conference of clre
IEEE Conapurer and Communicatioiis Societies (NFOCOM’ 2003). San
Francisco. California, USA. Mar. 2003, pp. 1890-1900.
David Moorz and Colleen Shannon and K Claffy. “Code-Red: A C x e
Study on the Spread and Victims of an Internet Worm.” in Pmceedings
of the 2“d hiterner Measurement Workshop (IMW ‘2002). Marseille,
France, Nov. 2007. pp. 273-284.
J. 0. Kephart and S. R. White, “Directed-Graph Epidemiological Models
of Computer Viruses,” in Pmceedings of the 1991 IEEE Symposiiim on
Secitrity a d Prtvacy. Oakland, California, USA. May 1991, pp. 343-
361.
M. M. Williamson, “Throttling Viruses: Restricting P r o p ation to
Defeat Malicious Mobile Code,” in Proceeding of the lgt f .4nny/
Computer Securil?, App!icatians Conference (ACS.4C 2002), Las Vepas,
Neveda, USA, Oct. 2003.
H. Javitz and A. Valdes, “The NIDES Slatistical Component Description
and Justification:’ Computer Science Laboratory, SRI International,
Menlo Park, California, USA, Tech. Rep., 1994.
K. Wang and S . J. Stolfo, “Anomalous Payload-based Network Intrusion
Detection.’’ in 7 t h Infemtional Symposium on Recent Advances in
Intrusion Detectiun (RAID ’2004), Sophia Antipolis, French Riviera.
France, Sept. 2004.
K. Ilgun, R. Kemmerer, and P. Porras, “State Transition Analysis: A
Rule-based Intrusion Detection Approach.” IEEE Trms. Soflare Eng.,
vol. 2. pp. 181-199, 1995.
U. Lindqvist and P. Porras, “Detecting Computer and Network Msuse
Through the Production-Based Expert System Toolset E-BEST),” in
Proceedings of rhe 1999 Symposium on Security and Privacy. Oakland,
California, USA. May 1999.
C. E. Lawrence and A. A. Reilly, ”An Expectation Maximization (EM)
Algorithm for the Identification and Characterization of Common Sites
in Unaligned Biopolymer Sequences.” PROTEN!:Structitrr. Function
and Genetics, vol. 7: pp. 41-51. 1990.
C. E. Lawrence. S . E Altschul, M. S . Boguski, J. S . Liu. A. E
Keuwald, and J. C. Wootton. “Detecting Subtle Sequence Signals: A
Gibbs Sampling Strategy for Multiple Alignment,” Science, vol. 262.

C. Kreibich and I. Crowcroft, “Honeycomb Creating Intrusion Detection
Signatures Using Honeypots,” in Znd Workshop on Hol Topics in
Network3 (HotNerS-lI). Cambridge. Massachusetts, USA, Nov. 2003.
h’. Provos, “A virtual Honeypot Framework,” Center for Information
Technology Integration, University of Michigan. Ann Arbor, Michigan,
USA, Tech. Rep. CITI Technical Report 03-1: Oct. 2003.
C. Kaufman. R. Perlman. and M. Speciner. Newark Security: Privute
Communicdiun in U Public World. Upper Saddle River. NJ, USA:
F’rentice Hall, Inc.. 2002.
M. Christodorescu and S. Iha. “Static Analysis of Executables to
Detect Malicious Patterns,” in Proceedings of the 12th USENIX Securiv
Svqasium (SecuriF ’2003). Washington D.C.. USA. Aug. 2003.
S. Geman and D. Geman, “Stochastic Relaxation, Gihhs Distribution,
and the Bayesian Restoration of Images,” IEEE Trms. Potrem Anal.
Machine Intell.. vol. 6. pp. 721-741. 1984.
CERT/CC, “CERT Advisory CA-2003-20 - W3X3lasier worm” 2003.
[Online]. Available: http://www.cert.org/advisones/CA2003-2O.h~ml

pp. 208-214. Oct. 1993.

1394

