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Abstrmt- With the capability of infecting hundreds of thou- 
sands of hosts, worms represent a major threat to the Internet, 
The defense against Internet worms is largeiy an open problem. 
This paper investigates two important problems. Can a localized 
defense system detect new worms that were not seen before 
and, moreover, capture the attack packets? How to identify 
polymorphic worms from the normal background traffic? We 
have two major contributions here. The first contribution is 
the design of a novel double-honeypot system, which is able to 
automatically detect new worms and isolate the attack traffic. 
The second contribution is the proposal of a new type of position- 
aware distribution signatures (PADS). which fit in the gap be- 
tween the traditional signatures and the anomaly-based systems. 
We propose two algorithms based on Expectation-Maximization 
(EM) and Gibbs Sampling for efficient computation of PADS 
from polymorphic worm samples. The new signature is capable of 
handling certain polymorphic worms. Our experiments show that 
the algorithms accurately separate new variants of the MSBlaster 
worm from the normal-traffic background. 
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1. INTRODUCTION 

An Internet worm is a self-propagation program that au- 
tomatically replicates itself to vulnerable systems and spread 
across the Internet. It represents a huge threat to the network 
community [l], [21, [3], [4], [SI. [61, [7]. While much recent 
research concenkrates on worm propagation models C81, 191, 
[lo], [I 11, [12], the defense against worm attacks is largely 
an open problem due to the fact that worms are able to 
spread substantially faster than humans can respond. As a 
result, though worm attacks fall into the category of network 
intrusions. most intrusion detection techniques are not suitable 
with worm attacks. In most cases, the defense against the 
worm attack can only be done reactively after the damage 
has already happened. 

Some worm defense mechanisms, which are mainly rate- 
limit based [3], [131. were proposed recently trying to defend 
against aggressive worms based on their aggressive behaviors. 
Moore et al. studied the effectiveness of w o m  containment 
technologies (address blacklisting and content pltaring) and 
concluded that such systems must react in a matter of minutes 
and interdict nearly all Internet paths in order to be successful 

[2]. Williamson proposed to modify the network stack so 
that the rate of connection requests to distinct destinations is 
bounded [13]. The main problem here is that this approach 
becomes effective only after the majority of all Internet 
hosts is upgraded with the new network stack. Although the 
deployment on any host may benefit the Internet community, 
it does not provide immediate anti-worm protection to the host 
itself. This gives little incentive for an individual organization 
to upgrade their hosts without an Internet-wide coordinated 
effort, as their security depends on the same action taking by 
the rest of the Internet. In our previous work, a distributed anti- 
worm architecture (DAW) has been proposed [3]. By lightly 
restricting the connection-failure rates from worm-infected 
hosts while allowing the normal hosts to make successful 
connections at any rate, DAW is able to slows down the 
worm’s propagation rate significantly within a single ISP. 

Most existing worms that cause huge impacts so far have 
very aggressive behaviors. They try to spread the Internet at the 
highest speed. However, it is actually a less challenging work 
to deal with them becuase their aggressiveness can be easily 
identified by comparing them with normal traffic behaviors. A 
good example is the Slammer worm whose propagation has 
been largely restricted at the later stage because of the network 
failures (some networks shut down under the extreme load). 
While Slammer spread greatly faster than Code Red. it infected 
fewer machines [SI. For future worm attacks, it is conceivable 
that worms can be modified in a stealthy way in order to avoid 
the detection of rate-limit based systems mentioned above. 
The worm can slow down the propagation rate purposely and 
surreptitiously compromise a vast number of systems [2]. 

We briefly introduce the general network intrusion detection 
systems related to the worm detection here as they might give 
us some insight to design our systems on anti-worm defense, 
especially for stealthy worms. There exist several approaches 
for intrusion detection. Anomaly-based systems [41, [141, [I51 
derive the statistical features of normal traffic. Any deviation 
from the profile will be treated as suspicious. Though such 
systems can detect previously unknown attacks, they also lead 
to high false positives as the behavior of legitimate activities 
is largely unpredictable. On the other hand, misuse derection 
systems look for particular, explicit indications of attacks such 
as the pattern of malicious traffic payload. They can detect the 
existence of known worms but fail on those that are new. 

Most deployed worm-detection systems are signature- 
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basud. which belongs to the misuse-detection category. They 
look €or specific byte sequences (called attuck signarures) that 
are known to appear in the traffic generated by certain attacks. 
Normally, attack signatures are manually identified by human 
experts through careful analysis of the byte sequence from 
captured attack traffic. A good signature should be the one that 
consistently shows up in the attack traffic but rarely appears 
in normal traffic. 

The signature-based approaches [161, [171 have the advan- 
tage over the anomaly-based systems in that they are simple 
and able to operate online in real time. The problem is that 
they can only detect known attacks with identified signatures 
that are produced by experts. Automated signature generation 
for new attacks is extremely difficult due to three reasons. 
First of all, in order to create an attack signature, we must 
identify and isolate the attack traffic from the legitimate 
traffic. Automatic identification of new worms is of the most 
importance, which is the foundation of other defense measures. 
Secondly. the signature generation must be general enough to 
capture all attack traffic of certain types while at the same 
time specific enough to avoid the overlap with the contents 
of legitimate traffic in order to reduce false-positives. There 
lacks a systematic solution for this problem, which has so far 
been handled in an ad-hoc way based on human judgement. 
Finally, the system must be flexible enough to deal with the 
polymorphism in the attack traffic. Otherwise, worms may be 
programmed to slightly modify the instances of themselves 
deliberately each time they replicate, thus easily fool the 
defense system. 

This paper attempts to address the above problems. We 
design a novel double-honeypot system which is deployed in 
a local network for automatic detection of worm attacks from 
the Internet. The system is able to isolate the attack traffic 
from he potentially huge amount of normal traffic on the 
background. It not only allows us to trigger warnings but also 
record the attack instances of an on-going worm epidemic. 
We summarize the polymorphism techniques that a worm may 
use to evade the detection by the current defense techniques. A 
new type of position-aware dislribution signature (PADS) that 
is capable of detecting polymorphic worms of certain types 
is then discussed. The signature is a collection of position- 
aware byte frequency distributions, which is more flexible than 
the traditional signatures of fixed strings and more precise 
than the position-unaware statistical signatures. We describe 
how to match a byte sequence against the “non-conventional” 
PADS. Two algorithms based on Expectation-Maximization 
Cl81 and Gibbs sampling [I91 has been discussed for efficient 
computation of PADS from polymorphic wonn samples. The 
experiments based on variants of the MSBlaster worm are 
performed. The results show that our signature-based defense 
system can accurately separate new variants of the worm from 
the normal background by using the PADS signature derived 
from the past samples. 

The rest o f  the paper is organized as follows. Section I1 
proposes a double-honeypot system that can detect worm 
activities. Section 111 studies the worm polymorphism. Sec- 

tion IV proposes a position-aware distribution signature, and 
presents the algorithms for calculating such a signature and 
using the signature to identify worm in a byte sequence. 
Section V presents the experiment results. Section VI draws 
the conclusion and discusses the future work. 

I T .  DOUBLE-WOSEYPOT SYSTEM 

‘4. Motivation 
The spread of a malicious worm is often an Internet-wide 

event. The fundamental difficulty in detecting a previously un- 
known worm is due to two reasons. First, the Internet consists 
of a large number of autonomous systems that are managed 
independently, which means a coordinated defense system 
covering the whole Internet is extremely difficult to realize. 
Second, it is hard to distinguish the worm activities from 
the normal activities, especially during the initia! spreading 
phase. Although the worm activities become apparent after a 
significant number of hosts are infected, it will be too late 
at that time due to the exponential growth rate of a typical 
worm [SI, [91, [lo], [ll],  [12]. In contrast to some existing 
defense systems that require large-scale coordinated efforts, we 
describe a double-honeypot system that allows an individual 
autonomous system to detect the ongoing worm threat to 
its servers without external assistance. Most importantly. the 
system is able to detect new worms that are not seen before. 

Before the architecture of our double-honeypot system is 
presented, we give a brief introduction of the honeypot here. 
Developed in recent years, honeypot is a monitored system 
on the Internet serving the purpose of attracting and trapping 
attackers attempting to penetrate the protected servers on a 
network [20], [Zl]. Honeypots fall into two categories. A 
high-interaction honeypot operates a real operaling system 
and applications. A low-inreraction honeypot simulates only 
part of the system serving as a traffic sink. In general. any 
network activities observed on honeypots can be considered 
as suspicious and i t  is possible to capture the latest i n n -  
sions based on the analysis of these activities. However,, the 
information provided by the honeypots is often mixed with 
normal network activities as legitimate users might access the 
honeypots by mistake. Hours or even days are necessary for 
experts to manually identify the existance of new worm types, 
which is insufficient as a worm may have infected the whole 
Internet in such a period of time. 

The double-honeypot system proposed in this paper is 
designed to detect new worms automatically. The novelty of 
this system is its ability to distinguish worm activities from 
normal network activities without the involvement of experts. 
Furthermore, it is purely a local system. Its effectiveness does 
not require a wide deployment, which is a great advantage 
over many existing defense systems 121, [131. 

The design of our system is based on the worm’s self- 
replication characteristics. The nature of the worms is that an 
infected host will try to find and infect more victims, which is 
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Fig. 1. Using double-honeypt detecting Internet worms 

how a worm spreads itself. Therefore, outbound connections 
initiated from the compromised hosts are a common character- 
istic shared by all worms. Suppose we deliberately configure 
a honeypot to never initiate any outbound connections. Now if 
the honeypot suddenly starts to make outbound connections, it 
only means that the honeypot must be under foreign control. If 
the honeypot can be compromised, it might try to compromise 
the same systems on the Internet in the way it was compro- 
mised, Therefore, the situation is either a real worm attack or 
can be turned into a worm attack if the attacker behind the 
scene chooses to do so. We shall treat the two equally as a 
worm threat. 

B. System Architecture 

Figure 1 illustrates the double-honeypot system. It is com- 
posed of two independent honeypot arrays, the inbound array 
and the outboimd array. together with two address translators, 
the gate translator and the internul trunslarur. A honeypot 
array consisks of one or multiple honeypots, which may run on 
separate physical machines or on virtual machines simulated 
by the same computer [21]. Each honeypot in the array runs a 
server identical to a local server to be protected. A honeypot in 
the inbound (outbound) array is called an inbound (ourbound) 
honqpor. Our goal is to attract a worm to hit an inbound 
honeypot before it compromises the local system. When the 
inbound honeypot attempts to compromise other machines by 
making outbound connections, its traffic is redirected to an 
outbound honeypot, which confirms the compromise of the 
inbound honeypot and captures its attack traffic. 

An inbound honeypot should be implemented as a high- 
interaction honeypot with the purpose of accepting connec- 
tions from outside world in order to be compromised by the 
worms that may pose a threat to the local server. An outbound 
honeypot should be implemented as a low-interaction honey- 
pot so that it can remain uninfected when it records the worm 
traffic. 

The gate translator is implemented at the edge router betwen 
the local network and the Internet. The gate translator samples 
the unwanted inbound connections, and redirects the sampled 
connections to inbound honeypots that run the server software 
the connections attempt to access (e.g., destination ports 
80/8080 for a web server). There are several ways to determine 
which connections are "unwanted". The gate translator may 
be configured with a list of unused addresses. Connections 
to those addresses are deemed to be unwanted. It is very 
common nowadays for an organization to expose only the 
addresses of its public servers. The gate translator may be 
configured with those publicly-accessible addresses. When a 
service connection (e.g., to port 80) is not made to one of the 
servers, it is unwanted and redirected to an inbound honeypot. 
Suppose the size of the local address space is N and there are 
h publicly-accessible servers on a particular destination port. 
Typically, N >> h .  For a worm that randomly scans that port, 
the chance for it to hit an inbound honeypot first is fiz!', and 
the chance for it to hit a server first is h ,  With a ratio of 

, it is dmost certain that the worm will compromise the 
inbound honeypot before it does any damage to a real server 
within the network. 

Once an inbound honeypot is compromised, it will attempt 
to make outbound connections. The internal translator is 
implemented at a router that separates the inbound array from 
the rest of the world. It intercepts all outbound connections 
from an inbound honeypot and redirects them to an outbound 
honeypot of the same type, which will record and analyze the 
traffic. 

We give the following example to illustrate how the system 
works. Suppose that the IP address space of our network 
is 128.10.10.0/128. with one public web server I' to be 
protected, The server's IF address is 128.10.10.1. Suppose an 
attacker outside the network initiates a worm attack against 
systems of type Y .  The worm scans the IP address space 
for victims. It is highly probable that an unused IP address, 
e.g. 128.10.10.20, will be attempted before 128.10.10.1. The 
gate controller redirects the packets to an inbound honeypot of 
type Y ,  which is subsequently infected. As the compromised 
honeypot participates in spreading the worm, it will reveal 
itself by making outbound connections and provide the attack 
traffic that will be redirected to an outbound honeypot of the 
system. 

We should emphasis that, the double-honeypot system is 
greatly different from a typical honeypot system. A typical 
system receives traffic from all kinds of sources, including 
those from the normal users. It is a difficult and tedious task to 
separate attack traffic from normal traffic, especially for attacks 
that are not seen before. It is more than often that, only after 
the damage of the new attacks is surfaced, the experts rush to 
search the recorded data for the trace of attack trafiic. In our 
system, when an outbound honeypot receives packets from an 
inbound honeypot, it knows for sure that the packets are from 
a malicious source. The outbound honeypot does not have to 
face the potentially huge amount of normal background traffic 
that a traditional honeypot may receive. 

N - h  - . 
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111. POLYMORPHISM OF INTERNET WORMS 

The double-honeypot system presented in the last section 
provides a means to capture the byte sequences of previous 
unknown Internet worms without manual analysis from the 
experts. The byte sequences can then be used to generate 
worm signatures, and future connections carrying them will 
be automatically blocked. This is a great advantage over the 
current systems because it can be done before new worms 
make a significant damage on the network. 

The attackers will try every possible way to extend the life 
time of Internet worms. In order to evade the signature-based 
system, a polymorphic worm may appear differently each time 
i t  replicates itself, This section discusses the polymorphism of 
Internet worms, while Ihe next section attempts to provide a 
solution against certain common polymorphism techniques. 

There exist many techniques to make polymorphic worms. 
One technique relies on self-encryption with a variable key. 
This can be achieved by encrypting the body of the worm. 
which erases both signatures and statistical characteristics of 
the worm byte string. When a copy of the worm and the 
decryption routine is sent to another machine, the encrypted 
text is first turned into a regular worm program by the 
decryption routine. The program will then be executed to 
infect other victims and (possibly) damage the local system. 
However, the encrypted text tends to follow a uniform byte 
frequency distribution [22] ,  which itself is a statistical feature 
that can be captured by anomaly detection based on deviation 
from normal-traffic distributions [4], [l5]. Moreover, if Che 
same decryption routine is always used, the byte sequence in 
the decryption routine can be served as the worm signature. 

A more complex method of polymorphism is IO change the 
decryption routine each time a copy of the worm is sent to 
another vulnerable host. This can be achieved by maintaining 
several decryption routines in one worm. When the worm 
tries to make a copy, only one routine is randomly selected 

. and the rest routines are incorporated into the encryption 
text. The number of different decryption routines is limited 
by the total length of the worm. For example, consider a 
buffer-overflow attack that attempts to copy malicious data to 
an unprotected buffer. Over-sized malicious data may cause 
severe memory corruption outside of the buffer, leading to 
system crash and spoiling the compromise. Given a limited 
number of decryption routines, it is possible to identify all of 
them as attack signatures after enough samples of the worm 
have been obtained. 

Another polymorphism technique is called garbage-code 
insertion. It inserts garbage instructions into the copies of 
a worm. For example, a number of nop (i.e., no operation) 
instructions can be inserted into different places of the worm 
body, thus making it more difficult to compare the byte 
sequences of two instances of the same worm. However, from 
the statistical point of view, the kequencies of the garbage 
instructions can differ greatly from those of normal traffic. In 
that case, anomaly-detection systems 143, [15] can be used 
to identify the existence of the worm. Furthermore, some 

garbage instructions such as nop can be easily identified 
and removed. For better obfuscated garbage, techniques of 
executable analysis [23] can be used to identify and remove 
those instructions that will never be executed. 

The instruction-substitution technique replaces one instruc- 
tion sequence with it different but equivalent sequence. Unless 
the substitution is done over the enure code without compro- 
mising the code integrity (which is a great challenge by itself). 
it is likely that shorter signatures can be identified. The code- 
transposition technique changes the order of the instructions 
with the help of jumps. The excess jump instructions provide a 
statistical clue, and executable-analysis techniques can help to 
remove the unnecessary jump instructions. Finally, the register- 
reassignment technique swaps the usage of the registers. which 
causes extensive “minor” changes in the code sequence. 

The space of polymorphism techniques is huge and still 
growing. With the combinations of different techniques, a 
cure-all solution is unlikely. The pragmatic strategy is to enrich 
the pool of defense tools, with each being effective against 
certain attacks. The current defense techniques fall in two main 
categories. misuselsignature matching and anomaly detection. 
The former matches against known patterns in the attack 
uaffic. The latter matches against the slatistical distributions 
of the normal traffic. We propose a new hybrid approach based 
on a new type of signatures, consisting of position-aware byte 
frequency distributions. Such signatures can tolerate extensive, 
“local” changes as long as the “global” characteristics of the 
signature remain. Good examples are polymorphism cased 
by register reassignment and modest instruction Substitution. 
We do not claim that such signatures are suitable for all 
attacks. On the other hand, it may work with executable- 
analysis techniques to characterize certain statistical patterns 
that appear after garbage instructions and excess jumps are 
removed. 

Iv. ALGORITHMS FOR SIGNATURE DETECTION 

A. Background 
Most deployed defense systems against Internet worms are 

signature-based. They rely on the exact matching of the packet 
payload with a database of fixed signatures. Though effective 
in dealing with the known attacks, they fail to detect new 
or variants of the old worms, especially the polymorphic 
worms whose instances can be carefully crafted to circumvent 
the signatures [23]. In addition, the manual identification of 
signatures may take days if not longer. 

To address these problems, several anomaly-based systems 
[4], [15] use the byre frequency distribution (BFD) to identify 
the existence of a worm. Their basic approach is to derive a 
byte frequency distribution from the normal network traffic. 
When a new incoming connection is established, the payload 
of the packet is examined. The byte frequency distribution of  
the current connection is computed and compared with the 
derived byte frequency distribution of the normal traffic. A 
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large deviation will be deemed as suspicious. The problem is 
that an intelligent attacker could easily cheat the system by 
attach the worm body to a lengthy normal, legitimate session. 
Since the majority of the payload is from legitimate operations, 
its byte frequency distribution will not vary much from the 
normal traffic. As the worm byte sequence is diluted in normal 
traffic. its statistic characlers are smoothed out. 

Both signature-based and anomaly-based systems have their 
pros and cons. The signature-based systems work well against 
the technique of attaching worm to normal traffic, but thcy are 
weak against polymorphism techniques, On the other hand, the 
anomaly-based systems is able to handle polymorphism only 
when the worm is largely separated from the background and 
does not carry too much garbage instructions that distort the 
distribution. 

Our system inherits the positive aspects of both signamre- 
based and anomaly-based systems. It is based on a new defense 
technique that is complementary to the existing ones. We 
define a relaxed, inexact form of signatures so that the system 
has the flexibility against certain polymorphism. The new 
signature is called the posirion-aware dismribution signalure 
(PADS for short). It includes a byte frequency distribution 
{instead of a fixed vdue) for each position in the signature 
“string”. The idea is to focus on the generic pattern of 
the signature while allowing some local variation in specific 
positions. 

Consider a polymorphic worm with register reassignment 
(Section 111). Because registers are used extensively in ex- 
ecutables, swapping registers is effective against traditional 
signatures. However, when a signature is expressed in  position- 
aware distributions, not only are the static elements in the 
executable captured, but the set of likely values for the 
variable elements are also captured. Hence, PADS allows a 
more precise measurement of “matching”. A similar example 
is instruction substitution, where the mutually replaceable 
instructions (or sequences) can be represented by the position- 
aware distributions. 

The goal of our system is to use double honeypols to capture 
the worm attack traffic, based on which PADS is derived and 
used to detect inbound worm variants that are targeted at the 
local systems. It provides a quick and automatic response that 
complement the existing approaches involving human experts. 
Based on PADS, the defense system will be able to identify 
the new variant of a worm at its first occurrence, even if such 
a variant has not been captured by the system previously. 

ox00 0.001 0.001 0.001 0.500 0.100 
ox01 0.001 0.001 0.001 ... 0.200 0.500 
(3x02 0.005 0.001 0.001 ... 0.001 0.100 

Oxfe 0.100 0.001 0.001 .._ 0.001 0.001 
Oxff 0.001 0.700 0.700 .._ 0.001 0.001 

TABLE I 
AN EXAMPLE OF A PADS SIGNATURE WITH WIDTH 14’ = 10 

... I.. ... . . I  .I. . .. 

CbE[0..2551.fp(b) = 1. We use ( f ~ ,  f 2 ,  ...f W )  to characterize 
the probabilistic distribution of the worm, where TV is the 
width of the signature in terms of the number of bytes. Let 
fo( b )  be the byte frequency disuibution of the legitimate traf- 
fic, The PADS signature is defined as 0 = (fo, fl: f 2 ,  ...f w) .  
which consists of a normal signature fo  and an anomalorts 
sigaafure (fl,  f 2 ,  ...fw). Table I gives an example of a PADS 
signature with width W = 10. 

Consider a set of byte sequences S = {SI,&, ..., Sn), 
where Si, 1 I i 5 n, is the byte sequence of an incoming 
connection. We want to decide whether Si is a variant of the 
worm by matching it against a signature 0. Let li be the.length 
of Si. Let si,l, si ,2 ,  ..., si,Lj be the bytes of Si at position 
1, 2, ..., l i ,  respectively. The value of each byte belongs to 
[0..255]. Let seg(Si, ai)  be the W-byte segment of Si starting 
from position ai. The matching score of seg(Si ,  a i )  with the 
anomalous signature is defined as 

W 

M ( Q , s ~ , Q )  = n f p ( S i , a . + p - i )  
p =  1 

which is the probability for seg(Si,ai) to occur, given the 
two-dmensional distribution 8. Similarly, the matching score 
of seg(Si, ai) with the normal signature is defined as 

W - 
b d ( e ,  si, ai) JIO(Si,ai+p-l) 

p= 1 

We want to find a position ai that maximizes M ( 8 ,  Si, a i )  
and minimizes x(0, Si, ai) .  To quantify this goal, we com- 
bine the above two scores in order to capture both the 
“similarity” between seg(Si, U )  and the anomalous signature, 
and the “dissimilarity” between seg(Si,ai) and the normal 
signature. A ( 0 ,  Si, a i )  is the matching score of seg(Si, ai) 
with the PADS signature. 

B.  Posilion-Aware Distribution Signature (PADS) 

We fmt  describe what is a PADS signature, then explain 
how to match a byte sequence against a signature, and finally 
motivate how to compute such a signature based on captured 
worm sequences. 

At each byte position p of a FADS signature, the proba- 
bilistic byle-frequency distribution is a function f,(b), where 
b E [0..255], which is the set of possible values for a byte. 

The matching score of the byte sequence S, with the 
signature is defined as the maximum A(@, Si, u i )  among all 
possible positions ai, that is, 

Alternatively, we could use the logarithm of A as the score, 
which makes it  easier to plot our experiment results. Our final 
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matching score of Si with the PADS signature 0 is defined 
as 

1 - lV+ 1 I+- 1 fp(Si ,U,4P-I )  (2) 
- - max CT;i;;l~g 

a ,= l  p =  1 fdSi, ai -k P - 1) 

The W-byte segment starting from that maximizes 
a(@, Si) is called the significant region of Si, which is 
denoted as Ri. The matching score of the significant region 
is also the matching score of the whoie byte sequence by 
definition. 

For any incoming byte sequence Si. if n(Q: Si) is greater 
than a threshold value, a warning about a (possibly variant) 
worm attack is issued. Addirional defense actions may be 
carried out, e.g., rejecting the connection that carries Si. The 
threshold is typically set at 0. From the definition of R, 
above zero means that Si is closer to the anomalous signature 
( f l ,  f2, ...f w); below zero means that Si is closer to the 
normal signature f a .  

Next we discuss how to calculate 0 based on the previously 
collected instances of a worm, Suppose we have successfully 
obtained a number n of variants of a worm from the double- 
honeypot system. Each variant is a byte sequence with a 
variable length. It contains one copy of the worm. possibly 
embedded in the background of a normal byte sequence. Now 
let S = {SI, S2, ...: Sn} be the set of collected worm variants 
and we will reuse the notations defined previously. Our goal 
is to find a signature with which the matching scores of the 
worm variants are maximized. We attempt to model it as the 
classical “missing data problem” in statistics and then apply 
the expectation-maximization algorithm (EM) to solve it. 

To begin with, we know neither the signature, which is the 
underlying unknown parameter, nor the significant regions of 
the variants, which are the missing data. Knowing one would 
allow us to compute the other. We have just showed how 
to compute the significant region of a byte sequence if the 
signature 0 is know. Next we describe how to compute the 
signature if the significant regions of the variants are known. 

Now we compute the byte frequency distribution for each 
byte position of the significant regions. At position p E E], the maximum likelihood estimation of the frequency 
f p ( z ) .  x f [O ... 25-51, is the number c ( p , . - )  of times that x 
appears at position p of the significant regions, divided by 12. 

- $ 2  &(2) = - 
n. 

- 
One problem is that f ,(x) will be zero for those byte values 

3: that never appear at position p of any significant region. 
However, consider that our calculation is based on a limited 
coIlection of the variants and f,(z) is only the maximum 
likelihood estimation of the frequency, we are not absolutely 
confident that the actual frequencies are zero unless we obtain 
all variants of the wom. For better flexibility. we appty B 
“pseudo-count” to the observed byte count cp,, .  That is, the 

- 

byte frequency f,(x> is defined as 

where b is a small predefined pseudo-count number. 
We have established that the PADS signature and the 

significant regions can lead to each other. We do not know 
either of them, but we know that the significant regions are 
those segments that can maximize he matching score with the 
signature. This “missing data problem” can be solved by an 
iterative algorithm, which first makes a guess on components 
of the significant regions, computing the signature, using the 
signature to compute the new components of the significant 
regions, and repeating the process until convergence. 

In the following, we show how to use the expectation- 
maximization algorithm and the optimized Gibbs sampling 
algorithm to compute the PADS signature from a collection of 
worm variants captured by our double-honeypot system. We 
want to stress that, though comparing the signature with the 
payload of the incoming connections is online, the signature 
itself is computed off-line. There is no real-time requirement. 

C. E.~pectarion-Maximizalion A l g o r i t h  
Expectation-Maximization (EM) [ IS]  is an iterative proce- 

dure to obtain the maximum-likelihood parameter estimations. 
Given a set of byte sequences S ,  we lacks the significant 
regions R I ,  Rz, ..., Rn of SI, S,, ..., S,,, which are the missing 
data in our problem. The underlying parameter 8 of our data 
set is also unknown. The EM algorithm is to first calculate the 
expected value of the missing data from the estimate of the 
parameter. The expectation of the missing data is then used 
obtain the new maximum likelihood estimate of the parameter. 
The expectation step and the maximization step are iterated 
until convergence after the initialization. 

In OUT case, we need to calculate the expectation of the 
significant region from the estimate of 8. However, for any 
sequence S, with length I,, every possible position a,  E 
[l..l,-W+l] can be considered as a candidate of the starting 
position for the significant region of S,. As is defined in (11, 
the matching score for each candidate position is A(Q, S,, a,), 
given estimate 8. The probability that a position a,  is the 
starting position of the significant region in S, is proportional 
to A(@, S,, a,) 1181. That is, 

Therefore, the expectation of the significant region can be 
described as 

I--W+1 

E(R,) = ‘E’ R, x 
a,=l 
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To better understand the concept. we give a simple example 
to show how to calculate the expectation of the Significant 
region R, . Suppose sequence S, contains 3 hytes: 0x00, 
0x02 and 0x04. The width of the signature is assumed as 2 
for simplicity. There are two possible starting positions of the 
significant reion R,, namely 0 and 1, in sequence S,. We 
can obtain the matching scores that correspond to these two 
positions given the estimate of 0. The probability that the 
significant region starts ai 0 and 1 can also be calculated. We 
assume Pr(0) = 0.25, Pr(1) = 0.75. Now the expectation 
of the significant reigon for S, ‘is actually a position-aware 
byte-frequency distribution as well. At position p = 1 of the 
expected significant region. it contains 0.25 count of byte Ox00 
and 0.75 count of byte 0x02. At position p = 2 of the expected 
significant region, it contains 0.25 count of byte Ox02 and 0.75 
count of byte 0x04. In the previous subsection, we described 
how IO compute 8 when count of the byte can only be integer. 
It can be easily accomodated to compute 0 when the expected 
significant regions are used, where the count of the byte are 
not integer. Therefore, from the expectation of the significant 
region, we are able to compute the maximum likelihood of 
the parameter 0. 

The formal description of EM algorithm is presented in the 

initialization. The starting positions al,  a?, . . . I  a, of the 
significant regions For worm variants SI, S z ,  ..., S, are as- 
signed randomly. They define the initial guess of the significant 
regions RI ,  122, .... R,. The maximum likelihood estimate of 
the signature 0 is calculated based on the initial significant 
regions. 

Expectation. The new guess of the significant regions is 
calculated based on the estimated PADS signature 0. We 
use the expectation E ( R 1 ) ,  E ( & ) ,  .+., E(RZ, )  to replace the 
initial significant region R I ,  R2, ..., Rn, based on the method 
discussed above. 

Maximization The new maximum likelihood estimate of 
the signature (parameter) s is calculated based on the current 
expected significant regions. The old estimate 0 is replaced 
with the new estimate s. Refer to Section IV-€3 for how the 
PADS signature is computed. 

The algorithms terminates if the average matching score fl 
is within ( 1  + E )  of the previous iteration, where E is a small 
predefined percentage. 

Starting with a large signature width W ,  we run the above 
algorithm to decide the signature as well as the significant 
regions. If the minimum matching score of all significant 
region deviates greatly from the average score. we repeat the 
algorithm wirh a smaller W .  This process repeats until we 
reach a signature that matches well with the significant regions 
of all colfected worm variants. 

following: 

D. Gibbs Sampling Algorithnr 
One main drawback of the EM algorithm is that it may get 

struck in a local maxima. There is no guarantee that the global 
maxima can be reached. In order to solve the problem, many 

legitimate traffic payload / I / malicious payload segment 

significant region garbage payload 

Variants of the plymorphc worm Fig. 2. 

strategies have been proposed. One approach is to start with 
multiple random parameter configurations and look for the best 
among different results obtained. Another is to pre-process 
the data with some other methods and choose “good” initial 
configuration. In recent years, the simulated annealing 1241 
approach attracted great attention. Simply speaking, each time 
when the hidden data are updated, there is a small probability 
that a worse case is made randomly, which provides a chance 
for the algorithm to jump out of a local maxima. One example 
of the simulated annealing is the Gibbs Sampling Algorithm 
[19], which we will use to compute the PADS signature below, 

The algorithm is initialized by assigning random starting 
positions for the significant regions of the worm variants. 
Then one variant is selected randomly. T h i s  selected variant is 
temporarily excluded from S. The signature is calculated based 
on the remaining variants. After that, the starting position 
for the significant region of the selected variant is updated, 
according to a probabilistic distribution based on the matching 
scores at different positions. Note that the chosen position may 
not be the best one. The algorithm will proceed with many 
iterations until a convergence criterion is met. 

The detailed description of the Gibbs sampling algorithm is 
given below. 

Initialization. The starting positions a l ,  u2, ..., a, of the 
significant regions for worm variants SI, S2, ..., S, are 
assigned randomly. 

Predictive update. One of the n. worm variants, S,, is 
randomly chosen. The signature 0 is calculated based on the 
other variants, S - S,. 

The algorithms terminates if the average matching score is 
within (1 + E )  of the previous iteration, where E is a small 
predefined percentage. 

Sampling step, Every possible position a, f [l..l,-W+l] 
is considered as a candidate for the next starting position 
for the significant region of S,. The matching score for 
each candidate position is A(O,S,,a,) as defined in (1). 
The next starting position for the significant region of S, is 
randomly selected. The probability that a position a, is chosen 
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is proportional to A(@, &, uz) .  That is, 

The next iteration starts. 

E. Signatirre wifh Miiltiple Separated Siring5 
Thus far the signature is assumed to be a continuous string 

(where each string position is associated not with a byte value 
but with a byte frequency distribution). The definition can be 
easily extended for a signature to contain k(> I )  separated 
strings, which may have different lengths. The significant 
region of a byte sequence also consists of multiple separated 
segments, each having a starting position and corresponding 
to a specific string in the signature. The matching score 
A(0,Si,ai17ai2,  ...) should now be a function of a set of 
stafting positions, and the significant region is defined by 
the set of starting positions that maximizes the matching 
score. Because it remains that the signature and the significant 
regions can be computed from each other, the EM algorithm 
and the Gibbs Sampling algorithm can be easily modified to 
compute a signature with k strings. 

V. EXPERIMENTS 

The effectiveness of our algorithms in detecting polymor- 
phic worms i s  demonstrated by experiments. The malicious 
payload of the MS Blaster worm, which is 1 .SKB long, is used 
in the experiments. It exploits a vulnerability in Microsoft's 
DCOM RPC interface. Upon successful execution, MS Blaster 
worm attempts to retrieve a copy of the file msblast.exe 
from a previously infected host [25]. In the experiments, we 
artificially generate the variants of the MS Blaster worm based 
on the olymorphism techniques discussed in Section 111. 

S l ,  S2, ..., S5 in Figure 2 shows the examples of the 
polymorphic worm design. Each variant of the polymorphic 

- '  'worm consists of three different types of regions. The black 
regions are segments of the malicious payload in MS Blaster 
worm. Garbage payloads, which are represented as the regions 
with solid lines, are generated and inserted into different 
locations of the malicious payloads randomly. The ratio of 
the malicious payload and the garbage payload is 9:I'. In 
addition to garbage payload. we preceed each variant with a 
legitimaie traffic payload from a normal session, represented 
by the regions with dotted lines. The length of the legitimate 
traffic varies from 2KE3 to 20KB. 

During the experiments. EM and Gibbs sampling algorithm 
are used to identify the significant regions in different samples 
of the polymorphic worm. The significant regions start at a l ,  
a2, ... a5 in Figure 2.  By combining the significant regions 
together we obtain the PADS signature of the polymorphic 

T l u s  ratio is not shown proportionally in Figure 2 for better illustration. 
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Fig. 3. 
Sampling algorithms. 

The influence of different initial configurations to EM and Gibbs 
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Sampling algorithms. 

The influence of different widths of the signatures to EM and Gibbs 
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Fig. 5. The influence of different total lengths of the variants EM and Gibbs 
Sampling algorithms. 

worm. The signature is then used to detect new variants of 
the worm from a mixture of worm connections and normal 
connections. 

Figure 3 presents the performance of EM and Gibbs sam- 
pling algorithm with respect to iterative cycles. As is men- 
tioned in Section N, during each iterative cycle EM algorithm 
updates the significant regions of all variants, while Gibbs 
sampling algorithm only adjusts one starting position of the 
significant region from a randomly selected variant. To make a 
fair comparison, we use the number of per sequence ilerutions, 
which is defined as the average number of the iterations 
each sequence undergoes. to count the iterative cycles during 
the process. Both EM and Gibbs sampling algorithms have 
been initialized randomly. Compared with EM algorithm, 
Gibbs sampling algorithm can always find the global maxima 
eventually, though takes a longer time. In addition to that, 
Gibbs sampling algorithm will not stabilize even in global 
maxima. Due to the inuinsic nature of the algorithm, there is 
still a slight possibility that the start position of any sequence 
can be changed to non-maximal places, thus leads to the 
fluctuation of b e  matching score (n) during the process of 
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Fig. 6. 
substrings. 

The performance of signature-based system using longest common 

the iterations. 
Figure 4 and Figure 5 show the matching scores (Q) under 

different signature widths and different byte-sequence lengths, 
respectively, In each experiment, we generate 200 variants 
of the MS Blaster worm. We use 100 of them to serve 
as the training data and run iterative algorithms to identify 
the PADS signature. The rest 100 variants are mixed wilh 
100 legitimate traffic payloads to test the performance of the 
signature. The upper figures in Figure 4 and Figure 5 show 
the average Q of the signatures against the training data, the 
lower figures show, the average I1 of the signatures against 
the testing data. with legitimate traffic always below zero 
and malicious traffic always above zero. Therefore, with a 
threshold of 0, worm variants are distinctively seperated from 
the legitimate traffic. Our experiment shows that our methods 
are able to successfully identify the variants of the worm with 
no misidentification. 

Figure 4 also shows that increasing the width of the sig- 
nature W will decrease the average matching score of the 
signature against new variants of the worm. The reason is that 
increasing the width of the signature means the significant 
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bcdy is attached to a legitimate traffic payload with 9 times the length of worm body. 

?he hyte frequency distributions of variants of the worm. Left: worm body is attached to an equal length legitimate traffic payload. Right: worm 

region inside a variants is able to contain more normal traffic 
or garbage payload and decreases the matching score. Figure 
5 shows that increasing the length of the attached normal 
traffic payload in the worm, which has been widely used by 
some polymorphic worms to elude the anomaly-based systems, 
provides no help to avoid detection in our system. The reason 
is that only the best match of the significant region is used in 
ow algorithm. 
In comparision, we also perform experiments with some 

existing methods. Figure 6 shows the results based on the 
longesr cummon substrings method [ZOI. In these experiments, 
we identify the longest common substrings using the worm 
variants from our training data. The longest common substring 
is then served as the signature to detect the worm variants in 
the test data. As we can see, as the number of the training 
variants increase, the length of Ihe longest common substring 
decreases. As a result, whiIe the false negative ratio decreases, 
the false positive ratio increases dramatically. Without the 

requirement of exact matching, a FADS signature is able to 
retain much more (particularly statistical) characteristics of a 
polymorphic worm. 

Figure 7 and Figure 8 show the position-unaware byte 
frequency distributions over the entire byte sequences of the 
training data. The left of Figure 7 is the byte frequency 
distribution from the legitimate connection session. The right 
of Figure 7 is from the payload of the MS Blaster worm. As 
we can see, these two distributions are greatly different. There 
should be no trouble to distinguish the malicious payload from 
the normal traffic. However, if we attach the worm body to 
a legitimate traffic payload, the difference is not so appreant. 
As is shown In Figure 8, when we attach the worm body LO 
a really long legitimate traffic, e.g., 9 times the length of the 
malicious traffic (right of Figure 8). it will not be a easy task 
to distinguish the variants of the worm from the payloads of 
normal, legitimate connection sessions. Even i f  some methods 
can distinguish these two under such ratio, the attackers can 
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certainly make the situation worse by increasing the ratio to 
a very large number. Such an example further demonstrates 
the importance using position-aware distribution signature in 
defending against polymorphic worm attacks. 

VI. CONCLUSION AND FUTURE WORK 

In this paper, we provide a new defense system to delect 
the attacks of malicious Internet worms. The key idea is to 
capture the samples of the Internet worm using proposed 
double-honeypot system before the proiected server has been 
compromised. Those IP addresses that are unreachable from 
the outside are used to attract and trap the attackers. The 
system is especially useful in large networks where large 
number of unreachable IP addresses exist. 

Our system is able to defend against polymorphic worms. 
After collecting a number of variants of polymorphic worm, 
the system uses iterative algorithms to find the PADS signature 
of the worm, which is used to detect future worm attacks 
even if new variants have not been captured before. In our 
experiment, a 100% accuracy has been achieved to detect the 
variants of MSBlaster worm which means all malicious traffic 
can be detected and all legitimate traffic can pass through the 
system with no false positives. 

The system is completely automatic. It requires no involve- 
ment of human experts, which is typically the drawback of 
the regular signature-based system. The system also tolerates 
some modifications of the worm where both signature- and 
anomaly-based systems may fail. 

In our future work, we plan to evaluate the system in a 
live environment We also need some further improvement of 
our proposed iterative algorithms. For example, what should 
we do to distinguish several different worms from a mixture 
collection of the variants of these worms. The research in these 
directions will provide a more robust and reliable system to 
defend against future worm attacks. 
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