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Abstract—Capable of infecting hundreds of thousands of hosts, worms represent a major threat to the Internet. However, the defense
against them is still an open problem. This paper attempts to answer an important question: How can we distinguish polymorphic
worms from normal background traffic? We propose a new worm signature, called the position-aware distribution signature (PADS),
which fills the gap between traditional signatures and anomaly-based intrusion detection systems. The new signature is a collection of
position-aware byte frequency distributions. It is more flexible than the traditional signatures of fixed strings while it is more precise than
the position-unaware statistical signatures. We propose two algorithms based on Expectation-Maximization (EM) and Gibbs Sampling
to efficiently compute PADS from a set of polymorphic worm samples. We also discuss how to separate a mixture of different
polymorphic worms such that their respective PADS signatures can be calculated. We perform extensive experiments to demonstrate
the effectiveness of PADS in separating new worm variants from normal background traffic.

Index Terms—Internet security, polymorphic worms, worm detection.
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1 INTRODUCTION

AN Internet worm is a self-propagating program that
spreads across the Internet by replicating itself to

vulnerable systems. It represents a huge threat to the
network community [1], [2], [3], [4], [5], [6], [7]. Last year
alone, the Internet witnessed the Santy worm, W32/Zafi.D,
variants of W32/Sober, variants of W32/MyDoom, variants
of W32/Bagle, W32/Sasser, etc. Much of the recent research
concentrates on worm propagation models [8], [9], [10], [11],
[12]. Defense against worm attacks remains largely an open
problem. In most cases, because worms are able to spread
substantially faster than humans can respond, people
realize there is a worm attack only after the damage has
already been done.

Intrusion detection has been intensively studied in the
past decade. Anomaly-based systems [4], [13], [14] profile the
statistical features of normal traffic. Any deviation from the
profile will be treated as suspicious. Although these
systems can detect previously unknown attacks, they have
high false-positive ratios when the normal activities are
diverse and unpredictable. On the other hand, misuse
detection systems look for explicit attack indications, such
as the pattern of a malicious traffic payload. They can detect
known worms but will fail on new ones. Most widely
deployed worm detection systems are signature-based, which
puts them in the misuse-detection category. They look for
specific byte sequences (called attack signatures) that are
known to appear in the attack traffic. The signatures are
traditionally identified by human experts through careful
analysis of the byte sequence from captured attack traffic. A

good signature should consistently show up in the attack
traffic but rarely appear in the normal traffic.

The signature-based systems [15], [16] have advantages
over the anomaly-based systems due to their simplicity and
the ability to operate online in real time. The problem is that
they can only detect known attacks with identified
signatures. Generating signatures for new polymorphic
worms is extremely difficult. Worms may be programmed
to deliberately modify themselves each time they replicate
and, thus, fool the defense system. This problem has so far
been handled in an ad hoc way based on human judgment,
which cannot keep up with the quick pace of worm
mutation. To deal with polymorphic worms, the signature
generation must be general enough to capture all attack
traffic of a certain type while being specific enough to avoid
overlapping with the content of normal traffic in order to
reduce false positives.

In this paper, we summarize the polymorphism tech-
niques that a worm may use to evade detection by the
current defense systems. We then propose the position-
aware distribution signature (PADS), which is capable of
detecting polymorphic worms of certain types. The new
signature is a collection of position-aware byte frequency
distributions. It is more flexible than the traditional
signatures of fixed strings while being more precise than
the position-unaware statistical signatures. We propose two
algorithms based on Expectation-Maximization [17] and
Gibbs Sampling [18] to efficiently compute PADS from
polymorphic worm samples. We describe how to match an
incoming byte sequence against this “nonconventional”
PADS, and we perform experiments to validate the
effectiveness of this new signature. Four worms, MSBlaster,
Sasser, Sapphire, and PUD, are used in the experiments.
The results show that, by using the PADS signature derived
from the past samples, we can accurately separate new
worm variants from normal background traffic.

The rest of the paper is organized as follows: Section 2
covers related work. Section 3 studies worm polymorphism.
Section 4 proposes a position-aware distribution signature.
The algorithms for calculating such a signature are
presented in Section 5. Section 6 generalizes the signature.
Section 7 discusses how to handle multiple concurrent
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polymorphic worms. Section 8 presents the experiment
results. Section 9 draws the conclusion.

2 RELATED WORK

Much recent research on Internet worms concentrates on
propagation modeling. A classic epidemiological model of
computer viruses was proposed by Kephart and White [12].
This model was later used to analyze the propagation
behavior of Code-Red-like worms by Staniford et al. [1] and
Moore et al. [11]. Refinements were made to the model by
Zou et al. [8] and Weaver et al. [19] in order to fit with the
observed propagation data.

Chen et al. proposed a sophisticated worm propagation
model (called AAWP [10]) based on discrete times. In the
same work, the model is applied to monitor, detect, and
defend against the spread of worms under a rather simplified
setup, where a range of unused addresses monitored and a
connection made to those addresses triggers a worm alert.
The distributed early warning system by Zou et al. [9] also
monitors unused addresses for the “trend” of illegitimate
scan traffic on the Internet. There are two problems with these
approaches: First, the attackers can easily overwhelm such a
system with false positives by sending packets to those
addresses or some normal programs may scan the Internet for
research or other purposes and hit the monitored addresses.
Second, to achieve good response time, the number of unused
addresses to be monitored has to be large, but addresses are a
scarce resource in the IPv4 world and only few have the
privilege of establishing such a system. A monitor/detection
system based on used addresses will be much more attractive.
It allows more institutions or commercial companies to
participate in the quest to defeat Internet worms.

For worms that propagate among certain types of
servers, a solution is to block the servers’ outbound
connections so that the worms cannot spread among them.
This approach works only when it is implemented for all or
a vast majority of the servers on the Internet. Such an
Internet-wide effort has not been and may never be
achieved, considering that there are so many countries in
the world and home users are setting up their servers
without knowing this “good practice.” In addition, the
approach does not apply when a machine is used both as a
server and as a client.

Moore et al. studied the effectiveness of worm contain-
ment technologies (address blacklisting and content filtering)
and concluded that such systems must react in a matter of
minutes and interdict nearly all Internet paths in order to be
successful [2]. Williamson proposed modifying the network
stack so that the rate of connection requests to distinct
destinations is bounded [20], [21]. Schechter et al. [22] used
the sequential hypothesis test to detect scan sources and
proposed a credit-based algorithm for limiting the scan rate of
a host. Weaver et al. [23] developed containment algorithms
suitable for deployment with high-speed, low-cost network
hardware. The main problem of the above approaches is that
their effectiveness against worm propagation requires Inter-
net-wide deployment. Gu et al. [24] proposed a simple two-
phase local worm victim detection algorithm based on both
infection pattern and scanning pattern. Apparently, it cannot
issue a warning before some local hosts are compromised.

Honeypots [25] have gained a lot of attention recently.
Theirgoal is to attractandtrapthe attacktraffic ontheInternet.
Provos [26] designed a virtual honeypot framework to exhibit
the TCP/IP stack behavior of different operating systems.
Kreibich and Crowcroft [27] proposed the Honeycomb to

identify the worm signatures by using longest common
substrings. Dagon et al. developed HoneyStat [28] to detect
worm behaviors in small networks. The above systems either
assume that all incoming connections to the honeypot are
from worms or rely on experts for the manual worm analysis.
These restrictions greatly undermine the effectiveness of the
systems.

Kruegel and Vigna [4] discussed various ways of applying
anomaly detection in Web-based attacks. Several methods,
such as the �2-test and Markov models, were presented.
Wang and Stolfo [14] used the byte-frequency distribution of
the traffic payload to identify anomalous behavior and,
possibly, worm attacks. Autograph by Kim and Karp [29] and
EarlyBird by Singh et al. [30] used pattern-based analysis to
extract a single, contiguous, invariant string of a worm’s
payload for a signature. These methods are not effective
against sophisticated polymorphic worms. The research in
defending against polymorphic worms is in its infancy.
Christodorescu and Jha [31] discussed a variety of different
polymorphism techniques that could be used to obfuscate
malicious code. They also proposed a static analysis method
to identify malicious patterns in executables. Kolesnikov and
Lee [32] described some advanced polymorphic worms that
mutate based on normal traffic. TaintCheck by Newsome and
Song [33] generated attack signatures using information
about the specific software vulnerability being exploited.
Newsome et al. proposed Polygraph [34], which identifies the
disjoint, invariant elements in a worm’s payload and uses
these substrings as a signature. The effectiveness of the
signature depends on how much invariant a worm will carry
and how often the invariant will appear in normal traffic.
Given that the invariant can be very limited, we observe that
there is much more in a polymorphic worm that we can
exploit. Developed in parallel, the statistical signature in this
paper complements Polygraph by capturing not only the
invariant elements, but also the variant elements that follow
certain distributions.

3 POLYMORPHISM OF INTERNET WORMS

The attackers will try every possible way to extend the
lifetime of their worms. In order to evade the signature-
based system, a polymorphic worm appears to be different
each time it replicates itself. This section discusses worm
polymorphism, while the next section provides a solution
against some common polymorphism techniques.

There are many ways to make polymorphic worms. One
technique relies on self-encryption with a variable key. It
encrypts the body of a worm, which erases both the
signatures and the statistical characteristics of the worm
byte string. A copy of the worm, the decryption routine,
and the key are sent to a victim machine, where the
encrypted text is turned into a regular worm program by
the decryption routine. The program is then executed to
infect other victims. While different copies of a worm look
different if different keys are used, the encrypted text tends
to follow a uniform byte frequency distribution [35], which
itself is a statistical feature that can be captured by anomaly
detection based on its deviation from normal-traffic dis-
tributions [4], [14]. Moreover, if the same decryption routine
is always used, the byte sequence in the decryption routine
can serve as the worm signature.

A more sophisticated method of polymorphism is to
change the decryption routine each time a copy of the worm is
sent to another victim host. This can be achieved by keeping
several decryption routines in a worm. When the worm tries
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to make a copy, one routine is randomly selected and other
routines are encrypted together with the worm body. The
number of different decryption routines is limited by the total
length of the worm. For example, consider a buffer-overflow
attack that attempts to copy malicious data to an unprotected
buffer. Oversized malicious data may cause severe memory
corruption outside of the buffer, leading to system crash and
spoiling the compromise. Given a limited number of
decryption routines, it is possible to identify all of them as
attack signatures after enough samples of the worm have
been obtained.

Another polymorphism technique is called garbage-code
insertion. It inserts garbage instructions into the copies of a
worm. For example, a number of nop (i.e., no operation)
instructions can be inserted into different places of the
worm body, making it more difficult to compare the byte
sequences of two instances of the same worm.

However, from the statistics point of view, the frequen-
cies of the garbage instructions in a worm can differ greatly
from those in normal traffic. If that is the case, anomaly-
detection systems [4], [14] can be used to detect the worm.
Furthermore, some garbage instructions such as nop can be
easily identified and removed. Techniques of executable
analysis can be used to identify certain other obfuscated
garbage [31]. In the obfuscation-deobfuscation game be-
tween attackers and defenders, however, the existing
techniques of executable analysis are unlikely to identify
all obfuscated code introduced in sophisticated worms.

The instruction-substitution technique replaces one in-
struction sequence with a different but equivalent sequence.
Unless the substitution is done over the entire code without
compromising the code integrity (which is a great challenge
by itself), it is likely that shorter signatures can be identified
from the stationary portion of the worm. The code-transposi-
tion technique changes the order of the instructions with the
help of jumps. The excess jump instructions provide a
statistical clue, and executable-analysis techniques can help
to remove the unnecessary jump instructions. Finally, the
register-reassignment technique swaps the usage of the
registers, which causes extensive “minor” changes in the
code sequence.

The space of polymorphism techniques is huge and still
growing. With the combinations of different techniques, a
cure-all solution is unlikely. The pragmatic strategy is to
enrich the pool of defense tools, each being effective against
certain attacks. The current defense techniques fall in two
main categories, 1) misuse detection/signature matching and
2) anomaly detection. The former matches against the known
patterns in attack traffic. The latter matches against the
statistical distributions of normal traffic. We propose a hybrid
approach based on a new type of signature, consisting of
position-aware byte frequency distributions. The new signa-
tures can tolerate extensive, “local” changes as long as certain
“global” characteristics remain. Good examples are poly-
morphism caused by register reassignment and modest
instruction substitution. The new signatures may work with
executable-analysis techniques to characterize statistical
patterns that appear after certain garbage instructions and
unnecessary jumps are removed. However, we do not claim
that such signatures are suitable for all attacks, particularly
extremely sophisticated worms that do not carry any
position-dependent statistical features after obfuscation
transformation that cannot be deobfuscated.

4 POSITION-AWARE DISTRIBUTION SIGNATURE

(PADS)

4.1 Background and Motivation

Most deployed antivirus/worm systems are signature-
based. They rely on an exact match of the packet payload
with a database of fixed signatures. Though effective in
dealing with the known attacks, they fail to detect new or
variants of the old worms, especially polymorphic worms
whose instances can be carefully crafted to circumvent the
signatures [31]. Moreover, manually identifying the signa-
tures may take days if not longer.

To address these problems, several anomaly-based
systems [4], [14] use the byte frequency distribution (BFD) to
identify the existence of a worm. Their basic approach is to
profile the byte frequency distribution of normal network
traffic. When a new incoming connection is established, the
payload of the packets is examined. The byte frequency
distribution of the connection is computed and compared
with the distribution of normal traffic. A large deviation is
considered suspicious. The problem is that an intelligent
attacker can easily cheat the system by attaching the worm
body to a lengthy normal session. Since the majority of the
payload is from legitimate operations, its byte frequency
distribution will not vary much from the normal traffic.

Both signature-based and anomaly-based systems have
their pros and cons. The signature-based systems work well
against the technique of attaching a worm to normal traffic,
but they are weak against polymorphism. On the other
hand, the anomaly-based systems are able to handle
polymorphism only when the worm is largely separated
from the background and does not carry too much garbage
that distorts the distribution.

Our system inherits the positive aspects of both the
signature-based and anomaly-based systems. It is based on
a new defense technique that is complementary to the
existing ones. We define a relaxed, inexact form of
signatures that have flexibility against certain polymorph-
ism. The new signature is called the position-aware distribu-
tion signature (PADS for short). It has a byte frequency
distribution (instead of a fixed value) for each position in
the signature “string.” The idea is to focus on the generic
pattern of the signature while allowing some local variation.

Consider a polymorphic worm with register reassign-
ment (Section 3). Because registers are used extensively in
executables, swapping registers is effective against tradi-
tional signatures. However, when a signature is expressed
in position-aware distributions, not only are the static
elements in the executable captured, but the set of likely
values for the variable elements are also captured. Hence,
PADS allows a more precise measurement of “matching.” A
similar example is instruction substitution, where the
mutually replaceable instructions (or sequences) can be
represented by the position-aware distributions.

4.2 PADS

We first describe what a PADS signature is, then explain
how to match a byte sequence against a signature, and,
finally, motivate how to compute such a signature from
captured worm samples. How to capture worm samples
is beyond the scope of this paper. Readers are referred to
[36] for a honeypot approach and [33] for additional
discussions.

At each byte position p of a PADS signature, the byte-
frequency distribution is a function fpðbÞ, which gives the
probability for b to appear at position p, where b 2 ½0::255�,
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the set of possible values for a byte.
P

b 2 ½0...255� fpðbÞ ¼ 1. We
use ðf1; f2; . . . fW Þ to characterize the byte-frequency dis-
tribution of the worm, where W is the width of the
signature in terms of the number of bytes. Let f0ðbÞ be the
byte frequency distribution of normal traffic. The PADS
signature is defined as � ¼ ðf0; f1; f2; . . . fW Þ, which consists
of a normal signature f0 and an anomalous signature
ðf1; f2; . . . fW Þ. Table 1 gives an example of a PADS
signature with width W ¼ 10.

Consider a set of byte sequences S ¼ fS1; S2; . . . ; Sng,
where Si, 1 � i � n, is the content of an incoming connection.
We decide whether Si is a variant of the worm by matching it
against the signature �. Let li be the length of Si. Let
Si;1; Si;2; . . . ; Si;li be the bytes of Si at position 1; 2; . . . ; li,
respectively. Let segðSi; aiÞ be the W -byte segment of Si
starting from position ai. The matching score of segðSi; aiÞ
with the anomalous signature is defined as

Mð�; Si; aiÞ ¼
YW�1

p¼0

fpðSi;aiþpÞ;

which is the probability for segðSi; aiÞ to occur, given the
distribution ðf1; f2; . . . fW Þ of the worm. Similarly, the
matching score of segðSi; aiÞ with the normal signature is
defined as

Mð�; Si; aiÞ ¼
YW�1

p¼0

f0ðSi;aiþpÞ:

We want to find a position ai that maximizes Mð�; Si; aiÞ
and minimizes Mð�; Si; aiÞ. To quantify this goal, we
combine the above two scores in order to capture both the
“similarity” between segðSi; aiÞ and the anomalous signa-
ture and the “dissimilarity” between segðSi; aiÞ and the
normal signature. For this purpose, we define �ð�; Si; aiÞ as
the matching score of segðSi; aiÞ with the PADS signature:

�ð�; Si; aiÞ ¼
Mð�; Si; aiÞ
Mð�; Si; aiÞ

¼
YW�1

p¼0

fpðSi;aiþpÞ
f0ðSi;aiþpÞ

: ð1Þ

The matching score of the byte sequence Si with the
signature is defined as the maximum �ð�; Si; aiÞ among all
possible positions ai, that is,

max
lx�Wþ1

ai¼1
�ð�; Si; aiÞ:

Alternatively, we can use the logarithm of � as the score,
which makes it easier to plot our experiment results. Our
final matching score of Si with the PADS signature � is
defined as

�ð�; SiÞ ¼ max
li�Wþ1

ai¼1

1

W
logð�ð�; Si; aiÞÞ

¼ max
li�Wþ1

ai¼1

XW�1

p¼0

1

W
log

fpðSi;aiþpÞ
f0ðSi;aiþpÞ

;

ð2Þ

where 1
W serves as a normalization factor.

The significant region of Si is defined as the W -byte seg-
ment whose matching score is equal to �ð�; SiÞ. The
significant region is the segment of Si that matches best
with the PADS signature.

For any incoming byte sequence Si, if �ð�; SiÞ is greater
than a threshold value, a warning about a (possibly variant)
worm attack is issued. Additional defense actions may be
carried out, e.g., rejecting the connection that carries Si. The
threshold is typically set at 0. From the definition of �,
above zero means that Si is closer to the anomalous
signature ðf1; f2; . . . fW Þ; below zero means that Si is closer
to the normal signature f0.

Next, we discuss how to calculate � based on a set of
previously collected worm samples. Each variant is a byte
sequence with a variable length. It contains one copy of the
worm, possibly embedded within a normal byte sequence.
Now, let S ¼ fS1; S2; . . . ; Sng be the set of collected worm
variants. Our goal is to find a signature with which the
matching scores of the worm variants are maximized. We
attempt to model it as the classical “missing data problem”
in statistics and then apply the expectation-maximization
algorithm (EM) to solve it.

To begin with, we know neither the signature, which is the
unknown parameter, nor the significant regions of the
variants, which are the missing data. Knowing one would
allow us to compute the other. We have just shown how to
compute the significant region of a byte sequence if the
signature � is known. Next, we describe how to compute the
signature if the significant regions of the variants are known.

First, we compute the byte frequency distribution for
each byte position of the significant regions. At position
p 2 ½0 . . .W � 1�, the maximum likelihood estimation of the
frequency fpðbÞ, b 2 ½0 . . . 255�, is the number cðp; bÞ of times
that b appears at position p of the significant regions,
divided by n:

fpðbÞ ¼
cðp; bÞ
n

:

One problem is that fpðbÞ will be zero for those byte
values b that never appear at position p of any significant
region. Mathematically, we do not want that to happen
because it will cause the logarithm in (2) to be undefined.
We add a “pseudocount” to the observed byte count cðp; bÞ,
and the byte frequency fpðbÞ is estimated as

fpðbÞ ¼
cðp; bÞ þ d
nþ 256 � d ; ð3Þ

where d is a small predefined pseudocount number.
We have established that the PADS signature and the

significant regions can lead to each other. We do not know
either of them, but we know that the significant regions are
those segments that can maximize the matching score with
the signature. This “missing data problem” can be solved by
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an iterative algorithm, which first makes a guess on the
starting positions of the significant regions, computing the
signature, using the signature to compute the new starting
positions of the significant regions, and repeating the
process until convergence.

5 ALGORITHMS FOR SIGNATURE GENERATION

In the following, we show how to use the expectation-
maximization algorithm and the optimized Gibbs Sampling
algorithm to compute the PADS signature from a collection
of worm variants.

5.1 Expectation-Maximization Algorithm

Expectation-Maximization (EM) [17] is an iterative procedure
that obtains the maximum-likelihood parameter estimation.
Given a set S of worm variants, we lack the starting positions
a1; a2; . . . ; an of their significant regions, which are the
missing data. The PADS signature � is the unknown
parameter. To obtain both significant regions and the
signature, the EM algorithm iterates between the expectation
step and the maximization step after the initialization. The
description of the algorithm is given below.

Initialization. The starting positions a1; a2; . . . ; an of the
significant regions for worm variants S1; S2; . . . ; Sn are
assigned randomly. The maximum likelihood estimate of
the signature � is calculated based on this initial guess of
the significant regions.

Expectation. The new guess on the locations of the
significant regions is calculated based on the estimated
signature �. Specifically, the new starting position ai of the
significant region for Si is the position that maximizes the
matching score with the signature �. Namely, we seek

ai ¼ arg max
ai

�ð�; Si; aiÞ 8i 2 ½1::n�:

Maximization. By (3), the new maximum likelihood
estimate of the signature � is calculated based on the
current guess on the locations of the significant regions.

The algorithm terminates if the average matching score �
between the worm variants and the signature is within ð1� "Þ
of the previous iteration, where " is a small predefined
percentage.

Starting with a large signature width W , we run the
above algorithm to decide the signature as well as the
significant regions. If the minimum matching score of all
significant regions deviates greatly from the average score,
we repeat the algorithm with a smaller W . This process
continues until we reach a signature that matches well with
the significant regions of all collected worm variants.

5.2 Gibbs Sampling Algorithm

The main drawback of the EM algorithm is that it may get
struck in a local maxima. There is no guarantee that the
global maxima can be reached. In order to solve this
problem, many strategies have been proposed. One
approach is to try out multiple random initial configura-
tions and look for the best result. Another approach is to
preprocess the data and choose a “good” initial configura-
tion. In recent years, the simulated annealing [37] approach
has attracted great attention. Simply speaking, it allows
certain random selection of the parameter (with a small
probability moving toward a worse direction), which
provides a chance to jump out of a local maxima. One
example of simulated annealing is the Gibbs Sampling
Algorithm [18], which we will adopt for computing PADS.

The algorithm is initialized by assigning random starting
positions for the significant regions of the worm variants.
During each iteration, one variant is selected randomly. This
selectedvariant is temporarilyexcludedfromS.Thesignature
is calculated based on the remaining variants. After that, the
starting position for the significant region of the selected
variant is updated according to a probability distribution
based on the matching scores at different positions. The above
process repeats until a convergence criterion is met. The
description of the algorithm is given below.

Initialization. The starting positions a1; a2; . . . ; an of the
significant regions for worm variants S1; S2; . . . ; Sn are
assigned randomly.

Predictive Update. One of the n worm variants, Sx, is
randomly chosen. The signature � is calculated based on
the other variants, S � Sx.

Sampling. Every possible position ax 2 ½1 . . . lx �W þ 1�
is considered as a candidate for the next starting position of
the significant region of Sx. The matching score for each
candidate position is �ð�; Sx; axÞ as defined in (1). The next
starting position for the significant region of Sx is randomly
selected. The probability that a position ax is chosen is
proportional to �ð�; Sx; axÞ. That is,

PrðaxÞ ¼
�ð�; Sx; axÞPlx�Wþ1

ax¼1 �ð�; Sx; axÞ
:

Go back to the predictive update step.
The algorithm terminates if the average matching score

between the worm variants and the signature is within
ð1� "Þ of the maximum averge in the previous t iterations,
where " is a small predefined percentage.

6 MPAD WITH MULTIPLE SIGNATURES

Thus far, the PADS signature is defined as a continuous
“string” of byte frequency distributions. It identifies a single
significant region in an incoming byte sequence. This strategy
has a couple of limitations. First, a worm may include a
common segment that appears often in normal traffic. This
common segment defeats any attempt by the worm to be
polymorphic because the worm is easily identifiable by the
segment. However, it can lure our system into choosing the
common segment as the PADS signature and, consequently,
producing false positives on the normal traffic that happens
to carry that segment. Second, a polymorphic worm may have
multiple characteristic segments that all carry useful in-
formation. PADS captures the most significant one but
discards the rest, which renders it less powerful against
highly sophisticated polymorphic worms.

To address the above limitations, we propose a natural
generalization, called the multisegment position-aware dis-
tribution signature (MPAD for short), which is a set of PADS
signatures for identifying the same worm. It is denoted as
M¼ ð�1; . . . ;�kÞ, where �i, 1 � i � k, is a PADS signature.
Each PADS signature may have a different width.

To calculateM, we first use the algorithms in Section 5 to
compute a PADS signature, �1, and the significant regions for
�1. We then remove these significant regions from the worm
samples and compute the next PADS signature, �2, and the
significant regions for �2. We further remove these signifi-
cant regions and compute �3 . . . until there are no more
signatures that can produce good matching scores for all
worm samples. When an incoming byte sequence is matched
against M, it is classified as a potential worm variant only
when its matching scores with all PADS signatures are above
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zero. To reduce the matching overhead, the PADS signature
with the most diverse distribution can be used first, which
attempts to separate worm variants (with some false
positives) from the background traffic. The rest of PADS
signatures are then applied one after another to progressively
filter out the false positives.

7 MIXTURE OF POLYMORPHIC WORMS AND

CLUSTERING ALGORITHM

Until now, we have only discussed how to calculate a
PADS/MPAD signature from a collection of worm variants
that belong to the same polymorphic worm. In reality,
multiple different polymorphic worms may rage on the
Internet at the same time and the captured worm samples
may belong to different worms. We have to first partition
this mixed set into clusters, each sharing similar traffic
patterns and thus likely to come from the same worm. This
is called the cluster partitioning problem. After partitioning, a
PADS/MPAD signature is calculated for each cluster. The
signatures can then be used to identify new variants of the
worms. We describe two algorithms for the cluster
partitioning problem.

7.1 Normalized Cuts

We define a similarity metric between any two variants. A
naive definition is to first compute the byte-frequency
distributions of the two variants and then measure the
difference (e.g., KL-divergence) between them. Another
naive definition is to count the length of the longest
common substring or the combined length of the k longest
common substrings. A better definition is to compute a
PADS/MPAD signature from the two variants and then
take the combined matching score between the variants and
the signature. Our experiments will use this definition of
similarity. Consider two worm variants, Si and Sj. Suppose
PADS is used. Based on (2), the similarity between Si and Sj
can be expressed as

�ij ¼ �ð�; SiÞ þ �ð�; SjÞ;

¼ max
li�Wþ1

ai¼1

XW�1

p¼0

1

W
log

fpðSi; ai þ pÞ
f0ðSi; ai þ pÞ

þ max
lj�Wþ1

aj¼1

XW�1

p¼0

1

W
log

fpðSj; aj þ pÞ
f0ðSj; aj þ pÞ

;

ð4Þ

where � is the PADS signature calculated from Si and Sj
and W is the length of the signature.

The cluster partitioning problem can be formulated in a
graph-theoretic way. We construct a complete graph with
n nodes representing the variants S ¼ fS1; . . . ; Sng. The
edge between Si and Sj is associated with a similarity value
of �ij as defined in (4). �ii ¼ 0. Given the n� n similarity
matrix � ¼ ð�ijÞ, i, j 2 ½1::n�, we want to find such clusters
(e.g., cliques in the graph) that have large similarity values
for intracluster edges but small similarity values for
intercluster edges. Fig. 1 illustrates a simple example,
where a shorter edge means a larger similarity value. This
is a well-studied problem and a spectral clustering
algorithm called normalized cuts can be used to extract the
clusters [38], [39]. For purposes of completeness, we briefly
describe the algorithm in our context.

The normalized cuts algorithm first decomposes the
graph G into two clusters, A and B, that minimize the
following criterion:

cutðA;BÞ
assocðA;GÞ þ

cutðA;BÞ
assocðB;GÞ ;

where cutðA;BÞ is the sum of the similarity values of all

edges that have one end in A and the other end in B,

assocðA;GÞ is the sum of the similarity values of all edges

that have one end in A and the other end unrestricted, and

assocðB;GÞ is similarly defined.
A vector y is used to define the two clusters. If the

ith value of y is 1, then Si belongs to the first cluster. If it is

�1, then Si belongs to the second cluster. In addition to the

similarity matrix �, we define a degree matrix D as follows:

Dii ¼
X

j

�ij

for the diagonal elements and zero for all off-diagonal

elements.
The criterion can then be rewritten as

yT ðD��Þy
yTDy

:

Minimizing the above criterion is an integer programming

problem if y only takes discrete elements. An approxima-

tion is to treat y as a real vector [38] with positive elements

for the first cluster and negative elements for the second

cluster. It can be shown that any y satisfying the following

equation for some � value will minimize the criterion:

ðD��Þy ¼ �Dy:
Following certain transformations that we omit here, the

generalized eigenvector y correponding to the second

smallest eigenvalue is used [38]. Readers are referred to

[38] for details.
After the algorithm partitions the graph into two clusters,

we can recursively apply the algorithm to further partition

each cluster until there is no significant difference between

average intracluster similarity and average intercluster

similarity.

7.2 Expectation-Maximization (EM)

The Expectation-Maximization algorithm [17] can also be
adapted to solve the cluster partitioning problem. Starting

from k ¼ 2, we divide the set of worm variants randomly into

k clusters, compute a signature for each cluster, examine each

variant and move it to the cluster whose signature matches it

the best, recompute the signatures, examine each variant and

move it to the cluster whose signature matches it the best, . . . ,

until no variant is moved between clusters. We repeat the

above computation with an increased number ðkÞ of clusters

until at least one cluster is empty or the signatures of two

clusters are very close to each other.
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Fig. 1. Clusters.



8 EXPERIMENTS

We perform experiments to demonstrate the effectiveness of
the proposed signatures in identifying polymorphic worms.
The malicious payloads of the MS Blaster worm, W32/
Sasser worm, Sapphire worm, and Peer-to-peer UDP
Distributed Denial of Service (PUD) worm are used in the
experiments. The MS Blaster worm exploits a vulnerability
in Microsoft’s DCOM RPC interface. Upon successful
execution, the MS Blaster worm retrieves a copy of the file
msblast.exe from a previously infected host [40]. The W32/
Sasser worm exploits a buffer overflow vulnerability in the
Windows Local Security Authority Service Server (LSASS)
on TCP port 445. This vulnerability allows a remote attacker
to execute arbitrary code with system privileges [41]. The
Sapphire (also called Slammer) worm caused considerable
harm simply by overloading networks and taking database
servers out of operation. Many individual sites lost
connectivity as their access bandwidth was saturated by
the activities of the worm [42]. The PUD worm tries to
exploit the SSL vulnerability on i386 Linux machines [43].

In the experiments, we artificially generate the variants of
these worms based on some polymorphism techniques
discussed in Section 3, including instruction substitution,
garbage-code insertion, and normal-traffic embedding. For
normal-traffic streams, we use traces taken from the UF CISE
network.

Fig. 2 illustrates the polymorphic worm design with five
variants, S1, S2, . . . , and S5, whose significant regions start
at a1, a2, . . . , and a5, respectively. Each variant consists of
three different types of regions. The black regions are
segments of the malicious payload in the worm. Substitu-
tion is performed on 20 percent of the malicious payload.
Garbage code, which is represented as the white regions
with solid lines, is inserted at random locations in the
malicious payload. The default ratio of the malicious
payload to the garbage code is 1:2. In addition to garbage
code, each variant is embedded in the legitimate traffic of a
normal session, represented by the white regions with
dotted lines. The default length of the normal traffic carried
by a worm variant is between 2 KB to 20 KB. The malicious
payload is embedded at a random location in the normal
traffic carried by the worm variant. The worm variants in
our experiments have different lengths because each variant
carries a different amount of normal traffic.

The experiments are performed on a low-end DELL PC
with 2.39 GHz Pentium 4 CPU and 512 MB RAM. For all
experiments except that, in Section 8.7, one PADS signature
is generated for each worm. For the experiment in
Section 8.7, multiple PADS signatures (together called
MPAD) are generated for each worm. The default length
of a PADS signature is 10 bytes.

8.1 Convergence of Signature Generation
Algorithms

In the first experiment, 100 variants of MS Blaster worm are
generated and they are used as worm samples for signature
generation. The EM algorithm and the Gibbs Sampling
algorithm each run three times with different initial
configurations. Specifically, the initial starting points of
significant regions are randomly selected for each run.
Fig. 3a shows that the quality of the PADS signature
obtained by EM or Gibbs is improved over time. Recall that
the execution of either algorithm consists of iteration cycles
(Expectation/Maximization steps for EM and Update/
Sampling steps for Gibbs). The y axis is the average
matching score between the 100 samples and the signature
obtained so far. From the figure, the best matching score is
around 8.7, which is likely to be the global maxima. EM
stabilizes the signature quicker; the three runs stabilize after
7.6, 5.0, and 5.0 seconds of execution, respectively. However,
EM tends to settle down at a local maxima, depending on
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Fig. 2. Variants of a polymorphic worm.

Fig. 3. Convergence of EM and Gibbs.



the initial configuration. Gibbs takes more time to stabilize
the signature; the three runs stabilize after 88.4, 50.2, and
36.1 seconds, respectively. But the quality of the signature is
already comparable to that of EM after 20 seconds of
execution. Gibbs tends to find the global maxima due to its
ability of jumping out of a local maxima.

We repeat the experiment for the Sasser worm and
obtain similar results, which are shown in Fig. 3b.

8.2 Impact of Signature Width and Worm Length

In the next set of experiments, we use 100 sample variants
from each of the four worms for signature generation. We
then use 10,000 test variants from each of the four worms,
mixed with 10,000 normal-traffic streams, to test the quality
of the signature.

Fig. 4 shows the average matching score between the
100 sample variants and the signature produced by EM or
Gibbs based on these samples. Fig. 4a shows the average score
when signatures with different widths are used. Fig. 4b shows
the average score with respect to the average length of the
worm variants. Because the worm code has a fixed length, we

change the length of a variant by letting it carry a variable
amount of normal traffic.

Figs. 5, 6, 7, and 8 show the average matching scores
between the test worm variants (as well as normal-traffic
streams) and the signatures of the four worms, respectively.
The average scores for the test worm variants are always
above zero and the average scores for normal-traffic
streams are always below zero. Therefore, with a threshold
of zero, worm variants can be separated from normal traffic.
In our experiments, false positives and false negatives are
extremely rare, which will be discussed in the next section.

We have two additional observations from the above
figures. 1) Increasing the signature width will decrease the
average matching score for worm variants and normal traffic.
This is reasonable because a longer signature is harder to
match precisely by the byte sequences of worm variants or
normal traffic. 2) Increasing the length of normal traffic
carried by a worm variant, which has been widely used by
some polymorphic worms to elude the anomaly-based
systems, provides no help in avoiding detection by our PADS
approach. The reason is that our approach identifies a
significant region and only uses the significant region for
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Fig. 4. Average matching score between 100 sample variants and the signature produced by EM or Gibbs based on these samples. (a) The score

with respect to signature width. (b) The score with respect to worm length.

Fig. 5. The average matching score between test variants of Blaster and the signature produced by EM or Gibbs is above the threshold (zero), while
the average matching score between normal traffic and the signature produced by EM or Gibbs is below the threshold. (a) The score with respect to
signature width. (b) The score with respect to worm length.
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Fig. 6. The average matching score between test variants of Sasser and the signature produced by EM or Gibbs is above the threshold (zero), while
the average matching score between normal traffic and the signature produced by EM or Gibbs is below the threshold. (a) The score with respect to

signature width. (b) The score with respect to worm length.

Fig. 7. The average matching score between test variants of Sapphire and the signature produced by EM or Gibbs is above the threshold (zero),

while the average matching score between normal traffic and the signature produced by EM or Gibbs is below the threshold. (a) The score with

respect to signature width. (b) The score with respect to worm length.

Fig. 8. The average matching score between test variants of PUD and the signature produced by EM or Gibbs is above the threshold (zero), while

the average matching score between normal traffic and the signature produced by EM or Gibbs is below the threshold. (a) The score with respect to

signature width. (b) The score with respect to worm length.



signature generation or matching. The normal traffic carried
by a worm variant, no matter how much it is, will not be used
for signature generation or matching.

8.3 False Positives and False Negatives

Fig. 9 shows the false positive ratio and false negative ratio
of using the PADS signature to detect variants of the four
worms. The false positive ratio is defined as the number of
normal-traffic streams misclassified as worm variants
divided by the total number of normal-traffic streams used
in the experiment. The false negative ratio is defined as the
number of worm variants misclassified as normal traffic
divided by the total number of worm variants used in the
experiment. For all four worms, neither the false positive
ratio nor the false negative ratio exceeds 0.0003. As we can
see from the figure, the signature produced by Gibbs works
better than the signature by EM for all four worms. When
the signature width increases, the false positive ratio
decreases gradually while the false negative ratio increases
gradually. From Figs. 5, 6, 7, and 8, we know that a longer
signature will reduce the average matching score for both
worm traffic and normal traffic. It moves the average score
for worm traffic closer to the threshold but moves the
average score for normal traffic further away from the
threshold. Consequently, false negatives are more likely to
happen, but false positives are less likely to happen.

8.4 Matching Time

Our next experiment measures the amount of time it takes
to scan a certain amount of data for a signature match,

called matching time. A signature match is announced if the
matching score is above zero. How to calculate the
matching score between a byte sequence and a PADS
signature is described in Section 4.2. Fig. 10 shows the
matching time with respect to the amount of data that is
scanned. For example, when the signature width is 10 bytes,
the time it takes to scan 10 MB data is 253.1 ms on our low-
end Dell computer. It is equivalent to 316.1 Mbps, much
higher than the speed of the fast Ethernet. The performance
can certainly be improved by implementing PADS at high-
end firewalls with hardware support. Today’s high-end
firewalls (PIX and Netscreen) have reached 30 Gbps with
far more expensive functions such as encryption. If a
firewall cannot keep up with the matching load because
there are too many PADS signatures, it can choose to work
only with the most recent signatures. At the least, PADS
provides a defense option for dealing with new worm
variants that have not been fully analyzed and cannot yet be
mitigated with faster means. For older worms, faster
defense methods are likely to exist.

8.5 Comparing PADS with Existing Methods

For the purpose of comparison, we also perform experiments
with some existing methods. Fig. 11 shows the experimental
results based on the longest common substring method [27],
which first identifies the longest common substring among
the sample worm variants and then uses the substring as a
signature to match against the test variants. Based on Fig. 11a,
as the number of sample variants increases, the length of the
longest common substring decreases. A shorter signature
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Fig. 9. Both false positive ratios and false negative ratios are very small for all four worms.



increases the chance for it to appear in normal traffic.
Consequently, as the false negative ratio decreases, the false
positive ratio increases dramatically (Fig. 11b). On the
contrary, without the requirement of exact matching, a PADS
signature is able to retain many more (statistical) character-
istics of a polymorphic worm.

Now, consider the position-unaware byte frequency dis-
tributions that are used in some current systems. Fig. 12a
shows the position-unaware byte frequency distribution of
100 normal-traffic streams and Fig. 12b shows the byte
frequency distribution of the malicious payload of the MS
blaster worm. These two distributions are very different,
which seems to provide a way to detect the worm. However, if
we create a worm variant by embedding the malicious
payload in normal traffic, the combined byte frequency
distribution can be made very similar to that of normal traffic.
Fig. 13 shows the byte frequency distributions of two worm
variants whose normal traffic payloads are 1 and 9 times the
malicious payload, respectively. Fig. 13b is very similar to
Fig. 12a. Therefore, using byte frequency distributions alone
cannot handle worm variants. The proposed position-aware

distribution signature works better against polymorphic
worms.

Not surprisingly, the matching times of the above two
simple approaches are much smaller than that of PADS. In
our experiments, the time it takes to scan 10 MB data is
253.1 ms for PADS of 10 bytes, 26.4 ms for the longest
common substring signature (generated from 100 sample
variants), and 25.2 ms for the position-unaware byte-
frequency distribution signature.

8.6 Effectiveness of Normalized Cuts Algorithm

The next experiment is to evaluate the effectiveness of the
normalized cuts algorithm in solving the cluster partitioning
problem. In this experiment, 50 variants of the MS Blaster
worm with ids ½1 . . . 50� and 50 variants of the W32/Sasser
worm with ids ½51 . . . 100� are generated. The normalized cuts
algorithm is used to separate the mixed 100 variants into
clusters. The similarity matrix, as defined in Section 7.1 and
particularly by (4), is calculated by using the Gibbs Sampling
algorithm. The result is shown in Fig. 14a, where the
horizontal axes are variant ids, representing the rows i and
the columns j of the matrix, and the vertical axis is the
similarity value between variants i and j. The surface of the
plot can be roughly partitioned into three regions. The first
region (i; j 2 ½1 . . . 50�) shows the similarity values among the
set of MS Blaster worm variants. The second region
(i; j 2 ½51 . . . 100�) shows the similarity values among the set
of W32/Sasser worm variants. The remaining region shows
the similarity values between MS Blaster variants and W32/
Sasser variants. By using the normalized cuts algorithm, the
100 worm variants are separated into two clusters, one for MS
Blaster and one for W32/Sasser. The resulting y vector is
shown in Fig. 14b, where each point represents one element in
y. The variants whose values in y are below zero belong to one
cluster. The variants whose values in y are above zero belong
to the other cluster.

8.7 Effectiveness of MPAD

Our final experiment verifies the effectiveness of MPAD.
We add a common string of 50 bytes to all test worm
variants and all normal-traffic streams. As shown in Fig. 15,
if a single PADS signature is used, the false positive ratio
will be 100 percent in this scenario because the signature
will simply be the common string. However, as shown in

TANG AND CHEN: AN AUTOMATED SIGNATURE-BASED APPROACH AGAINST POLYMORPHIC INTERNET WORMS 889

Fig. 11. Performance of a signature-based system using longest common substrings.

Fig. 10. The time it takes to scan a certain amount of data for signature
match. For example, when the signature width is 10 bytes, the time it
takes to scan 10 MB of data is 253.1 ms on our low-end Dell computer. It
is equivalent to 316.1 Mbps, much higher than the speed of the fast
Ethernet.
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Fig. 14. Clustering variants using normalized cuts.

Fig. 13. Byte frequency distributions of worm variants. (a) The malicious and normal payloads carried by a worm variant have equal length. (b) The
normal payload carried by a worm variant is 9 times the malicious payload.

Fig. 12. Byte frequency distributions of (a) normal traffic and (b) worm traffic.



Fig. 16, if the MPAD signature (Section 6) is used, the false
positive ratio is driven to zero due to the use of multiple
PADS signatures. In practice, the PADS signatures that
frequently match normal traffic should be removed from
the MPAD signature. When this is done in the above
experiment, the MPAD signature will contain only one
PADS signature; those PADS signatures resulted from the
common string are removed.

9 CONCLUSION

In this paper, we make the following contributions: First, we
analyze worm polymorphism and introduce a new position-
aware distribution signature against polymorphic worms.
We propose iterative algorithms to calculate the signature
from captured worm samples. Second, the signature is
generalized to overcome some limitations. Third, algorithms
are given to solve the cluster partitioning problem when
samples from different worms are mixed together. Fourth,
extensively experiments are performed on four worms to
validate the proposed signature and its algorithms.
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