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Abstract: Data dissemination is a key problem that bottlenecks the wide applica-
tion of wireless sensor network (WSN). In this paper, a novel data dissemination
scheme−logarithmic spiral data dissemination (LSDD)−is proposed. In LSDD, data
advertisements are disseminated following a spiral-like path, which involve only a small
fraction of nodes in a sensor network. By exploiting nice features of spiral, this scheme
scales well for large sensor networks while prolonging the network lifetime. In numer-
ical analysis and simulations, we show the distinct merits of LSDD as follows: lower
dissemination cost (O(

√

n) compared to that of flooding-based schemes (O(n)), con-
trollable topology by spiral parameters, excellent scalability, and good fault tolerance.
We evaluate the extra delay caused by LSDD as a trade-off for its advantages, which
is shown to be within a tolerable range.

Keywords: Sensor Network, Spiral; Data Dissemination; Energy Efficiency;
Scalability.

Reference to this paper should be made as follows: Sun, Y., Fan, G. and Chen, S.
(2005) ‘Spiral-based data dissemination in sensor networks’, IJAHUC, special issue in
“Pervasive Computing through Networked Sensing Devices.”

Biographical notes: Yang Sun received his M.S.E.E in Telecommunications from
the University of Mississippi in 2004. He is now a Ph.D. candidate in the center for
wireless communications at the University of Mississippi. His research interests include
network traffic analysis and modeling, collaborative signal processing, self-localization,
self-clustering, data dissemination, and other issues in wireless sensor networks.

Dr. Guangbin Fan is an assistant professor in the Department of Computer and In-
formation Science at the University of Mississippi. He received his Ph.D. degree in
Computer Science from the University of Alabama in 2003. His research interests in-
clude mixed networking, mobility, security, and sensor networks. He currently serves
on the editorial board of IEEE Communications Surveys and Tutorials, and several
technical program committees of International conferences.

Shigang Chen received his Ph.D. degree in computer science from University of Illinois
at Urbana-Champaign in 1999, respectively. After graduation, he had worked with
Cisco Systems for three years before joining University of Florida as an assistant pro-
fessor in 2002. His research interests include network security, quality of service, and
sensor networks.

1



1 INTRODUCTION

With the advances of VLSI, MEMS and wireless technol-
ogy, it is practical to integrate sensor component, micro-
processor, flash ROM, RF transceiver unit and battery into
a box or a button as small as one cubic inch or even less
(Hill et al. 2000). A sensor network (Kahn et al. 1999)
is constructed with a large number of such tiny and smart
sensor nodes in an ad-hoc manner. The sensor network
has great potential to be applied in battle field surveil-
lance, forest fire monitoring, natural habitat recording to
intrusion detection, etc. One of the key problems faced by
sensor network is data dissemination: an observer needs
to spread his interests over the whole network, while a
sensor node needs to notify the observer when interested
phenomena occur. Usually, some sink nodes are deployed
in a sensor network to act as agents between observers and
sensor nodes. Thus, the problem is to find an efficient and
robust data dissemination scheme between sensor nodes
and sink nodes.

In the past decade, quite a few data dissemination
schemes have been proposed (Tilak et al. 2002). How-
ever, most solutions for data dissemination depend on the
global or local flooding to construct and maintain dissemi-
nation paths. As is well known, flooding lead to low energy
efficiency and high channel congestion, which is not pre-
ferred in a sensor network. In addition, most proposed
schemes use the local information of each sensor node to
construct the dissemination paths. That is, a sensor node
is assumed to know the location or routing information of
the neighbor nodes which lie within a limited range. How-
ever, due to the ad-hoc nature of the sensor network, the
resulting path under such assumption is suboptimal, un-
stable, and the energy consumed on path construction is
unpredictable.

In this paper, we propose an energy efficient and scal-
able data dissemination scheme, logarithmic spiral data
dissemination (LSDD), based on the local geographic in-
formation at each node as well as the logarithmic spiral ge-
ometrics. In LSDD, data advertisements are disseminated
following a spiral-like path, which simulates the natural
progression of knowledge propagation while involving only
a small fraction of nodes in a sensor network. We also pro-
pose a complementary reversed spiral searching algorithm
for queries. Compared with previous schemes, our solution
provides a more predictable and stable network topology,
and consequently reduces considerable traffic overhead on
dissemination path construction and query/response pro-
cess. Without full flooding, the channel congestion is alle-
viated a lot. This feature benefits the majority of WSNs,
in which one channel is shared by all sensor nodes. Both
numerical analysis and simulations have been conducted
in this paper. In the numerical analysis, we show that
LSDD is able to cover larger area with fewer nodes than the
flooding-based schemes, and consequently incurs much less
overhead. In addition, it is shown that the larger coverage,
the more efficient LSDD can achieve than other schemes.
We also derive the relationship between the spiral param-

eters and the dissemination ratio.
Extensive simulations have been done to evaluate the

performance of LSDD from various aspects. It is compared
with the other two data dissemination schemes: Sink Ini-
tiated Data Dissemination (SIDD) and Gossiping Based
Data Dissemination (GBDD). Note that SIDD is actually
a flooding based scheme. Besides verifying the results of
numerical analysis, our simulations also show that LSDD
outperforms SIDD and GBDD on scalability. The search
cost of LSDD increases linearly with respect to the source-
sink distance. On the contrary, the costs of SIDD and
GBDD increase exponentially in both tests. When there
are multiple sink nodes, the search cost of LSDD is also
linear with the number of sink nodes, and at least one or-
der of magnitude lower than SIDD and GBDD. On the
other hand, LSDD is very robust against unreliable sensor
nodes, which are quite common in practice. In our simu-
lation, even when 10 percent of nodes fail, LSDD achieves
a success rate higher than 90 percent on average.

In the rest of this paper, the sensor node is referred to as
any member node in a sensor network, the observer is re-
ferred to as any application, system, or human being that
queries the interested phenomena and receives the aggre-
gated/processed results from the sensor network. The sink

node is referred to as a communication unit relaying infor-
mation between observers and the sensor network, which
may be a sensor node, a base station, or a laptop carried
by an observer. The functions of a sink node include initi-
ating queries and aggregating and reporting the gathered
data. Our studies presented in this paper are based on the
following assumptions.

1. Flat plane: the sensor network is deployed in a flat
plane, where a point in that plane can be expressed
in Cartesian coordinates as (x, y) or polar coordinates
as (r, θ), where

{

x = r cos θ
y = r sin θ

2. The sensor nodes are densely deployed on a convex
area following a uniform distribution.

3. Local geographic information: Each node is assumed
to know the locations of itself and its one-hop neighbor
nodes. A sensor node can acquire the location infor-
mation from an embedded GPS-like unit or from other
reference nodes by using some location algorithm.

4. Static network topology: every sensor node is static in
the initial position, or moves within such a small area
that it can be viewed as static regarding to its effective
radio range, and its neighborhood list do not change.
As to the case considering sensor nodes mobility, we
leave it to further study.

5. Normalized query/response packet size: we assume
that all messages for query and response are aggre-
gated to the same size.
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6. Symmetric links: if a sensor node can receive messages
from another node, then it is also able to send message
to that node.

The rest of this paper is organized as follows. In Section
II, we briefly review the main proposed data dissemina-
tion schemes and protocols and summarize their advan-
tages and disadvantages. In Section III, we introduce the
logarithmic spiral data dissemination (LSDD), including
a short review of the geometrics of the logarithmic spi-
ral, the construction and maintenance of a spiral path and
the query/response procedures. In Section IV, we provide
a numerical analysis on the traffic overhead and scalabil-
ity of LSDD. In Section V, we introduce our simulation
scenarios and settings, present the simulation results, and
compare LSDD with other alternative schemes. In Section
VI, our conclusion is presented.

2 OVERVIEW OF DATA DISSEMINATION

As wireless sensor networks receive more and more at-
tention from the communication society in recent years,
many data dissemination schemes and protocols are pro-
posed. Classical flooding is the simplest and most common
method. Sink nodes look for the path to interested data
by flooding, and the sensor nodes passively wait for the
query. However, tremendous traffic overhead, due to the
ad-hoc nature of sensor networks and replies from multi-
ple sensor nodes, motivates people to search for more ef-
ficient solutions. In gossiping (Haas et al. 2002), flooding
is limited by randomly forwarding messages to one of the
neighbor nodes at each hop instead of full flooding. That
feature helps save the energy, however, could result in un-
reliable and unmanageable paths. Rumor routing (Bragin-
sky and Estrin 2002) avoids using flooding at all: a sensor
node which detects interests propagates its result along a
random path, while a sink node keeps sending its query
along random paths too. Both keep searching until their
paths meet. This scheme eliminates most disadvantages
with flooding. However, since every time only one path is
searched for one node, the total cost to establish a dissem-
ination path may still be high, especially in a network with
high node density. SPIN-1 and SPIN-2 are early content-
based data dissemination schemes proposed in Heinzelman
et al. (1999). SPIN-1 employs the meta-data to aggregate
data and reduces the redundant traffic among different sen-
sor nodes. SPIN-2 adds the energy constraint to SPIN-1.
Directed Diffusion was proposed as a data-centric approach
by Intanagonwiwat et. al. (2000), and a modified version
optimized for higher network density is presented in (In-
tanagonwiwat 2002). Directed Diffusion is similar to SPIN
in that data are named and cached in the sensor nodes
like meta-data. Multiple versions about the same data are
sent back to the sink node at low data rate, then data
are aggregated in the nodes along the multi-path, and the
best version is chosen to transfer at high data rate while
other version are discontinued. However, flooding is still

the underlying method for communications in both SPIN
and directed diffusion. In SPIN, the aggregated data will
rebroadcast as new data to the network, which also offsets
the traffic reduction by data aggregation. Both of them
have no effective ways to manage the topology of the dis-
semination paths. Therefore, those paths may be far from
optimal in global view although it may be optimal at every
hop.

Energy efficiency is another important issue for WSN,
which should be considered when designing the rout-
ing protocols or data dissemination schemes. Li et al.
(2002) proposed three heuristic algorithms to approximate
a broadcasting tree in a static sensor network by which
the broadcast energy is minimized. However, all three al-
gorithms are centralized, therefore it is not very efficient
when the resource required by information gathering is
considered. Yu et al. (2002) proposed GEAR (Geographi-
cal and Energy Aware Routing), which chooses routes de-
pending on the local knowledge of node energy and coor-
dinates. It can lower the traffic overhead by limiting the
flooding in a specific destination region, since each node is
assumed to know its own location. However, another im-
portant assumption is that the destination must be known
priori. This means GEAR cannot be used when the sink
nodes have no knowledge where the interested sensor nodes
are located, which limits the usefulness of GEAR.

Generally, any scheme depending on full flooding, local
flooding, or any other kinds of flooding will suffer the fast-
increased overhead from either the larger network size or
the higher network density. A high traffic overhead means
more energy per node spent on RF transmission, which is
not preferred in an energy-constrained system like sensor
network. It also leads to higher probability for packet colli-
sion in a wireless channel, longer delay, and more unstable
response. Without global knowledge of the whole network,
it is hard for sensor nodes and sink nodes to establish sta-
ble and optimal dissemination paths by only neighborhood
knowledge and localized algorithms. However, it is unprac-
tical to require every node in the sensor network to learn
the whole network topology, which may consume a large
amount of memory and much energy on computation and
communications.

A related work is Trajectory Based Forwarding (TBF)
(Niculescu and Nath 2003). TBF is proposed as a hybrid of
source routing and Cartesian geographic forwarding. The
authors described the general procedure of TBF, enumer-
ated the potential applications of TBF, pointed out some
possible adverse conditions for TBF, and suggested some
open issues for TBF. However, the author did not provide
any specific scheme based on a particular trajectory. Be-
sides, more numerical analysis and simulation results are
necessary to show the potential advantages of TBF.

In the next section, we introduce a novel data dissem-
ination model–the logarithmic spiral data dissemination
model (LSDD), which pursues the solution from a new
perspective. LSDD promises to achieve a better perfor-
mance on the energy efficiency, network scalability, and
data redundancy.
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3 LSDD SCHEME

Unlike all other data dissemination schemes, under LSDD,
sensor nodes forward their advertisement messages along
the path approximating a logarithmic spiral curve, while
a sink node forwards its query message along the path ap-
proximating a logarithmic spiral curve reverse to the ad-
vertisement path. As a beautiful curve, spiral exists in nat-
ural for thousands of centuries, for example, nautilus and
the pattern of sunflower seeds. There are many variants of
spiral curve, such as golden mean spiral and equiangular
spiral and so on. For LSDD, we choose the logarithmic
spiral because of its versatility as well as its succinct pa-
rameter set and definition, which is very suitable for the
resource-limited sensor nodes.

To focus on the LSDD itself, we assume that the param-
eters of the spiral are broadcasted or preprogrammed to
every sensor node in advance. When a sensor node detects
something interesting that needs to be disseminated, it ini-
tiates the spiral dissemination. It first runs the spiral path
search algorithm (SPSA) to choose the next-hop neighbor
node which fits the intended spiral path best, then sends
an advertisement message to the chosen sensor node. Be-
sides the signature of the interested phenomenon and the
location of the source node (here “source node” refers to
the sensor node which initiates a data dissemination), the
advertisement packet also includes the location and id of
the previous hop node, the spiral angle of the previous
hop node, and other parameters like TTL (Time-To-Live)
of the advertisement, the maximum hop number of the
dissemination path, etc.

When a sensor node receives an advertisement packet, it
first makes a local copy of this advertisement, then uses the
same SPSA to choose one neighbor as the next hop, and
forwards the advertisement message. In this way, the ad-
vertisement is forwarded hop by hop in the sensor network
following a spiral-like track. Such dissemination will end
when some preset condition is met, for example, there is
no neighbor node along the spiral path, the spiral reaches
the boundary, or the hop limit is reached.

The query procedure is similar to the dissemination pro-
cedure but in a reverse direction. A sink node initiates a
query, and the query follows the reverse spiral path until
it meets the dissemination spiral, or the termination con-
dition is satisfied, for example, the maximum hop num-
ber is reached, boundary is reached or there is no node
to choose. Before forwarding the query to the next-hop,
the sensor node will also broadcast a message to its neigh-
borhood to see if it meets the dissemination path of the
desired knowledge.

The source node may periodically update the informa-
tion along the spiral path, or work in a spontaneous mode
that launch the spiral dissemination whenever the inter-
ested phenomenon is detected. To avoid redundant traffic,
all sensor nodes will drop an advertisement or query packet
unless it is newer than their local copy.

For a better understanding, we review some fundamental
knowledge on the spiral geometrics in the next section.

3.1 Logarithmic Spiral

The logarithmic spiral (Archibald 1918) (also called as
Bernoulli spiral, Fibonacci spiral) was first studied by Rene
Descartes (1638). Torricelli worked on the curve indepen-
dently, and found the curve’s length. An illustration of the
logarithmic spiral is shown in Figure 1.

In a two-dimension plane under polar coordinates, a log-
arithmic spiral is defined as a curve such that:

r = aeb(θ−θ0), (1)

where the radius r is the distance from origin to the point
with angle θ, a and b are arbitrary positive constants, and
θ0 is the initial spiral angle. From equation (1), it’s simple
to show that for a point (r, θ) on the spiral specified by a
and b, given θ0 and r, the angle of the point is

θ = θ0 +
log (r/a)

b
. (2)

Under the Cartesian coordinates, equation (1) converts
to:

{

x = a cos[b(θ)]eb(θ−θ0)

y = a sin[b(θ)]eb(θ−θ0)
(3)

The reverse spiral is defined by

r = ae−b(θ−θ0). (4)

A reverse spiral is shown in Figure 2.

Figure 1: Logarithmic Spiral

Figure 2: Reversed Logarithmic Spiral
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According the above definition, the reverse logarithmic
spiral is identical with the normal logarithmic spiral except
that it turns in the opposite direction. Therefore, all prop-
erties of the reverse logarithmic spiral are similar to the
normal one, and all parameters are calculated in a similar
way as the above equations.

3.2 Spiral Path Search Algorithm

One crucial problem in the spiral dissemination is how ev-
ery sensor node in the dissemination path finds the next
hop so that the whole path approaches a spiral curve given
the parameters of the spiral, the location information of it-
self and its first-hop neighbor nodes. Here we provide a lo-
calized heuristic employing the linear programming (Win-
ston 1993) to solve this problem.

This problem can be formally stated as: at any sensor
node known as the current hop of a spiral dissemination
path, how to find the sensor node for the next hop along the
same path within the one-hop neighborhood? Note that
“current node” is referred to as the node for the current
hop, “previous node” is referred to as the node for the
previous hop, and “next node” is referred to as the node
for the next hop. Assume that the current node knows
the locations of all its one-hop neighbor nodes including
the previous node, the parameters of the spiral and the
coordinates of the original node, which are forwarded by
the previous node. An illustration of this problem is shown
in Figure 3. Let Pi denote the sensor node for the ith

PSfrag replacements

ri: radius of the ith node
θ: spiral angle increment
di: distance between the hop node
and the ideal spiral
hi: hop from the ith node to
the (i + 1)th node
S: spiral path

di

di−1

hi

hi−1

O

Pi

Pi−1

Pi+1

ri

ri+1

S

θ

Figure 3: Spiral Dissemination Path Estimation

hop in a spiral dissemination path, and P j
i denote the jth

one-hop neighbor node. Suppose that there are totally
N one-hop neighbor nodes, the neighborhood set can be
written as Neighbori = {P j

i |j = 1, 2 . . . , N}. Let R(·) be
a function to return the distance between a sensor node
and the original node, SPA(·) be a function to return the
spiral angle of a node given the original node, SPR(·) be
a function to return the spiral radius of an angle, and D(·)
be a function to return the distance from a node to the
point on a ideal spiral which corresponds the node’s spiral
angle, where the spiral starts from original node. Note
that the SPR(·) is the same as equation (1), and SPA(·)

is based on equation (2), and

D(x) = ‖SPR(SPA(x)) −R(x)‖,

where x denotes a node. The difference of the spiral angles
of two successive nodes indicates how much the spiral path
advances, and the distance from a node to the closest point
on the spiral shows how much the path approximates the
ideal spiral. Let Ka denote the weight on the spiral angle
and Kd denote the weight on the distance, where both Ka

and Kd are arbitrary constants.
This path search problem at ith hop can be formulated

to an linear programming (LP1) as follows:

Max
N

∑

j=1

xj(kaSPA(P j
i ) +

kd

D(P j
i )

)

subject to

∑N

j=1 xj = 1. (a)

xj =

{

1 if P j
i is chosen

0 else
j = 1, 2, . . . , N. (b)

xj ≤ I(SPA(P j
i ) > SPA(Pi)),

where I(·) is the indicator function (c)

In the above formulating, the weighted sum of the interval
spiral angle and the distance to the ideal spiral is used as
the cost function. Another linear programming (LP2) can
be formulated by changing the cost function to the ratio
of the above two terms. That is, the objective in LP2 can
be written as

Max

N
∑

j=1

xj(
SPA(Pi)

D(P j
i )

)

subject to

∑N

j=1 xj = 1. (a)

xj =

{

1 if P j
i is chosen

0 else
j = 1, 2, . . . , N. (b)

xj ≤ I(SPA(P j
i ) > SPA(Pi)),

where I(·) is the indicator function (c)

In both of the LP1 and LP2, constraint (c) filters out all
the neighbor nodes with spiral angle less than the current
node, and constraint (a) and (b) limit that only one node
can be chosen. In the cost function, we make a trade-off
between the path advance and the spiral approximation,
and this trade-off is adjustable in LP1 by changing the
values of Ka and Kd. Our simulation shows that both
LP1 and LP2 work very well. Since there is little difference
between the paths found by LP1 and LP2, we choose LP1
for SPSA and fix the weight values as Ka = 1 and Kd = 2.
Figure 4 shows an sample path found by SPSA, and Figure
5 shows an sample path with boundary in a limited area ,
which is found by an extension of SPSA (ESPSA).
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3.3 Reverse Spiral Search Procedure

As stated before, the reverse spiral is used for the sink
node to spread the query packet across the whole sensor
network. Before a sink node initiates a query, it uses the re-
verse spiral path searching algorithm (RSPSA) to choose a
neighbor node which fits the reverse spiral path best. Then
it starts a query by sending a query packet to the chosen
sensor node. A query packet includes the location of the
sink node and the query message, and the parameters of
the reverse spiral, and the location of the previous hop
node. After receiving a query packet, a sensor node will
first broadcast this query to all its neighbor nodes to see
if any of them has the wanted information. If there is no
reply by timeout, the sensor node makes a local copy of the
query and forwards the query hop by hop by using RSPSA.
Otherwise, if there is some reply before timeout, then the
location of the answering node and the answer is forwarded
back to the sink node by greedy geographical forwarding.
The answer may include the location of the source node
and the signature of the interested phenomena. If the sink
node needs more data from the source node, then it may es-
tablish a data route to the source node directly by greedy
geographical forwarding. The query will go on until the
reverse spiral meets the dissemination spiral, or the ter-
mination condition is satisfied, for example, the maximum
hop number or the boundary is reached. Figure 6 shows
an illustration of such procedure. In our scheme, the dis-

0 2 4 6 8 10 12 14 16 18 20
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10
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16

18

20
Spiral Search Scheme

Sensor Nodes
Ideal Spiral
Dissemination Spiral
Search Spiral
Data Route

Source
 Node 

Sink Node  

Figure 6: Reverse Spiral Search Procedure

semination path always follows the spiral curve, while the
query path always follows the reverse spiral curve. Such
setting guarantees that the query path and the dissemina-
tion path must meet each other at some point quickly. The
dissemination path found by ESPSA makes sure that any
query path initiated within the sensor network will success.

The spiral dissemination achieves the high energy effi-
ciency and low traffic overhead at the price of relatively
long delay and blind area inside the spiral path. There-
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fore, LSDD is not suitable for time-urgent applications.
However, LSDD is versatile in that: 1)by adjusting b, the
percentage of blind area is under control. Two extreme
cases are a straight line (b→ ∞) and full flooding (b→ 0);
2)by incrementing θ0 in successive disseminations, a spi-
ral path can sweep the whole coverage over a controllable
period and leave no blind area.

4 LSDD CHARACTERIZATION

In this section, we provide a brief numerical analysis on
the performance of LSDD. Here we define the dissemina-
tion cost of a scheme as the number of involved nodes, and
the dissemination ratio as the number of involved nodes to
the number of all nodes in a covered area. Given the spi-
ral parameters are fixed, we showed that the dissemination
cost of LSDD is in the order of O(

√
n) while that of flood-

ing is in the order of O(n), where n is the number of nodes
in the covered area. We also derived the dissemination ra-
tio of LSDD as a function of the spiral parameter b. Given
the fact that all nodes get involved in a flooding-based dis-
semination, this ratio also approximates the ratio of dis-
semination costs of LSDD and flooding. Finally, we derive
the ratio of dissemination radii of LSDD and flooding as a
function of b. We found that LSDD and flooding have the
same dissemination radius when b = 0, and LSDD reaches
the longer distance than flooding as b increases given the
number of covered nodes is same. Combining the above re-
sults, we notice that as b increases, both the dissemination
cost and radius increase. In order to achieve an efficient
dissemination, we have to make a trade-off between these
two index by carefully choosing b. The issue of spiral pa-
rameter optimization is out of the scope of this paper, and
we leave it for further research. In this paper, we choose
a = 0.1 and b = 0.2 in our simulations, which is concluded
empirically from extensive simulations.

There are two important properties owned by the log-
arithmic spiral. First, the changing rate of the radius is
constant.

dr

dθ
=
daebθ

dθ
= abebθ = b · aebθ = br. (5)

Second, the angle between the tangent and radial line at
the point (r, θ) is calculated as

ψ = tan−1(
r

dr/dθ
) = tan−1 1

b
= cot−1 b. (6)

As b → 0, ψ → π
2 , and the spiral approaches a circle.

Note that a constant ψ indicates that if a point is mov-
ing along a logarithmic spiral, then its direction will keep
unchanged while its radius will keep increasing exponen-
tially. Further, although the spiral itself is a one-dimension
curve, the area covered by this curve expands rapidly as
the curve lengthens. In addition, by just manipulating the
parameters a and b, we are able to adjust the how fast a
spiral path covers. For example, when the spiral radius is

larger than a threshold, we can set b equal to zero so that
the dissemination is confined within a circle.

The arc length (as measured from origin) is given by

l =
aebθ

√
1 + b2

b
. (7)

And the curvature is given by

κ =
e−bθ

a
√

1 + b2
. (8)

The coverage area is defined as the area surrounded by
sensor nodes on a spiral path, and given by

S =

∫ θ

θ	2π

∫

rdrdθ =
a2

4b
e2bθ(1 − e−4bπ), (9)

where

(α	 β) =

{

α, if α < β
α− β, if α ≥ β

If the node density is K nodes per unit area, then the
number of sensor nodes in a area covered by a spiral can
be estimated as

Nc = KS =
Ka2

4b
e2bθ(1 − e−4bπ). (10)

The number of sensor nodes used to construct a spiral
can be estimated as

Ns = l
√
K =

√
Kaebθ

√
1 + b2

b
. (11)

Let DCf and DCsp denote the dissemination cost of
flooding and LSDD, respectively. Suppose that flooding
and LSDD cover the same number of nodes, say, n, then it
is obviously thatDCf is equal to n, thereforeDCf ∼ O(n).
Let Nc = n, substitute (10) into (11), we have

Ns = l

√

Nc

S

=

√

1 + b2

b(1 − e−4πb)
·
√
n

= c
√
n. (12)

When b is fixed, c is a constant, and hence Ns ∼ O(
√
n).

According to the definitions, DCsp = Ns, therefore
DCsp ∼ O(

√
n).

The dissemination ratio of the LSDD can be estimated
by the ratio of Ns to the sume of Nc and Ns. Here the
dissemination ratio is defined as the ratio of the number
of hops in the spiral path to the number of sensor nodes
within the spiral path. We provide another definition of
the dissemination ratio in Section V, which expresses the
same idea. Let λ denote the estimated dissemination ratio,
from equation (10) and (11),

λ =
Ns

Ns +Nc

=
4
√

1 + b2

4
√

1 + b2 +
√
Ka(1 − e−4bπ)ebθ

. (13)
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By substituting equation (1), we have

λ =
Γ

r + Γ
=

1

1 + r
Γ

, (14)

where

Γ =
4
√

1 + b2√
K(1 − e−4bπ)

. (15)

Note that Γ is proportional to the reciprocal of the
square root of K. If K is fixed, then Γ is a function of
b. Γ → ∞ when either b → 0 or b → ∞. Figure 7 shows
that how Γ changes when b increases from 0.02 to 5, where
K = 5. To get a better view, the logarithmic coordinates
is used on the x axis. We can see that the lowest Γ value
is located at 0.2 and 0.5.
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Figure 7: Γ vs. b

In Figure 8, we show that how λ changes as r increases
under different b values, where K = 5. To get a better
view, the logarithmic coordinates is used on both x axis
and y axis.
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Figure 8: Estimated Dissemination Ratio under different
b values

It is clear that the dissemination ratio λ decreases expo-
nentially as the spiral radius increases exponentially. This
estimation agrees with our simulation results very well,

which will be shown in Section V. For different b values,
the ranges of λ are different. Such change pattern complies
with the relation of b and Γ as shown in Figure 7. For ex-
ample, when b = 0.2, Γ = 2 reaches the lowest value, the
corresponding curve in Figure 8 is at the bottom of all
lines. By carefully choosing the b value, we can control
the range of the dissemination ratio for the given dissem-
ination radius. In our simulation, the b value is fixed at
0.2.

Given the number of covered nodesHm, due to the dense
and uniform node distribution, the coverage of flooding can
be estimated as

Sf = Hm/K. (16)

In addition, the maximum radius of the flooding can be
approximated by

Rf =

√

Sf

π
=

√

Hm

Kπ
. (17)

Substitute Hm by Nc, the ratio of the flooding dissem-
ination radius to the spiral dissemination radius can be
derived as

γ =
Rf

Rsp

=

√

Nc

Kπ

aebθ

.
By substituting equation (10),

γ =

√

1 − e−4πb

4πb
. (18)

According equation (18), γ → 0 as b → ∞, and γ → 1
as b→ 0. Such trend is illustrated in Figure 9. In a dense
and uniformly distributed sensor network, the area covered
by a flooding dissemination approximates a circle. For the
spiral dissemination, the spiral path and coverage is close
to a circle when b is close to zero, so the difference between
the spiral radius and flooding radius is not much given the
same number of covered nodes. However, as b becomes
larger, the spiral radius increases at a faster speed so that
it will reach much farther than the flooding. Moreover,
when the number of covered nodes is larger than some
value, the spiral path will definitely cover larger area than
flooding.

5 PERFORMANCE EVALUATION

We evaluate the performance of the LSDD on dissemi-
nation cost, efficiency, search costs with single sink node
and multiple sink nodes, scalability, and fault tolerance
by extensive simulations. We compare the performance of
LSDD in the above aspects with those of SIDD and GBDD.
All simulations are carried out in MATLAB. In SIDD, sen-
sor nodes passively wait for queries. A sink node initiates
a query by flooding the query message in the network, and
then waits for the interested data until the query times
out. In GBDD, both data advertisement and query are
routed in a gossiping manner until they meet each other.
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Figure 9: Ratio of the estimated dissemination radius be-
tween spiral and flooding

Here gossiping manner means every hop along a path is
randomly chosen from the neighborhood list of a node. Di-
rected diffusion (Intanagonwiwat et al. 2000), GEAR (Yu
et al. 2002), SPIN-1 and SPIN-2 (Heinzelman et al. 1999)
are all based on SIDD, and Gossip routing and Rumor
routing Braginsky and Estrin (2002) are based on GBDD.
All these schemes are enhanced by different optimization
techniques like the query/data aggregation, data-centric
routing, and/or geographic routing, to reduce the broad-
cast range and the number of messages transferred. In
our simulations, we focus on the underlying dissemination
mechanism and omit the upper layer optimizations, since
those techniques can also be applied to LSDD. Geographic
routing is not considered in our simulations since it as-
sumes that the source (or sink) nodes know the locations
of sink (or source) nodes, while in our scheme such infor-
mation is unknown. Therefore, it is not fair to compare
LSDD with the geographic based routing.

5.1 Simulation Settings

In our simulation, all sensor nodes are deployed in a rect-
angular area composed by L×L unit square cells. The side
length of each cell is l, where l = 1 m in our simulations.
The locations of the sensor nodes in each cell follow the uni-
form distribution. The node density is denoted as K nodes
per unit cell. In our simulations, we choose L = {10, 20}
and K = {5, 10}. The spiral parameters a and b play im-
portant roles in the spiral dissemination as well as reverse
spiral query. A large b leads the spiral grow faster and a
smaller b makes the spiral cover more nodes in a limited
area. In this paper, we assume the parameters are fixed
such that a = 0.1 and b = 0.2 for all cases, and leave the
effect of b as future work. Another key parameter, the ef-
fective radio range, is denoted as Rt. In our simulations,
we assume that all sensor nodes has the same effective ra-
dio range as the side length of the unit cell l. A Berkeley
mote (Hill et al. 2000) is used as the physical layer model
of a sensor node in order to estimate the energy consump-
tion. For details about power of RF transciever, please

reference to (Chipcon 2005). We assume that CSMA/CA
is the MAC layer protocol and UDP is the transport layer
protocol.

With the above settings, it is easy to scale our simulation
to practical scenarios by choosing appropriate L, l, K and
Rt. For example, when L = 20, Rt = l = 300 m, k =
5, our simulation is equivalent to a sensor network 2000
sensor nodes uniformly deployed within a 6×6 km2 square
area, and each node with an effective radio range equal
to 300 m. We only count the messages transmitted for
data dissemination and query, and omit the messages sent
for other purposes like neighborhood detection or sensed
data transmission. All simulation results are averaged over
three different network topologies.

To compare the coverage efficiency of different data dis-
semination schemes, we define the following performance
metrics:

1. Dissemination Radius: the distance between the
source node and the farthest node which receives dis-
seminated data.

2. Coverage: the area covered by all the sensor nodes
in a dissemination path.

3. Information density: the ratio of the number of in-
formed nodes to the coverage of a dissemination path.

5.2 Comparison on energy efficiency

In this set of simulations, we compare the performance
metrics of LSDD, SIDD, and GBDD on their energy con-
sumption for message transmission. Since sending and re-
ceiving messages usually consumes much more energy than
processing in sensor nodes, such limits can be regarded as
the energy constraint. The simulation settings are L = 10,
K = 5, l = Rt = 1 m. As expected, LSDD achieves the
highest energy efficiency: it reaches farthest with given
amount of energy, and consumes the least energy for given
dissemination distance.

As shown in Figure 10, the maximum dissemination ra-
dius of LSDD increases much faster than that of SIDD
or GBDD, as energy increases. This figure indicates that
the LSDD covers the largest area with the same resources.
Given the sensor nodes are uniformly distributed with a
fixed density, it is obvious that LSDD covers the most
number of sensor nodes. Such features make LSDD a bet-
ter scheme for data dissemination in the large-scale dense
WSNs.

5.3 Comparison on the Search Costs

Now we compare the search cost among LSDD, SIDD, and
GBDD. Here we define the search cost as the number of
messages sent in both data dissemination and data query
processes during the setup of the connection between a
source node and a sink node. After the connection is estab-
lished, the traffic incurred by data transmission and mo-
bility is not counted. The simulation settings are L = 10,
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Figure 10: Maximum dissemination radius vs. energy for
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Figure 11: Energy for message transmission vs. dissemi-
nation radius

K = 5, l = Rt = 1 m. The search cost of LSDD is shown
to be much lower than that of SIDD or GBDD.

Figure 12 shows the relationship between average search
costs and the source-sink distance for all schemes. The en-
ergy to send one message or to receive one message is cal-
culated according to the physical layer model. By counting
the number of sent and received messages, we can estimate
the amount of energy consumed solely for data dissemina-
tion process. SIDD and GBDD have similar performance,
and GBDD costs a little less at large distance. When the
distance is smaller than 4 units, the SIDD and GBDD work
better than LSDD. However, as the distance increases, the
search cost of SIDD or GBDD grows much faster than
LSDD, and is about six times higher than LSDD when the
distance is larger than 15.
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Figure 12: Average search cost comparison

Figure 13 shows the cumulative probability function
(CDF) of the search costs of all three schemes at the dis-
tance 4, 6 and 9. When the distance is 4, all the CDFs
locate in the same range, and the CDF of LSDD is on the
right of those of SIDD and GBDD. This shows that the
search cost of LSDD is usually higher than that of SIDD
or GBDD. As the distance increases, LSDD CDF shifts to
the left side of SIDD and GBDD, while SIDD and GBDD
still lap over each other. We can also see that the SIDD
CDF concentrates in a more narrow range than the GBDD
CDF because of the randomness of GBDD. All three CDFs
look similar to the normal distribution.

5.4 Comparison on Scalability

In this set of simulations, we test the scalability of LSDD,
SIDD, and GBDD by applying them to networks with dif-
ferent sizes and node densities. We keep the unit cell size
and the effective radio range as constant like the previ-
ous simulations, that is, l = Rt = 1 m. The range of L is
{10, 20}, and the range of node density K is {5, 10}. There
are totally 4 settings:

1. Area: 10 × 10, node density: 5

2. Area: 20 × 20, node density: 10
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Figure 13: Comparison of the search cost CDFs given Dis-
tance

3. Area: 10 × 10, node density: 5

4. Area: 20 × 20, node density: 10

The results are shown in Figure 14. It is clear that
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Figure 14: Scalability comparison for LSDD, SIDD, and
GBDD

the search cost of LSDD increases linearly as the distance
increases, and the differences between the search costs of
LSDD in all 4 settings are also small which indicates the
good stableness and scalability of the search algorithm. On
the contrary, the search costs of SIDD and GBDD increase
exponentially and the differences between search costs in 4
settings are much higher than that of LSDD. These figures
indicate that LSDD can be applied to a large scale sensor
network without incurring heavy traffic overhead for data
dissemination and query. The superior scalability of LSDD
over SIDD and GBDD is confirmed.

Figure 15 compares the total search costs of LSDD,
SIDD, and GBDD with multiple sink nodes under differ-
ent network settings. It is clear that as the number of
sensor nodes increases (by increasing either the network
size or the node density), LSDD becomes more efficient
than SIDD and GBDD. SIDD and GBDD have the sim-
ilar performance with multiple sink nodes. It shows that
LSDD is more suitable for large scale sensor networks.

5.5 Fault tolerance

In a sensor network, each individual node is fragile to fail-
ure due to limited energy and other accidents. Therefore,
the topology of a sensor network may vary when some
nodes fails. In the simulation, we examine the perfor-
mance of LSDD in such faulty network. We set different
failure rates, and test if the advertisement packet can be
disseminated over the area by LSDD. The failed nodes are
uniformly chosen according to the failure rate, and the re-
sults are averaged over a large number of simulations. As
shown in Figure 16, the successful rate decreases as the
failure rate increases, and the successful rate under high
node density is higher than that under low node density.
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Figure 15: Search cost comparison with multiple sink
nodes

We can see that when the failure rate is lower than 0.1, the
successful rate under all cases is higher than 85 percents.
It indicates that LSDD is very robust to the node failures.
As the network gets larger and denser, the negative effect
of failure nodes gets smaller under LSDD.
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Figure 16: Fault tolerance test

5.6 Forwarding delay

In LSDD, messages are propagated along a spiral curve
instead of spreading over the plane as in SIDD, which leads
to a longer delay than flooding-based schemes. Such loss on
delay performance can be viewed as a price for the gain on
energy efficiency and robustness. To estimate the impact
of this trades-off, we measured the dissemination delay of
between one pair of source and sink nodes with different
distances. The simulation settings are L = 20, K = 5,
l = Rt = 1 m. The results shown in Figure 17 are averaged
over 100 simulations.

As expected, LSDD spends the longest time, and GBDD
takes the shortest time in most distances. The difference
between LSDD and SIDD increases slowly as the distance
increases. As mentioned before, LSDD is not designed for
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Figure 17: Comparison on delay performance

time-urgent applications which regard the short delay as
the fist privilege. Instead, LSDD is oriented with energy
efficiency and scalability. Besides, when source nodes and
sink nodes search each other by LSDD, their paths usually
meet quickly after the sum of their spiral radii become
larger than the distance between these two node. Thus,
the traffic overhead is moderate.

6 CONCLUSION

In this paper, we proposed a novel data dissemination
scheme: logarithmic spiral data dissemination (LSDD).
LSDD imitates a natural evolution of the spiral to facilitate
the data dissemination and data query in sensor networks.
LSDD improves the performance-resource ratio in stable
structure, high energy efficiency, low traffic overhead, and
flexible scalability. LSDD can also fit into large-scale net-
works more efficiently than other schemes. In addition,
according to our simulations, LSDD is quite robust to the
heavy query load caused by multiple sink nodes, as well
as the faulty network caused by unreliable nodes. As is
shown in this paper, LSDD is a strong candidate for the
data dissemination in a sensor network.
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