
3326 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

When Bloom Filters Are No Longer Compact:
Multi-Set Membership Lookup for

Network Applications
Yan Qiao, Shigang Chen, Fellow, IEEE, Zhen Mo, and Myungkeun Yoon

Abstract— Many important network functions require online
membership lookup against a large set of addresses, flow labels,
signatures, and so on. This paper studies a more difficult, yet less
investigated problem, called multi-set membership lookup, which
involves multiple (sometimes in hundreds or even thousands)
sets. The lookup determines not only whether an element is a
member of the sets but also which set it belongs to. To facilitate
the implementation of multi-set membership lookup in on-die
memory of a network processor for line-speed packet inspection,
the existing work uses the variants of Bloom filters to encode
set IDs. However, through a thorough analysis of the mechanism
and the performance of the prior art, much to our surprise,
we find that Bloom filters—which were originally designed
for encoding binary membership information—are actually not
efficient for encoding set IDs. This paper takes a different
solution path by separating membership encoding and set ID
storage in two data structures, called index filter and set-id table,
respectively. With a new ID placement strategy called uneven
candidate-entry distribution and a two-level design of an index
filter, we demonstrate through analysis and simulation that when
compared with the best existing work, our new approach is able
to achieve significant memory saving under the same lookup
accuracy requirement, or achieve significantly better lookup
accuracy under the same memory constraint.

Index Terms— Computational efficiency, approximation algo-
rithms, compression algorithms.

I. INTRODUCTION

MANY important network functions require online
membership lookup against a large set of addresses,

flow labels, signatures, etc. For instance, some routing-table
lookup algorithms must determine whether a given destination
address prefix belongs to a set of prefixes extracted from the
routing table [1]. In another example, a router (or gateway,
firewall) can be configured to collect information of per-user
activity for a set of user addresses [2]. For each arrival packet,
the router performs membership lookup to see if the source

Manuscript received February 10, 2015; revised October 28, 2015; accepted
January 1, 2016; approved by IEEE/ACM TRANSACTIONS ON NETWORKING

Editor A. X. Liu. Date of publication March 11, 2016; date of current version
December 15, 2016. This work was supported in part by the Natural Science
Foundation under Grants CNS 1115548 and CNS-1409797 and in part by the
Chinese Natural Science Foundation under Grant 61472256.

Y. Qiao is with Google Inc., Mountain View, CA 94043 USA (e-mail:
yqiao@google.com).

S. Chen and Z. Mo are with the Department of Computer and Information
Science and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: sgchen@cise.ufl.edu; zmo@cise.ufl.edu).

M. Yoon is with Kookmin University, Seoul 02707, South Korea (e-mail:
mkyoon@kookmin.ac.kr).

Digital Object Identifier 10.1109/TNET.2016.2536618

address of the packet belongs to the user set. For traffic
measurement, a router may be instructed to identify the set of
current flows. This requires the router to collect flow labels [3],
e.g., address/port tuples that identify TCP flows. Since each
flow label should be collected only once, when a new packet
arrives, the router must check whether the flow label extracted
from the packet belongs to the set that has already been
collected before. In the final example, to support the CBAC
(context-based access control) function in Cisco routers, when
a router receives a packet, it may want to determine whether
the addresses/ports in the packet has a matching entry in the
CBAC table before performing the CBAC lookup.

The above online membership lookup problems have been
extensively studied. Many influential solutions [1], [3]–[6] are
designed using Bloom filters [7], which are compact data
structures suitable for hardware implementation in fast but
small on-die SRAM memory. A Bloom filter encodes the
membership of a set in a memory-efficient way. It is a bit
array initialized to zeros. When inserting an element, we hash
its identifier to k bits in the array and set them to ones.
To look up for the membership of an element, we also hash it
to k bits in the array and see whether these bits are all ones.
If they are, we claim that the element is in the encoded set; if
any of the bits is zero, we claim that the element is not in the
set. (Note that a standard Bloom filter is originally designed
to encode a single set and return binary information for each
element under lookup — whether the element is in the set
or not.)

This paper studies a more difficult, yet less investigated
problem, called multi-set membership lookup, which involves
multiple sets (sometimes in hundreds or even thousands).
It determines not only whether an element is a member of the
sets but also which set it belongs to. In addition to the binary
information that the standard Bloom filters can provide, this
lookup function also returns a set ID.

The multi-set membership lookup function can be used to
classify an incoming packet stream into different categories,
based on addresses, ports, a combination of them and other
fields in packet headers, or even packet content. It has many
important applications. For example, the routers of an ISP
may classify packets for differentiated services based on
their sources which are placed into different sets according
to different types of service contracts. A firewall may be
supplied with an action list for addresses that are collected by
an intrusion detection system. Depending on the suspicious

1063-6692 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3327

levels of source addresses, some packets may be logged,
some may be content inspected, while others may be dropped.
The firewall must check each arrival packet to see if the source
address is a member of the sets, and if it is, what further action
it should take, depending on which set the packet belongs to.
In another example, as the VMs are placed onto the servers of
a data center, the gateway can be tasked to determine which
incoming packets should be forwarded to which server, as each
server hosts a different set of VMs.

Traditional exact-match data structures such as binary
search tree [8], trie [9], and hash table [10] have to store both
keys and values (i.e., set IDs in the context of this paper). Some
of them also need additional space for pointers to maintain the
tree structure or resolve hash collision by using a linked list for
collided keys. These data structures are often considered to be
too expensive to be implemented entirely in cache memory of a
network processor for line-speed packet inspection. To address
this challenge, researchers have strived to adopt “compact”
data structures. Along this line of research, variants of Bloom
filters are introduced to encode set IDs in the filters such that
not only can we determine whether an element is a member
but also which set the element belongs to [11] and [12].
However, through a thorough analysis of the mechanism and
the performance of existing work, quite to our surprise, we
find that Bloom filters are actually not efficient for encoding
set IDs. More specifically, each set ID is represented in the
prior work as multiple bits in a code, and each of those bits
is encoded by multiple bits in a Bloom filter. This multiplying
factor not only causes significant memory overhead, but also
results in numerous memory accesses per lookup, particularly
under stringent lookup accuracy requirements. In short, Bloom
filters are not compact in the current approaches for encoding
set IDs. Moreover, encoding IDs directly in the filters makes
each lookup expensive in processing.

This paper takes a different solution path by separating
membership encoding and set ID storage into two data struc-
tures, called index filter and set-id table, respectively. The
former is a variant of Bloom filter with an efficient two-level
design, which does only what a Bloom filter can do best,
encoding membership (instead of set IDs).1 The latter is a
multi-hash table, whose compactness is ensured by allowing
each element to store its set ID in one of multiple candidate
entries in the table. Notably, we discover a new ID place-
ment strategy of uneven candidate-entry distribution, which
is able to reduce the insertion-failure probability by orders of
magnitude sometimes. We demonstrate through analysis and
simulation that when comparing with the best existing work,
our new approach is able to achieve significant memory saving
under the same lookup accuracy requirement, or achieve
significantly better lookup accuracy under the same memory
constraint.

The rest of the paper is organized as follows: Section II
defines the problem and the performance metrics. Section III
discusses the related work and compares their theoretical

1The paper title is not to question that Bloom filters are compact data
structures in general but suggest that they are not compact for encoding
set IDs.

bounds. Section IV motivates our idea and explains the tech-
nical details of our proposed solution. Theoretical analysis
on the overhead and accuracy of our proposed data structure
is in Section V. Section VI presents the evaluation results.
Section VII concludes this paper.

II. PROBLEM DEFINITION

A. Multi-Set Membership Lookup

Consider a number g of disjoint sets whose IDs are
1, 2, . . . , g, respectively. Each set contains a number of mem-
ber elements; Each member element is in a single set. Given an
arbitrary element e, the multi-set membership lookup function
is to find the set ID that e belongs to. Suppose we want
to implement the lookup function in the on-die memory
(such as SRAM) of a network processor for high throughput,
which requires compact data structures to represent the sets.
When comparing with online lookup (which may happen on
a per-packet basis), inserting or deleting an element of a
set is considered to be infrequent, and is thus allowed to
access off-chip memory. Following the assumption of previous
works [11], [12], we consider the sets to be disjoint, which is
the case for all applications mentioned in the introduction. (For
other potential applications where some sets share elements,
we may take their intersections out new sets to make them
disjoint and possibly merge the resulting sets based on the
common actions to be performed on them — in this case,
the number of final sets is limited by the number of possible
actions.) The output of lookup for an element is either the ID
of a set that e belongs to, or 0 if e does not belong to any set.

B. Performance Metrics

Modern high-speed routers forward packets from incoming
ports to outgoing ports via switching fabric. In order to keep up
with the line speed, the trend is to implement online network
functions for packet classification, access control, and traffic
measurement using on-die cache memory and bypassing main
memory and CPU almost entirely [1], [13], [14]; note that
the three applications of multi-set membership lookup in the
introduction are cases of packet classification.

However, fitting online network functions in fast but small
on-die memory represents a major technical challenge [15].
The commonly-used cache memory on network processor
chips is SRAM, which has limited size. There is a huge incen-
tive to keep on-die memory small because smaller memory
can be made faster and cheaper. To make the matter worse,
on-die memory may have to be shared by multiple routing/
performance/measurement/security functions that are imple-
mented on the same chip. When multiple network functions
share the same memory, each of them can only use a fraction
of the available space, whereas the amount of data they
have to process and store can be extremely large in high-
speed networks. The disparity in memory demand and supply
requires us to implement these online functions, including the
ones based on multi-set membership lookup, as compact as
possible. The processing overhead for on-chip implementation
is characterized by number of memory accesses and compu-
tation overhead.

3328 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

TABLE I

PERFORMANCE COMPARISON OF EXISTING APPROACHES, WHERE n IS THE NUMBER OF ELEMENTS IN ALL SETS, g IS THE NUMBER OF SETS,
ε IS THE ACCURACY REQUIREMENT, f IS THE CODE LENGTH IN [11] AND [12], AND θ IS THE NUMBER OF ONES IN EACH CODE

TABLE II

NUMERICAL COMPARISON OF EXISTING APPROACHES WITH PROPOSED iSet, WHERE n = 500,000, g = 5,000, ε = 0.001, f = 16, AND θ = 6

The performance criteria considered in our design of the
lookup function are given below:

• Space: We should reduce the number of bits it takes
to encode each member element and its set ID. This is
extremely important when the data structures are placed
in on-die SRAM, which is small.

• Memory Access: We should reduce the number of mem-
ory accesses per membership lookup. This is particularly
important if the lookup operation is performed very
frequently, e.g., on a per-packet basis in a router.

• Computation: We also want to reduce the hash complex-
ity for each membership lookup. This helps reduce the
computational overhead.

This paper investigates probabilistic lookup data structures
which can be made very compact. We define a few concepts
on evaluating accuracy:

• False Positive: For a non-member element that does not
belong to any set, false positive happens if the lookup
function mistakenly believes the element belongs to a set.

• Conflict Classification: For a member element of a set,
conflict classification occurs if the lookup function cannot
definitively determine the right set ID but knows the
element must belong to one of several candidate sets.

• Mis-Classification: For a member of a set, mis-
classification occurs when (1) the lookup function claims
that the element belongs to a different set, or (2) the
lookup function claims that the element does not belong
to any set.

Most prior work does not have the problem of mis-
classification; neither does our solution in this paper.

Let the false-positive ratio be the probability for false
positive to occur to a non-member after lookup, and the
conflict classification ratio be the probability for conflict
classification to occur to a member. From the space point
of view, there are two ways to compare the performance of

different designs of the lookup function. First, given a preset
accuracy requirement ε, we want to minimize the amount of
memory it takes to bound both false-positive ratio and conflict
classification ratio by ε. Second, if the amount of memory that
can be allocated for the lookup function is fixed, we want to
have a lookup design that reduce the false-positive ratio and
the conflict classification ratio as much as possible. Regardless
of fixed space or not, it is important to reduce the number of
memory accesses and the amount of computation per lookup
for high throughput applications.

III. RELATED WORK

Bloom filter [7] encodes the membership of a set. It has
false positive. From the results of [16], we can easily derive
the following: To bound the false positive ratio by ε, the
size of the bit array should be at least −n′ ln ε(ln 2)2 with
k = − ln ε/ ln 2, where n′ is the number of elements in the
set. For example, when ε = 0.001, the filter size is 14.4n′

with k = 10.
A Bloom filter encodes a single set. To handle multiple

sets, a naive approach is to use one separate filter for each set.
This method has two serious problems: First, without knowing
the size of each set, it is hard to divide memory among the
filters in appropriate proportions (such that a larger set will get
a bigger portion). Hence, the method works well only when
the set sizes are pre-known. Second, each membership lookup
has to examine all filters, which takes too many memory
accesses. Let g be the number of groups and ε be the accuracy
requirement for false positive (and conflict classification as
well when applicable). If each filter has a false positive ratio
of ε

g , it takes − ln(εg)
ln 2 memory accesses per lookup according

to [16]. The overall false position ratio for all g filters is
1 − (1 − ε

g)g , which is approximately ε when g is large and
ε is very small. Because there are g filters, the total number
of memory accesses per lookup by the method of one filter

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3329

Fig. 1. Coded Bloom filter [17] — There are g sets. Each circle on the
left represents a set. Consider an arbitrary set S, which is assigned a code
of �log2(g + 1)� bits, e.g., 00110010. Each bit in the code corresponds to
a Bloom filter represented by rectangles on the right. For instance, eight bits
in the code correspond to eight filters, B1 through B8. For every element e
in set S, if and only if a bit in the code is one, e is inserted (encoded) in
the corresponding filter by hashing to k bits in the filter and setting them to
ones. In this example, e will be encoded in B2, B3 and B6.

per set (OFPS) is thus − g ln(εg)
ln 2 , as shown in in Table I.

To make the comparison intuitive, we also give numerical
results in Table II for a typical parameter setting. OFPS makes
115000 memory accesses for each element lookup.

To deal with the second problem above, Chang et al. [17]
proposes a coded Bloom filter approach, which assigns each
of the g sets a distinct code from 1 to g, as illustrated in
Figure 1. The code is �log2(g + 1)� bits long. There is one
Bloom filter for each bit position in the code. As an example,
for 8-bit codes, there will be 8 Bloom filters, B1 through B8,
for the first through eighth bits, respectively. Suppose the code
of a set S is 00110010. Its third, fourth and seventh bits are
ones. Each element in S will be inserted into B3, B4, and B7,
respectively. To look up an element, we check all �log2(g+1)�
Bloom filters (instead of g filters in the previous approach).
In fact, the number of memory accesses is reduced by a factor
more than g

�log2(g+1)� when the same ε is enforced, as shown
in Table I where we substitute �log2(g + 1)� with log2 g for
clarity. Continue with our example. For any element in S, the
lookup results from the 8 filters are expected to be ‘0’, ‘0’,
‘1’, ‘1’, ‘0’, ‘0’, ‘1’, and ‘0’, respectively, where ‘0’ means not
in the filter and ‘1’ means in the filter. Putting them together
yields the code of S. This approach still requires preknown
set sizes, but it alleviates the memory access problem from
115000 to 126 in Table II. However, it causes a new problem
of misclassification: a false positive in any of the �log2(g+1)�
filters will misclassify an element to a wrong set. In the
example above, if the lookup result from the first filter is ‘1’,
the code will be 10110010, referring to a different set than S.

Lu et al. [11] solve the misclassification problem by using
sparse codes whose length f is much longer than �log2(g+1)�,
but each code carries a small, fixed number θ of ones. Still
using the previous example, if each code is supposed to have
exactly three ones, 10110010 will not refer to any set. The
element will be treated as a case of conflict classification.
Misclassification is thought to be more harmful than conflict
classification [11]; the latter can at least be addressed through
a slow path of checking the sets directly.

Fig. 2. COMB [12] — Consider an arbitrary set S, which is assigned a
sparse code with θ ones, e.g., 00110010 with θ = 3. Each bit in the code
corresponds to a group of k hash functions, which is represented by three bars
in the middle of the figure. For instance, eight bits in the code correspond to
eight groups of hash functions. There is only a single Bloom filter. For every
element e in set S, if and only if a bit in the code is one, the corresponding
group of hash functions will be used to encode e in the filter by hashing e to
k bits and setting those bits as ones.

Hao et al. also use sparse codes in their combinatorial
Bloom filter (COMB) [12]. It removes the requirement of
preknown set sizes by a radically different way of using the
codes. They use a single Bloom filter, so that they do not need
to worry about proportions in memory allocation for different
filters. Each bit position in an f -bit code corresponds to a
group of k hash functions, as illustrated by Figure 2, where
k = − ln(ε/(f−θ))

ln 2 . As an example, for each element in a set S
of code 00110010, the third/fourth/seventh groups of hash
functions are used. They together map the element to 3k bits
in the filter, and those bits will be set to ones. To look up an
element, all f groups of hash functions are used. Each group
maps the element to k bits in the filter; the lookup result is ‘1’
if all k bits for one group are ones or ‘0’ otherwise. Putting
the lookup results together yields the code of the set, or if it
is not the code of any set, the element is rejected.

Because COMB can handle a dynamic set, we should
interpret n as the maximum number of elements in all sets that
can meet the accuracy requirement ε. Similar to [11], COMB
needs to use θ groups of hash functions to set θk bits when
encoding each element, and use all f groups of hash functions
to fetch fk bits when looking up an element. The problem of
COMB is that it can only support

(
f
θ

)
groups, meaning both

θ and f cannot be too small if g is large, which will translate
into substantial space requirement and memory accesses per
lookup, as shown in Table II. COMB requires 96 bits per
element, comparing with 32 bits by OFPS. More importantly,
the number of memory accesses per lookup by COMB is still
very high, 224. To reduce conflict classification, COMB may
use error-correction codes (such as Hamming code), which
will however increase the code length f , resulting in more
memory accesses per lookup.

Our goal is to use only one group of hash functions when
inserting or looking up an element, as what OFPS does, yet
we use far fewer memory accesses, more specifically, a small
number of memory accesses per lookup. The new lookup
function should not assume pre-known set sizes and does not
have mis-classification. To achieve this goal, we will have to
move away from the traditional coded approaches and resort
to a very different design in data structures.

3330 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Another related work is the Bloomier filter [18], which
expands each bit in a Bloom filter with a multi-bit entry,
storing a value, e.g., a set ID. The efficient encoding design
in [18] assumes the pre-knowledge of all elements in the sets.
However, we may modify it to support dynamic sets: To insert
an element e whose set ID is X , we hash e to k entries in the
Bloomier filter, and make sure that the XOR of these entries is
equal to X . There is one bit per entry indicating whether the
entry has been used to encode a previous element. Insertion is
successful only when at least one of the k entries is unused.
To perform lookup on e, we again hash e to its k entries. If all
entries are used, their XOR will give the set ID. This approach
uses more memory than others.

IV. DESIGN OF iSet

We propose a new design of efficient multi-set lookup
function called iSet. The name comes from its two key data
structures, index filter and set-id table.

A. Motivation

What’s in common for the prior work [11], [12], [17], [18]
is that they try to encode both membership and set IDs in the
same data structures — variants of Bloom filters — which
were originally designed for membership only. A Bloom filter
is efficient for encoding the binary membership information
(in or not in the set) for each element. Even though the
encoding takes multiple bits, they are fewer than directly
storing the identifier of an element. Moreover, it eliminates
the explicit indexing overhead that maps each element to an
address where the information is stored.

However, when the set IDs are also stored in this data
structure, it becomes inefficient in both storage and accessing.
Each ID contains multiple-bit information, no matter whether
it is in the form of the original set ID or a code. Each ID bit
is stored in the filter as binary information, in the same way
as the membership is stored, which takes multiple bits in the
filter (e.g., 10 bits for a false positive ratio of 0.001). This
multiplying effect — multiple bits in an ID and each of them
requiring multiple bits in the filter — not only costs memory
but also results in numerous memory accesses to the filter.

Moreover, in order to keep the false positive ratio of a
Bloom filter down, the filter must have a significant portion of
zeros, more specifically, one half of all bits should be zeros
for an optimal filter. When we need a lot of bits to encode
each set ID, it also means we need more bits to keep the
same proportion of zeros, which causes even more storage
overhead.

With these observations, our insight is to separate member-
ship encoding and ID storage in two data structures, index filter
and set-id table, as illustrated in Figure 3. The index filter is a
variant of Bloom filter, which does only what it does the best,
encoding membership once per element. The set-id table is a
multi-hash table, which stores the set IDs of member elements.
Each member element e is mapped to a number λ of entries in
the table through hash functions H1, ..., Hλ, where λ is a small
preset constant. The element’s set ID, X , can be stored in any
of the λ entries as long as the entry is unused, where X is

Fig. 3. iSet — Consider an arbitrary element e from an arbitrary set whose
ID is X. The element e is hashed to a number λ of entries in the set-id table;
see the dashed lines. As long as one of these entries is unused, X can be
stored; see the solid line, where X is stored at the entry hashed to via Hd,
the dth hash function. We encode the membership of e|d in the index filter,
establishing a connection between the index filter and the set-id table through
hash index d, which tells where in the table we can find e’s set ID.

TABLE III

NOTATIONS

log2 g bits long. The reason for using λ entries is to increase
the probability of finding an unused one; alternatively, it is to
make sure that the set-id table is about fully used with only
a small fraction of wasted entries. Suppose X is stored at the
entry which the dth hash function, Hd, maps e to, where d is
referred to as a hash index or simply index.

Not only do we want to encode the membership of e in
the index filter, but also we need to establish a connection
between the index filter and the set-id table, such that once
we find from the filter that e is a member (in some set), we will
also learn where to find its set ID in the table. To establish this
connection, we encode e|d (instead of e alone) in the index
filter by hashing them together to k bits and set those bits to
ones, where ‘|’ is the concatenation operator.

During lookup, we check e together with all possible hash
indices, 1 through λ, to find which one is in the filter. When
we find e|d in the filter (for a certain hash index d), we know
not only that e is a member, but also where to find its set ID
in the table.

Comparing with COMB which encodes θ memberships per
element, our index filter only encodes one membership, e|d,
for each element e. The lookup of e involves λ membership
checks, comparing with g membership checks in OFPS and
f checks in COMB. However, the value of λ can be made
much smaller than g and f . We will show that the space in
the set-id table is well utilized even for small λ.

In the following, we will present the set-id table with its
interesting design for uneven candidate-entry distribution and
the index filter with a two-level design to reduce the number

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3331

Fig. 4. An example with even candidate-entry distribution, where q = 4 and
λ = 8. When the load of each segment is 0.5, the insertion-failure probability
is about 3.9 × 10−3.

of memory accesses per lookup to one. Notations used in the
description can be found in Table III for quick reference.

B. Set-id Table and Uneven Candidate-Entry Distribution

Let l be the total number of entries in the set-id table, which
is divided into q segments, each having l

q entries. Technically
speaking, we may allow variable-sized segments [19], [20].
However, equal-sized segments are easier to handle in practice
for multi-banked memory and dynamic memory allocation.
Each entry consists of two fields: a checksum and a set ID. The
checksum is used for resolving conflict classification, which
will be discussed when we present the index filter. If the set-id
field is zero, it means the entry is unused because valid set
IDs range from 1 to g. The load of a segment is the fraction
of its entries that have been used for storing set IDs.

When we want to insert a member element e whose set ID
is X , we hash e to λ candidate entries in the table, i.e., λ

q

entries per segment on average, where λ ≥ q.2 As long as
one of these candidate entries is unused, we will be able to
store X . Insertion failure will be handled separately. For now,
our concern is to minimize the probability of insertion failure.
• Argument for uneven candidate-entry distribution: If

λ > q, it is natural to evenly distribute candidate entries in
the segments. However, we show that a natural approach may
not be a good one through an example in Figure 4 where
q = 4, λ = 8, and each segment has two candidate entries.
When inserting a new element, we randomly choose an unused
candidate entry. Suppose half of all entries are unused and the
loads of all segments are 0.5. Given a new element, because
the probability of any candidate entry being used is 0.5, the
probability of insertion failure, i.e., all eight candidate entries
are used, is 0.58 ≈ 3.9 × 10−3.

In contrast, we show that an uneven candidate-entry distri-
bution can drastically reduce the insertion-failure probability
if the loads of the segments are biased, which can be easily
created by always inserting a new set ID in the leftmost unused
candidate entry [21]–[23], as illustrated in Figure 5, where we
refer to the order from the first segment to the last segment
as from left to right. Because any new set ID is stored in
the leftmost segment whenever possible, that segment will
certainly have a higher load. Our idea is that we should assign
fewer candidate entries to heavily loaded segments and more

2The reason to allow λ > q is that, with more than one candidate entry in
a segment, we are more likely to find unused entries for new insertions, so
as to improve the utilization of the segment.

Fig. 5. Storing a set ID in the leftmost unused candidate entry.

Fig. 6. An example with uneven candidate-entry distribution, q = 4 and
λ = 8. After 250,000 elements are inserted into a table of 500,000 entries,
the loads of the segments become 0.87, 0.68, 0.36, and 0.09, respectively,
with the insertion-failure probability being just 1.3 × 10−6.

to lightly loaded segments. Since the rightmost segment has
the lightest load, a good strategy is to assign one candidate
entry to every segment except for the rightmost one, which
has the remaining λ− q +1 candidate entries, as illustrated in
Figure 6, where q = 4 and λ = 8. If we adopt this strategy, the
loads of the segments will become 0.87, 0.68, 0.36, and 0.09,
respectively, according to our simulation that continuously
inserts new elements into a set-id table of 500,000 entries
until half of all entries are used. In this case, the insertion-
failure probability will become 0.87× 0.68× 0.36× 0.095 ≈
1.3×10−6, a 3000-fold reduction from the even distribution of
candidate entries! We will formally evaluate the performance
of uneven candidate-entry distribution through analysis and
simulation in later sections.
• Recap on Insertion: When inserting an element e,

we use λ hash functions, Hi(e), 1 ≤ i ≤ λ, to map e to one
candidate entry in each segment, except for the last segment,
which has λ − q + 1 candidate entries. The set ID of e will
be inserted into the first unused candidate entry encountered,
which is called the element’s primary entry. We also insert
a checksum computed from e into that entry; the checksum
may be another hash of e, denoted as C(e). The index d of
the specific hash function Hd(e) that maps e to the primary
entry is called the primary index.
• Impact of Insertion Failure: Now suppose we insert n

elements into a set-id table of l entries. We define the insertion-
failure ratio as the number of elements that failed in insertion
divided by n. We stress that it is a different concept than
the insertion-failure probability in the example of Figure 6:
As we insert 250,000 elements one after another, even though
the insertion-failure probability is about 1.3×10−6 in the end,
it is almost surely 0 at the beginning when the first elements
are inserted into the empty table. Hence, the insertion-failure
ratio over all 250,000 elements should be much smaller than
1.3 × 10−6. In fact, we only observed 9 insertion failures
during our simulations after inserting 250,000 elements into
the table of 500,000 entries for 1000 independent runs, which

3332 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Algorithm 1 Insert a New Element
INPUT: element e, set ID X
OUTPUT: N/A
{SEG[i] is the segment that Hi maps to}

d := −1
for i := 1 → λ do

j := Hi(e) mod(l/q) + SEG[i] × l/q
if sidtable[j].id = 0 then

sidtable[j].id := X
sidtable[j].checksum := C(e)
d := i

break // exit for loop
end if

end for
if d > 0 then

encode e|d in the index filter
else

store (e, X) in a supplement hash table or TCAM
end if

translates into a measured insertion-failure ratio of 3.6×10−8.
After inserting 400,000 elements for an average load of 0.8
over the entire table, the insertion-failure ratio is still just
2.5× 10−3 on average. This suggests that we can control the
insertion-failure ratio low by letting l be modestly larger than
the maximum number n of member elements to be handled
by the system.

When the insertion-failure ratio is very small, for the few
elements that cannot be inserted to the set-id table, we can
store these elements and their set IDs in a TCAM (ternary
content-addressable memory [24]). If TCAM is not available,
we can store these elements in a supplement hash table whose
size is larger than the expected number of failed elements, so
as to ensure that hash collision is negligibly small and thus
most lookups take just one memory access. As long as the
number of failed elements is very small, the impact of this
hash table on the overall space usage will be negligible, when
comparing with the much larger set-id table.

C. Index Filter

When inserting a new member element e, we first store
its set ID as previously described. If it is in the supplement
hash table (or TCAM), nothing more needs to be done.
Otherwise, let d be the primary index, and recall that Hd(e)
tells where the ID was stored in the set-id table. We encode
e|d in the index filter by hashing e|d to k bits and setting
those bits to ones, where k will be formally determined
based on the accuracy requirement ε and other parameters.
The key difference between the index filter and the prior
work [11], [12], [17] is that the former only encodes mem-
bership once for each element in the form of e|d, whereas the
latter encodes membership multiple times for each element —
log2 g times in [17] and θ times in [11] and [12]. Encoding
membership just once means that we set much fewer bits per
element, which in turn means a much smaller filter.

The pseudo code for inserting a member element e with
set ID X is given in Algorithm 1, where sidtable[j].id and
sidtable[j].checksum refer to the ID field and the checksum
field of the jth entry in the set-id table.

A two-level design of the index filter that optimizes the
lookup performance will be introduced after we discuss the
lookup procedure below.

D. Multi-Set Membership Lookup

Multiple membership checks are needed for lookup. Given
an element e under query, we check the supplement hash table
(or TCAM) first, and if it is not there, we perform membership
checks on e|i, for 1 ≤ i ≤ λ, in the index filter. The
element will be rejected as a non-member if all membership
checks turn out to be negative. It is considered as a member
if ∃i ∈ [1..λ], e|i is in the filter and e passes a checksum test.

First, our design does not have mis-classification: If e is
a member, because e|d has been encoded in the filter during
insertion, we will find it in the filter and thus the lookup func-
tion will not reject the element as a non-member, where d is
the primary index of e.

Like [11] and [12], our design has conflict classification: For
a member e, not only will we find e|d in the index filter, but it
is also possible that e|i turns out positive for another index i —
the k bits for e|i in the filter happen to be all ones. Unlike
the prior work, we have an additional efficient mechanism
to mitigate conflict classification. For any e|i found in the
filter, we identify the entry in the set-id table using Hi(e), and
compare C(e) with the checksum of that entry. The two will
match if i is the primary index for e. Otherwise, the chance
of matching is 1

2s , where s is the length of the checksum.
In other words, we reduce the conflict classification ratio by a
factor of 1

2s by using the checksum. If the checksum of only
one entry matches C(e), we report the set ID in that entry as
the lookup result. If there are more than one match, we report
conflict classification. If necessary, the lookup may proceed
on a slow path to access off-chip memory where the original
data of all sets are stored.

The checksum field also helps reduce the false positive ratio:
For a non-member e, we may find an index i such that e|i is
in the filter. However, e will not be accepted as a member
right away. We will verify the checksum of the corresponding
entry in the set-id table against C(e), which reduces the false
positive ratio by a factor of 1

2s .
The pseudo code for looking up for an element e is given

in Algorithm 2.

E. Example of Insertion and Lookup

We use a simple example to to illustrate the operations
of iSet. Suppose there are two sets: set 1 has two elements,
A and B; set 2 has two elements, X and Y . The set-id table
has two segments, each having three entries. The index filter
contains one word of 16 bits. Each element is mapped to two
candidate entries in the set-id table and two bits in the index
filter.

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3333

Algorithm 2 Look Up for an Element
INPUT: element e
OUTPUT: a list of set IDs, denoted as RESULT.

– If RESULT = ∅, e is a non-member;
– If RESULT = {X}, e belongs to set X ;
– Otherwise it is a conflict classification.

if (e, X) is found in TCAM then
return {X}

end if
RESULT := ∅
for i := 1 → λ do

if e|i is encoded in the index filter then
j := Hi(e) mod(l/q) + SEG[i] × l/q
if sidtable[j].id != 0 and sidtable[j].checksum = C(e)
then

add sidtable[j].id to RESULT
end if

end if
end for
return RESULT

Fig. 7. Insertion of Y in iSet.

1) Inserting Y to iSet: Fig. 7 shows iSet with A, B, and X
already encoded. We now go through the steps to encode Y .
First, we map Y to two candidate entries in the set-id table,
using two hash functions, H1 and H2. As shown in Fig. 7,
the first candidate entry (in the first segment) is already taken;
its set-id field is non-zero with the information of element A.
So we store the set-id and the checksum of Y to the second
candidate entry. Next, we insert Y |2 to the index filter by
setting the mapped bits to ones, where “2” refers to the
“second” candidate entry.

2) Lookup Y From iSet: In order to look up the set-id of Y ,
we first query the index filter with Y |1 and Y |2. As shown
in Fig. 8, only Y |2 is encoded in the filter. So we check the
second candidate entry of Y in the set-id table. By verifying
the checksum stored in the entry, which matches C(Y),
we return 2 as the set-id of Y .

Fig. 8. Look up for Y in iSet.

Fig. 9. Index Filter — To encode e|d, we first hash e to a block in the filter.
After fetching the block to the processor, we hash e|d to k bits in the block
and sets the bits to ones.

F. Refined Design of Index Filter

Although encoding an element in the filter sets k bits,
looking up an element requires λ membership checks,
which together makes kλ memory accesses. The value of k
determines the false positive ratio of the filter. Thanks to the
checksum, we can afford a much larger false positive ratio
than ε, which means a much smaller value for k (such as
2 ∼ 3 in our simulations). A larger value λ helps improve
the utilization of the set-id table, but we observe through
simulation that it does not bring any significant gain by setting
λ beyond 10. Ten candidate entries per element will ensure
that the table is largely occupied, and trying more candidate
entries do not help much because the table is already
very full.

Nevertheless, we want to further reduce the number of mem-
ory accesses per lookup from kλ to just one through a two-
level filter design based on the block idea from [25] and [26].
As illustrated in Figure 9, at the first level, the filter is divided
into consecutive blocks, each of which may be 64 bits long
and can be retrieved in one memory access. At the second
level, each block consists of consecutive bits, which encode
membership. The insertion of element e with primary index d
consists of two steps: First, we hash e to a block in the index

3334 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Algorithm 3 Encode e|d in the Index Filter
INPUT: element e, primary index d
OUTPUT: N/A
{H ′′, H ′

1..k are hash functions; assume each block has 64
bits.}

read B(e) as the H ′′(e)th block of the index filter
for i := 1 to k do

B(e)[H ′
i(e|d) mod64] := 1

end for
write B(e) back

filter and fetch the block to the processor, where the block is
treated as a small Bloom filter, denoted as B(e). Second, the
processor hashes e|d to k bits in B(e) and sets them to ones.
After that, the block is written back to memory. The pseudo
code is given in Algorithm 3. This approach works only if
membership encoding sets a small number of bits. If a large
number of bits are set for each element as the prior work does,
the block of 64 bits will contain mostly ones, resulting in poor
false-positive ratio.

While insertion takes two memory accesses (one read and
one write), looking up an element e takes just one (read) for
fetching B(e) to the processor, where the membership checks
are locally performed.

G. Deletion

None of the prior work [11], [12], [17] considers deletion.
However, deletion can be supported by using counting Bloom
filters [27], [28], which replace each bit in the filters with
a counter. When inserting an element, instead of setting a
certain number of bits in the filters to ones, we increase
the corresponding counters, each by one. When deleting an
element, we simply decrease those counters by one. We can
set the size of each counter sufficiently large to prevent
overflow, and store the full-sized counters in the off-chip
memory. Scaled-down counters of c bits each are stored in
the on-die memory. It has been shown by [27] that when
c = 4, overflow of these scaled-down counters happens rarely.
Increase/decrease of counters mostly happen on chip. Only
when overflow happens, we will write the overflowed counter
to its off-chip counterpart. If a deletion requires to decrease
an overflowed counter of value 11…1, we need to access the
corresponding counter off-chip to decrease there. The impact
will be negligible when this operation is infrequent [29].

The same method can be used to support deletion of an
element from the index filter. We remember which entry in the
set-id table stores which element’s set ID in off-chip memory,
which helps us remove the set ID when an element is deleted.

V. PERFORMANCE ANALYSIS AND PARAMETER SETTING

A. False Positive Ratio

Recall that the false positive ratio is the probability for a
non-member element e to be considered as a member. False
positive happens only if both of the following conditions are
satisfied:

(a) ∃i ∈ [1..λ], e|i is found in the index filter.
(b) The checksum field of the corresponding entry in the

set-id table fails in resolving the false positive, i.e. the
checksum is the same as C(e).

We define p as the probability for an arbitrary index e|i,
i ∈ [1..λ], to be found in the index filter. Suppose n member
elements have been encoded in the filter, each setting k bits.
In total, kn bits are set (with replacement) to ones. The
probability for an arbitrary bit in the filter to be one is
1 − (1 − 1

m)kn, where m is the number of bits in the index
filter. The probability for all k bits of e|i to be ones by
chance is

p =
(
1 − (1 − 1

m
)kn

)k ≈ (1 − e−kn/m)k. (1)

With the refined design of the index filter, the exact form of p
is different due to the block idea. However, when k is small, it
can be approximated by (1) with a negligible difference [26],
which we have also confirmed by simulation.

Let X be the random variable for the number of different
indices, e|i, 1 ≤ i ≤ λ, found in the index filter. It follows a
Binomial distribution, Bino(λ, p). Hence,

Prob{X = x} =
(

λ

x

)
px(1 − p)λ−x, ∀ 1 ≤ x ≤ λ. (2)

For any index found in the filter, the probability for the
corresponding entry in the set-id table to have a checksum
equal to C(e) is 1

2s . Hence, the false-positive ratio is

Pfalse =
λ∑

x=1

Prob{X = x}(1 − (1 − 1
2s

)x
)

= 1 −
λ∑

x=0

(
λ

x

)
px(1 − p)λ−x(1 − 1

2s
)x

= 1 − (1 − p

2s
)λ ≈ λp

2s
=

λ(1 − e−kn/m)k

2s
. (3)

B. Conflict Classification Ratio

The conflict classification ratio is the probability that the
lookup function can not determine a unique set ID for a
member element. Conflict classification happens when both
of the following conditions are satisfied:

(a) ∃i ∈ [1..λ], i = d, e|i is found in the index filter.
(b) The checksum field of the corresponding entry in the set-

id table fails in resolving the false positive, i.e. the checksum
is the same as C(e).

The conditions are almost identical to those for false
positive, except that e|d is in the filter. Hence, based on
a similar analysis, we know that the number of different
indices, e|i, 1 ≤ i ≤ λ and i = d, found in the index filter
follows a Binomial distribution, Bino(λ − 1, p). The conflict
classification ratio is

Pconflict = 1 − (1 − p

2s
)λ−1 ≈ (λ − 1)(1 − e−kn/m)k

2s
. (4)

Comparing (3) and (4), it is easy to see that Pconflict ≤ Pfalse.
Hence, for a given accuracy requirement ε, we should only
make sure that

Pfalse ≤ ε. (5)

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3335

C. Insertion Failure

With n elements being inserted into the set-id table, we
give a procedure to approximately compute the number of
elements that fail during insertion and have to be placed in
the supplement hash table. According to the procedure of
insertion, the elements are first mapped to the first segment
of l

q entries through hashing. For an arbitrary entry, it will
be used to store a set ID as long as at least one element is
mapped to it, the probability of which is 1 − (1 − q

l)
n. The

expected number of used entries in the first segment, denoted
as u1, is

u1 = (1 − (1 − q

l
)n)

l

q
≈ (1 − e−

qn
l)

l

q
. (6)

Suppose exactly u1 elements store their set IDs in the first
segment. As we map n−u1 to the second segment of l

q entries,
by a similar analysis, we can derive the expected number of
used entries in the second segment. Through induction, we
have the general formula for the approximated number of used
entries in the ith segment as follows

ui = (1 − e−
q(n−�i−1

j=1 uj)

l)
l

q
, 2 ≤ i ≤ q − 1. (7)

Suppose ui elements, 1 ≤ i ≤ q − 1, store their set IDs in
the ith segment. The remaining elements are mapped to the
last segment, each being hashed to λ−q+1 candidate entries.
Let ui, q ≤ i ≤ λ, be the estimated number of elements stored
in the last segment by using the ith candidate entry. Following
a similar analysis as previously done, we have

ui = (1 − (1 − q

l
)(n−

�i−1
j=1 uj))(

l

q
−

i−1∑

j=q

uj)

≈ (1 − e−
q(n−�i−1

j=1 uj)

l)(
l

q
−

i−1∑

j=q

uj), q ≤ i ≤ λ, (8)

where we define
∑q−1

j=q uj = 0. Hence, the number U
of elements to be placed in the supplement hash table is
approximately

U = n −
λ∑

j=1

uj. (9)

Alternatively, given the values of n, q and λ, we may use
simulations to find the average number of elements in the
supplement table with respect to l, and store the results in
a table for lookup.

D. Space Requirement

The memory space taken by the index filter is m. Each
entry in the set-id table has �log2(g + 1)� + s bits, where
�log2(g + 1)� bits are used to store set ID, and s bits is used
for checksum. There are l entries in the set-id table. So the
memory space taken by the set-id table is l

(�log2(g+1)�+s
)
.

As a result, the overall memory usage of iSet is,

M = m + l
(�log2(g + 1)� + s

)
. (10)

Given an accuracy requirement (5), we will show how to
compute the system parameters, including m, l, s and thus M ,
shortly.

E. Memory Access per Lookup

To look up for an element e, we first access one block B(e)
from the index filter, and then fetch data from 0 ∼ λ entries
of the set-id table, depending on the lookup result from B(e).
As a result, the number of memory accesses for each lookup
falls in the range of [1, 1 + λ].

F. Setting System Parameters

Given an accuracy requirement ε, the maximum number n
of elements under which the accuracy requirement should be
met, a bound b on the maximum number of memory accesses
per lookup for both index filter and set-id table, and a desired
insertion-failure ratio α, we want to determine the values of
the system parameters, including l, λ, q, m, k, and s.

To look up an element, the index filter and the supplemen-
tary hash table take two memory accesses. In the worst case,
all λ indices of the element are found in the filter and thus the
set-id table takes λ memory accesses. Hence, we should set
λ = b− 2. For example, if we allow 10 memory accesses per
lookup for both index filter and set-id table in the worst case,
then λ should be set to 8. Note that the average number of
memory accesses to the set-id table is much smaller than λ.
Once λ is decided, q should be smaller than λ (e.g., by two)
to allow multiple candidate entries in the last segment of the
set-id table for reduction of the insertion-failure probability.

We want to control the number of elements stored outside
the set-id table due to insertion failure by

U ≤ αn, (11)

where the ratio α is determined based on the size of TCAM
if that is available or is set sufficiently small (e.g., 1%) such
that the size of the supplement hash table does not impose a
significant space overhead. Using (6)-(9) or the lookup table
from simulation, we can numerically compute the minimum
value of l that satisfies (11) through bi-section search in a
range [0, 2n], where l = 2n means an average load of 0.5 and
at this load we can rarely see any insertion failure as we have
discussed previously.

Next, we determine the values m, k and s together numeri-
cally based on the accuracy constraint of (5). We set the range
of k from 1 to 64 (the block size), the range of s from 0 to
log2

λ
ε (which by itself can ensure a false positive ratio of ε).

Because the ranges of k and s are small, we use two loops
for exhaustively search. For each pair of k-s values, we set
m = nk

ln 2 , which is the size of a Bloom filter with optimal k;
we then find the smallest overall space M that satisfies the
accuracy requirement (5), where M = m+l(�log2(g+1)�+s)
is the size of the index filter plus the size of the set-id table.
In summary, we try to find

min
k∈[1..64],s∈[0.. log2

λ
ε]
{M | Pfalse ≤ ε}. (12)

As a numerical example, going back to the comparison of
Table II, if n = 500,000, ε = 0.001, b = 10 and α = 1%, the
system parameters will be set as λ = 8, q = 6, l = 568,182,
m = 7.2 × 105, k = 1, and s = 12. The space requirement
is M = 1.5 × 107, the space per element is 30 bits, and the

3336 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

average number of memory accesses per lookup is 6.5 for
member elements or 6.0 for non-members.

VI. NUMERICAL EVALUATION

A. Simulation Setup

The analysis has studied the case of minimizing the memory
usage under a given accuracy requirement. In practice, we
often face the situation that the amount of on-die memory
that can be allocated for the lookup function is limited, and
we want to reduce the false-positive ratio and the conflict
classification ratio. We use simulation to compare the per-
formance of different lookup function designs under the same
space constraint.

Let the amount of available memory be M = 16 Mbits.
The number g of sets is 5000. The total number n of elements,
which are randomly distributed to the sets, varies from 320000
to 800000, such that the average memory per member element
changes from 20 bits to 50 bits. After we insert the member
elements to the sets, we test the data structure using 800000
non-member elements and 800000 randomly chosen member
elements to obtain false positive ratio and conflict classification
ratio. The final results are averaged among 10 runs with
different random seeds. We use MD5 as the hash function
to generate hash bits and CRC32 to generate checksum.

We compare three lookup approaches in terms of average
number of memory accesses per lookup, false positive ratio,
and conflict classification ratio. The parameter settings are
given below. Readers are referred to the original papers for
details.

COMB: We choose COMB with f = 16 and θ = 6,
which can encode up to

(
16
6

)
= 8008 sets. We use a group of

k = ln 2 M
6n hash functions for each bit in a code to obtain the

fewest false positives [12].
Bloomier: We hash each member to k = ln 2 l

n entries in
the filter for encoding, where l = M

�log2 g+1� is the number

of entries. This will minimize both false positive ratio and
insertion failure ratio [16].

iSet: We set the number λ of candidate entries to 8 and
divide the set-id table to q = 6 segments to bound the worst-
case memory accesses per lookup to 10. The supplement hash
table is able to hold 1% of member elements. We compute
other system parameters using the procedure in Section V-F
except that when determining the values of m, k and s jointly,
we try to find the optimal values that minimize the false posi-
tive ratio under the constraint of the total available memory M .

B. Memory Accesses per Lookup

Figure 10 compares the three approaches in terms of the
number of memory accesses per lookup. The horizontal axis
is the available memory in bits per member element encoded.
As the bits per member increase from 20 to 50, because
the total available memory is fixed, the number of member
elements encoded decreases linearly from 800000 to 320000.
COMB or Bloomier incurs the same number of memory
access per lookup for a member element and a non-member.
iSet incurs slightly different memory access overhead for

Fig. 10. Average number of memory access per lookup. The horizontal axis
is the available memory in bits per member encoded. As the bits per member
increase from 20 to 50, the total number of member elements decreases
linearly from 800000 to 320000.

Fig. 11. False positive ratio measured as the fraction of all non-member
elements misclassified as members.

member and non-member. The figure shows that the overhead
of COMB is much larger than those of iSet and Bloomier, with
the latter having the smallest overhead. More specifically, the
number of memory accesses per lookup for COMB ranges
from 32 to 96. The number of memory accesses per lookup
for iSet ranges from 6.7 to 5.2 for a member element and from
6.2 to 4.4 for a non-member. The number for Bloomier ranges
from 2 to 3. However, as we will shown next, the false-positive
ratio of Bloomier is the highest.

With more bits per member, COMB and Bloomier will take
advantage of additional space to drive down their false-positive
and conflict-classification ratios with more memory accesses
to their filters. The design of iSet is completely different.
The number of accesses to the index filter is a constant.
More memory for the filter would mean its false-positive
ratio becomes smaller, which in turn means fewer accesses
to the set-id table. However, our parameter setting attempts to
minimize the overall false positive ratio (not the number of
memory accesses). It may sometimes reduce the index filter
and increase the length of the checksum field in the set-id
table, causing up-and-down of the iSet curve in Figure 10.

C. False Positive and Conflict Classification

Our analysis shows that iSet takes less memory than oth-
ers under the same accuracy requirement. Here, if we fix
the amount of available memory, it is expected that iSet
achieves better accuracy than others. This is confirmed by
Figures 11 – 13, where Figure 11 compares the three
approaches in terms of the false positive ratio, Figure 12 in
terms of the conflict classification ratio, and Figure 13 in terms
of the error ratio (the combination of false positive ratio and

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3337

Fig. 12. Conflict classification ratio measured by the fraction of all member
elements whose set IDs cannot be uniquely determined. Note that Bloomier
does not incur any conflict classification by its design, which however results
in high false positive ratio as shown in Figure 11.

Fig. 13. Error ratio measured summary of false positive ratio and conflict
classification ratio.

conflict classification ratio). Notice the log scale on the vertical
axis.

From Figure 11, Bloomier has very high false-positive ratio
under the tight memory condition in our simulation. COMB
has the lowest false positive ratio among the three when the
number of bits per member is small, but iSet outperforms
COMB when the available memory is more than 26 bits
per member. For example, when the memory is 30 bits per
member, the false-positive ratio of Bloomier is 3.7 × 10−1,
that of COMB is 2.2 × 10−3, and that of iSet is 8.2 × 10−4.

From Figure 12, Bloomier does not incur any conflict
classification. The conflict-classification ratio of COMB is
very high. It is true that using Hamming can bring down the
conflict classification ratio, but that will increase the number
of memory accesses, which is already high as Figure 10 has
shown. iSet achieves the best balance in its false-positive ratio
and conflict-classification ratio. Its conflict classification ratio
is slightly smaller than its false positive ratio, as our theoretical
analysis has suggested. For numerical examples, when the
memory is 30 bits per member, the conflict-classification of
Bloomier is 0, that of COMB is 6.12× 10−1, and that of iSet
is 7.1 × 10−4.

In Figure 11-12, we also plot the computed false-positive
ratio and conflict-classification ratio of iSet based on the
analytical formulas in Section V under the same parameter
setting. They match very well with the simulation results.

Overall from Figure 13, the error ratio of iSet is much
smaller than those of the COMB and Bloomier.

Using Fig. 11, we can also compare different approaches
in terms of memory cost under the same false positive ratio.

Fig. 14. Insertion-failure ratios of Bloomier and iSet. COMB does not
have insertion failure by its design, which however results in high conflict
classification ratio in tight memory as shown in Figure 12.

More specifically, given any false positive ratio, we can find
from the figure the memory cost for iSet or COMB to achieve
this ratio. According to the figure, when the false positive
ratio is larger than 0.01, iSet incurs smaller memory cost than
COMB. When the false positive ratio is smaller than 0.01,
COMB incurs smaller memory cost. However, in the region
where COMB outperforms iSet in Fig. 11, it performs much
worse on conflict classification than iSet in Fig. 12. When
we consider both false positive and conflict classification, iSet
consistently outperforms COMB, as Fig. 13 shows.

D. Insertion Failure

After inserting n = 320000 ∼ 800000 elements, we
measure the insertion-failure ratios of the three approaches.
The results are shown in Figure 14. The design of COMB
does not incur any insertion failure. The insertion-failure ratio
of iSet is less than 1%. That translates into 8000 elements in
maximum stored outside of the set-id table. Bloomier has very
high insertion-failure ratio, which is consistent with the results
in Tables I-II, where Bloomier requires the most number of
bits for encoding each member element and therefore when the
available memory is too tight, a significant number of members
will not be accommodated in its filter. For numerical examples,
when the memory is 30 bits per member, the insertion-failure
rate of Bloomier is 2.0×10−1, that of iSet is 8.6×10−3, and
that of COMB is 0.

E. Hash Complexity

We compare the hash complexity of the three approaches,
which is an indication of computational cost in practical
scenarios. The approaches require multiple hash functions.
We can logically treat all hash functions as a single one
that produce a hash output stream with a sufficient number
of bits for mapping, indexing, and generating checksum pur-
poses [30]. For example, suppose we need to map e to 10 bits
in a filter whose size is 220 and each hash computation gives
128-bit output. We may compute 10 hash functions and take
20 bits of each output for indexing one bit in the filter, or make
two hash computations for 256-bit output stream (possibly by
feeding the output of the first hash computation as the input
of the second) and use the first 200 bits from the stream
to index the 10 bits in the filter. Extensive work in [30]
has demonstrated that the second approach works very well.

3338 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 6, DECEMBER 2016

Fig. 15. Number of hash bits required for each membership lookup by
COMB, Bloomier, or iSet.

Therefore, instead of comparing the number of hash functions
each approach uses, we compare the total number of hash bits
each approach needs for a lookup. It is easy to derive the
number of hash bits needed:
COMB: f × k × log2 M
Bloomier: k × log2 l
iSet: λ × k × log2 64 + λ × log2(l/q) + s, where
λ×k× log2 64 bits are used for the index filter (assuming the
processor fetches 64 bits at a time), λ× log2(l/q) bits are used
to access the set-id table, and s bits are used as checksum.

Figure 15 shows the numerical results from our simula-
tions: COMB requires 768–2304 hash bits per lookup, which
translates to 6–18 hash computations if each hash computation
generates 128 hash bits; iSet requires 185–224 hash bits per
lookup, which translates to 2 hash computations; Bloomier
requires 21–42 hash bits per lookup, which translates to 1 hash
computation. Bloomier is clearly the most light-weighted
approach, but iSet also performs well, given that its error ratio
is much smaller than the other two approaches.

VII. CONCLUSION

In this paper, we propose a novel design for multi-set
membership lookup. Through detailed analysis, we point out
that using Bloom filters to store set IDs is inefficient in both
memory space and lookup overhead. Our strategy is to separate
membership encoding and ID storage in two separate data
structures, called index filter and set-id table, respectively.
The former is a two-level block Bloom filter, and the latter
is a multi-hashing table. We show that uneven candidate-entry
distribution for the set-id table can drastically reduce insertion
failure and thus reduce memory consumption by fully utilizing
the space in the table. Analysis and simulation show that this
new design significantly outperforms the existing work under
tight memory conditions. It achieves balanced performance
in terms of number of memory accesses per lookup, false-
positive ratio, conflict-classification ratio, and number of hash
bits required per lookup.

REFERENCES

[1] H. Song, F. Hao, M. Kodialam, and T. V. Lakshman, “IPv6 lookups using
distributed and load balanced Bloom filters for 100 Gbps core router line
cards,” in Proc. IEEE INFOCOM, Apr. 2009, pp. 2518–2526.

[2] J. Brodkin, “A wireless router that tracks user activity—But for a
good reason,” Ars Technica., Jan. 2013. [Online]. Available: http://
arstechnica.com/gadgets/2013/01/a-wireless-router-that-tracks-user-
activity-but-for-a-good-reason/.

[3] Y. Lu and B. Prabhakar, “Robust counting via counter braids: An error-
resilient network measurement architecture,” in Proc. IEEE INFOCOM,
Apr. 2009, pp. 522–530.

[4] S. Dharmapurikar, P. Krishnamurthy, and D. E. Taylor, “Longest prefix
matching using Bloom filters,” IEEE/ACM Trans. Netw., vol. 14, no. 2,
pp. 397–409, Apr. 2006.

[5] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast hash
table lookup using extended Bloom filter: An aid to network processing,”
ACM SIGCOMM Comput. Commun. Rev., vol. 35, no. 4, pp. 181–192,
2005.

[6] X. Tian and Y. Cheng, “Bloom filter-based scalable multicast: Method-
ology, design and application,” IEEE Netw., vol. 27, no. 6, pp. 89–94,
Nov./Dec. 2013.

[7] B. H. Bloom, “Space/time trade-offs in hash coding with allowable
errors,” Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970.

[8] E. Horowitz, S. Sahni, and S. Rajasekaran, Computer Algorithms C++.
San Francisco, CA, USA: Freeman, 1996, ch. 3.2.

[9] E. Fredkin, “Trie memory,” Commun. ACM, vol. 3, no. 9, pp. 490–499,
1960.

[10] M. Dietzfelbinger et al., “Dynamic perfect hashing: Upper and lower
bounds,” SIAM J. Comput., vol. 23, no. 4, pp. 738–761, 1994.

[11] Y. Lu, B. Prabhakar, and F. Bonomi, “Bloom filters: Design innovations
and novel applications,” in Proc. 43rd Annu. Allerton Conf., 2005,
pp. 1006–1015.

[12] F. Hao, M. S. Kodialam, T. V. Lakshman, and H. Song, “Fast dynamic
multiple-set membership testing using combinatorial Bloom filters,”
IEEE/ACM Trans. Netw., vol. 20, no. 1, pp. 295–304, Feb. 2012.

[13] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter braids: A novel counter architecture for per-flow measure-
ment,” in Proc. ACM SIGMETRICS, Jun. 2008, pp. 121–132.

[14] Q. Zhao, J. Xu, and A. Kumar, “Detection of super sources and des-
tinations in high-speed networks: Algorithms, analysis and evaluation,”
IEEE J. Sel. Areas Commun., vol. 24, no. 10, pp. 1840–1852, Oct. 2006.

[15] C. Hermsmeyer, H. Song, R. Schlenk, R. Gemelli, and S. Bunse,
“Towards 100G packet processing: Challenges and technologies,” Bell
Labs Tech. J., vol. 14, no. 2, pp. 57–79, 2009.

[16] A. Z. Broder and M. Mitzenmacher, “Network applications of Bloom
filters: A survey,” Internet Math., vol. 1, no. 4, pp. 485–509, 2004.

[17] F. Chang, W.-C. Feng, and K. Li, “Approximate caches for
packet classification,” in Proc. IEEE INFOCOM, Mar. 2004,
pp. 2196–2207.

[18] B. Chazelle, J. Kilian, R. Rubinfeld, and A. Tal, “The Bloomier filter:
An efficient data structure for static support lookup tables,” in Proc.
ACM-SIAM SODA, 2004, pp. 30–39.

[19] A. Z. Broder and A. R. Karlin, “Multilevel adaptive hashing,” in Proc.
ACM-SIAM Symp. Discrete Algorithms (SODA), 1990, pp. 43–53.

[20] Y. Kanizo, D. Hay, and I. Keslassy, “Optimal fast hashing,” in Proc.
IEEE INFOCOM, Apr. 2009, pp. 2500–2508.

[21] F. Bonomi, M. Mitzenmacher, R. Panigrah, S. Singh, and
G. Varghese, “Beyond Bloom filters: From approximate membership
checks to approximate state machines,” ACM SIGCOMM Comput.
Commun. Rev., vol. 36, no. 4, pp. 315–326, 2006.

[22] A. Kirsch and M. Mitzenmacher, “Simple summaries for hashing
with choices,” IEEE/ACM Trans. Netw., vol. 16, no. 1, pp. 218–231,
Feb. 2008.

[23] A. Z. Broder and M. Mitzenmacher, “Using multiple hash func-
tions to improve IP lookups,” in Proc. IEEE INFOCOM, Apr. 2001,
pp. 1454–1463.

[24] H. Noda et al., “A cost-efficient high-performance dynamic TCAM
with pipelined hierarchical searching and shift redundancy architecture,”
IEEE J. Solid-State Circuits, vol. 40, no. 1, pp. 245–253, Jan. 2005.

[25] F. Putze, P. Sanders, and J. Singler, “Cache-, hash-, and space-efficient
Bloom filters,” J. Experim. Algorithmics, vol. 14, Dec. 2009, Art. no. 4.

[26] Y. Qiao, T. Li, and S. Chen, “Fast Bloom filters and their generaliza-
tion,” IEEE Trans. Parallel Distrib. Syst., vol. 25, no. 1, pp. 93–103,
Jan. 2014.

[27] L. Fan, P. Cao, J. Almeida, and A. Z. Broder, “Summary cache:
A scalable wide-area Web cache sharing protocol,” IEEE/ACM Trans.
Netw., vol. 8, no. 3, pp. 281–293, Jun. 2000.

[28] O. Rottenstreich, Y. Kanizo, and I. Keslassy, “The variable-increment
counting Bloom filter,” in Proc. IEEE INFOCOM, Mar. 2012,
pp. 1880–1888.

[29] H. Wang, H. Zhao, B. Lin, and J. Xu, “DRAM-based statistics counter
array architecture with performance guarantee,” IEEE/ACM Trans.
Netw., vol. 20, no. 4, pp. 1040–1053, Aug. 2012.

[30] Y. Qiao, T. Li, and S. Chen, “One memory access Bloom filters and their
generalization,” in Proc. IEEE INFOCOM, Apr. 2011, pp. 1745–1753.

QIAO et al.: WHEN BLOOM FILTERS ARE NO LONGER COMPACT: MULTI-SET MEMBERSHIP LOOKUP 3339

Yan Qiao received the B.S. degree in computer
science and technology from Shanghai Jiao Tong
University, China, in 2009, and the Ph.D. degree
from the University of Florida in 2014. Her advisor
is Dr. S. Chen. Her research interests include net-
work measurement, algorithms, and RFID protocols.

Shigang Chen received the B.S. degree from the
University of Science and Technology of China
in 1993, and the M.S. and Ph.D. degrees from
the University of Illinois at Urbana–Champaign in
1996 and 1999, respectively, all in computer sci-
ence. He spent three years with Cisco Systems.
He joined the University of Florida in 2002, where
he is currently a Professor with the Department of
Computer and Information Science and Engineering.
His research interests include computer networks,
Internet security, wireless communications, and

distributed computing.

Zhen Mo received the B.E. degree in information
security engineering and the M.E. degree in theory
and new technology of electrical engineering from
Shanghai Jiao Tong University in 2007 and 2010,
respectively. He is currently pursuing the
Ph.D. degree with the Department of Computer
and Information Science Engineering, University
of Florida. His research interests include cyber
security and cloud computing security.

Myungkeun Yoon received the B.S. and M.S.
degrees in computer science from Yonsei University,
South Korea, in 1996 and 1998, respectively, and
the Ph.D. degree in computer engineering from the
University of Florida in 2008. He was with the Korea
Financial Telecommunications and Clearings Insti-
tute from 1998 to 2010. He is currently an Assis-
tant Professor with the Department of Computer
Engineering, Kookmin University, South Korea.
His research interests include computer and network
security, network algorithm, and mobile network.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

