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ABSTRACT
Future RFID technologies will go far beyond today’s widely-used
passive tags. Battery-powered active tags are likely to gain more
popularity due to their long operational ranges and richer on-tag re-
sources. With integrated sensors, these tags can provide not only
static identification numbers but also dynamic, real-time informa-
tion such as sensor readings. This paper studies a general problem
of how to design efficient polling protocols to collect such real-time
information from a subset M of tags in a large RFID system. We
show that the standard, straightforward polling design is not energy-
efficient because each tag has to continuously monitor the wireless
channel and receive O(|M |) tag IDs, which is energy-consuming.
Existing work is able to cut the amount of data each tag has to re-
ceive by half through a coding design. In this paper, we propose a
tag-ordering polling protocol (TOP) that can reduce per-tag energy
consumption by more than an order of magnitude. We also reveal
an energy-time tradeoff in the protocol design: per-tag energy con-
sumption can be reduced to O(1) at the expense of longer execution
time of the protocol. Finally, we apply partitioned Bloom filters
to enhance the performance of TOP, such that it can achieve much
better energy efficiency without degradation in protocol execution
time.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Wireless communica-
tion

General Terms
Algorithms, Performance
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RFID, Energy-efficient, Polling Protocols

1. INTRODUCTION
Traditional barcodes can only be read in close ranges. RFID tags

replace barcodes with electronic circuits that can transmit identifi-
cation numbers wirelessly over a distance. The longer operational
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range makes them popular in automatic transportation payments,
object tracking, and supply chain management [1, 2, 3]. A typical
RFID system consists of one or multiple readers and numerous tags.
Each tag carries a unique identifier (ID). Tags do not communicate
amongst themselves; they communicate directly with the reader.

Passive tags are most widely used today. They are cheap, but do
not have internal power sources. They rely on radio waves emitted
from the reader for power, and have small operational ranges of a
few meters, which seriously limit their applicability. For example,
consider a large warehouse in a distribution center of a major re-
tailer, where hundreds of thousands of tagged commercial products
are stored. In such an indoor environment, if we use passive tags,
hundreds of RFID readers may have to be installed in order to ac-
cess tags in the whole area, which is not only costly but also causes
interference when nearby readers communicate with their tags si-
multaneously. It is not a good solution to use a mobile reader and
walk through the whole area whenever we need information from
tags. To automate warehouse management in large scale, a much
better choice is to use battery-powered active tags because of their
long transmission ranges. The lifetime of these tags is determined
by how their battery power is used. Energy conservation must be
one of the top priorities in any protocol design that involves active
tags.

With richer on-tag resources, active tags are likely to gain more
popularity in the future, particularly when their prices drop over
time as manufactural technologies are improved and markets are ex-
panded. These tags can be integrated with miniaturized sensors [3,
4, 5]. Not only will they report their IDs, but also they can report
dynamic, real-time information about the operation status of the tags
or the conditions of the environment.

This paper studies a general problem of how to design efficient
polling protocols to collect information from a subset of tags in a
large RFID system. For example, consider a large chilled food stor-
age facility, where each food item is attached with a RFID tag that
has a thermal sensor. A RFID reader periodically collects temper-
ature readings from tags to check whether any area is too hot (or
too cold), which may cause food spoil (or energy waste).1 Because
each area in the facility may be packed with many food items, the
temperature readings from these close-by tags are highly redundant.
Hence, it is not necessary for the reader to collect information from
all tags in the system. The reader may select a subset of tags each
time to collect temperature information. In another example, a RFID
reader periodically accesses the residual energy levels of on-tag bat-
teries to see if some tags (or their batteries) need to be replaced. If
the reader has information about which tags are new and which ones

1If a tag reports an abnormal temperature, the reader may instruct
the tag to keep transmitting beacons, which guide a mobile signal
detector to locate the tag.



are old, it may choose to only query the old tags. As we will see
later in this paper, it costs less energy to query a smaller number of
tags. On the other hand, it is a harder problem to collect information
from a subset of tags than from all tags because the reader has to
make sure that tags that are not under query do not transmit — their
transmissions will interfere with the transmissions made by tags of
interest, causing unnecessary energy waste.

Much existing research focused on designing ID-collection pro-
tocols that read IDs from all tags in a RFID system [6, 7, 8, 9, 10,
11, 12, 13, 14, 15]. In recent years, some interest is shifted to other
functions such as estimating the number of tags in a system [1, 12,
16, 17, 18, 19], detecting the missing tags [2, 20], and tag authen-
tication and privacy [21, 22]. The primary performance objective
in most papers is to minimize the execution time it takes a protocol
to read all tag IDs or perform other functions. Energy efficiency,
particularly, how to reduce energy consumption by the tags, is an
under-studied subject. There exists prior work on energy-efficient
protocols for estimating the number of tags [23], or anti-collision
protocols that minimize the energy consumption of a mobile reader
[24, 25]. To the best of our knowledge, this paper is the first to
investigate energy-efficient polling protocols for collecting informa-
tion from tags in a large RFID system.

In this paper, we first show that the standard, straightforward polling
design is not energy-efficient because each tag has to continuously
monitor the wireless channel and receive O(m) tag IDs, which is
energy-consuming if the number m of tags that the reader needs to
collect information from is large. We then show that a coded polling
protocol (CP) is able to cut the amount of data each tag has to re-
ceive by half, which means that energy consumption per tag is also
reduced by half. This is still far away from our objective of reduc-
ing energy consumption to O(1). We propose a novel tag-ordering
polling protocol (TOP) that can reduce per-tag energy consumption
by more than an order of magnitude when comparing with the coded
polling protocol. We also reveal an energy-time tradeoff in the pro-
tocol design: per-tag energy consumption can be reduced to O(1)
at the expense of longer protocol execution time. Finally, we apply
partitioned Bloom filters to enhance the performance of TOP, such
that it can achieve much better energy efficiency without degradation
in protocol execution time.

The rest of the paper is organized as follows: Section 2 gives
the system model and the problem statement. Section 3 describes a
baseline protocol. Sections 4 gives a coded polling protocol. Sec-
tion 5-6 propose a new energy-efficient polling protocol and its en-
hanced version, respectively. Section 8 presents numerical results.
Section 9 discusses the related work. Section 10 draws the conclu-
sion.

2. SYSTEM MODEL AND PROBLEM STATE-
MENT

We consider a large RFID system using active tags. Each tag car-
ries a unique ID and one or more sensors. It also has the capability
of performing certain computations as well as communicating with
the RFID reader wirelessly. The reader and the tags transmit with
sufficient power such that they can communicate over a long dis-
tance. We assume that the RFID reader knows the IDs of all tags in
the system by executing an ID-collection protocol, and it has enough
power supply.

Let N be the set of tags in the system and n = |N |. Let M be
a subset of tags, m = |M |, and M ⊆ N . Our objective is to de-
sign efficient polling protocols that collect information from tags in
M . A polling protocol may be scheduled to execute periodically. M
may change over time so that different subsets of tags are queried.

We have two performance objectives. The primary performance ob-
jective is to achieve energy efficiency. We want to minimize the
average amount of energy that a tag spends during one execution of
a polling protocol. The energy expenditure by a tag has two com-
ponents: (1) energy for transmitting its information (e.g., 32 bits) to
the reader, and (2) energy for receiving the polling request and other
information from the reader. The former is a small, fixed amount of
energy that must be spent. The latter is dependent on the protocol
design as we will see shortly. It is a variable amount of energy that
should be minimized. Simple protocol designs will result in all tags
in the system, including those not in M , to be continuously active
and unnecessarily receive a large amount of data from the reader for
an extended period of time. How to minimize such energy cost is
the focus of this paper.

Our secondary performance objective is to reduce protocol execu-
tion time. RFID systems use low-rate communication channels. For
example, in the Philips I-Code system, the rate from a reader to a tag
is about 27Kbps and the rate from a tag to a reader is about 53Kbps.
Low rates, coupled with a large number of tags, often cause long ex-
ecution times for RFID protocols. To apply such protocols in a busy
warehouse environment, it is desirable to reduce protocol execution
time as much as possible.

Communication between the reader and tags is time-slotted. The
reader’s signal synchronizes the clocks of tags. Let ttag be the length
of a time slot during which the reader is able to broadcast a tag ID,
and tinf be the length of a time slot during which a tag is able to
transmit its information.

3. BASIC POLLING PROTOCOL (BP)
In a standard, straightforward way of designing a polling proto-

col, we simply let the RFID reader broadcast the tag IDs in M one
by one. After it transmits an ID, it waits for a time slot of tinf dur-
ing which the corresponding tag transmits its information. Each tag
continuously listens to the wireless channel. Whenever it receives
an ID from the reader, the tag compares the received ID with its own
ID. If they match, the tag will transmit its information and then go
to sleep until the next scheduled execution of the protocol.

In the above protocol, each tag in M will have to receive m
2

IDs
on average from the reader before it transmits. Each tag not in M
will have to receive all m IDs. The amount of energy spent by a tag
in receiving such data grows linearly with respect to m. It takes a
constant amount of energy for a tag to receive an ID and another con-
stant amount of energy for it to transmit its information. The energy
cost of the whole system is thus O(nm). The protocol execution
time is m(ttag + tinf ).

We use a numerical example to explain the energy cost. Consider
a military base that has a large warehouse storing 50,000 weapons,
ammunition magazines, and other equipment, which are tagged with
RFID sensors. Among them, there are 1,000 sensitive devices, from
which a RFID reader needs to access information in order to make
sure that they are in good conditions or simply to confirm their pres-
ence (against unauthorized removal). Let er be the amount of en-
ergy a tag spends in receiving an ID and es be the amount of energy
a tag spends in transmitting its information. The total energy con-
sumed by all tags for transmitting is 1, 000es, and the total energy
consumed by all tags for receiving is about 50, 000, 000er . Even
though er may be smaller than es, the total amount of energy spent
by tags in receiving can be much greater than the amount spent in
transmitting.

4. CODED POLLING PROTOCOL
We show that a coded polling protocol (CP) [26] is able to reduce



the amount of data each tag has to receive by half. The protocol
assumes that each tag ID carries an identification number and a CRC
(cyclic redundancy code) for error detection. This requirement is
satisfied by the EPCglobal Gen-2 standard, where each 96-bit tag
ID contains a CRC checksum. The CRC is computed based on the
identification number and a generator. When a tag receives an ID
from a wireless channel, it computes a CRC based on the received
identification number and then compares the result with the received
CRC. If they are the same, we say the ID contains a valid CRC.

CRC has the following property: If x and y are two tag IDs with
valid CRCs, then x ⊕ y also has a valid CRC. The same property
does not hold for x ⊕ ŷ, where ŷ contains the same bits in y but in
the reverse order. For example, if y = 10110, then ŷ = 01101. We
call ŷ the reversal of y.

In the coded polling protocol, the RFID reader first arranges the
IDs in M in pairs. Each pair consists of two IDs that are arbitrarily
selected from M . Consider an arbitrary pair, x and y, which are
called each other’s paring ID. We define the polling code of the pair
as c = x⊕ ŷ.

Instead of sending out the IDs in M one after another, the reader
broadcasts the polling code of each pair one after another. After
each broadcast of a polling code c = x ⊕ ŷ, the reader waits for
two time slots, during which tag x and tag y will transmit. More
specifically, when an arbitrary tag z receives the polling code c, it
first computes z ⊕ c, and checks whether the CRC in the reversal of
z⊕c is valid. If it is, the tag will transmit its information. Otherwise,
the tag computes ẑ⊕c, and checks whether the CRC in ẑ⊕c is valid.
Again, if it is valid, the tag will transmit. Otherwise, the tag will not
transmit. We show that only tag x and tag y will transmit.

First, consider the case of z = x. The tag first computes z ⊕ c =
x ⊕ x ⊕ ŷ = ŷ. The reversal of ŷ is y. The CRC in any tag ID
(including y) is valid. Hence, tag x will transmit. Moreover, it now
knows its pairing ID, y. If x is greater than y, the tag will transmit
in the first slot after receiving the polling code; otherwise, it will
transmit in the second slot.

Second, we consider the case of z = y. The tag first computes
y⊕ c = y⊕ x⊕ ŷ. Its reversal is likely to have an invalid CRC; the
chance for an arbitrary number to contain a valid CRC is very small.
Then, the tag computes ẑ ⊕ c = ŷ ⊕ x ⊕ ŷ = x, which contains
a valid CRC. Consequently, y will transmit. Since it now knows its
pairing ID, x, it also knows in which slot it should transmit.

Finally, consider the case of z 6= x and z 6= y. The tag computes
the reversal of z⊕c = z⊕x⊕ŷ and then computes ẑ⊕c = ẑ⊕x⊕ŷ.
Both of them are likely to have invalid CRCs.

A minor problem is that y ⊕ c in the second case and z ⊕ c or
ẑ⊕ c in the third case still have a small probability to contain a valid
CRC. However, the reader can easily prevent this from happening.
It knows all tag IDs. It can precompute all polling codes and check
whether a valid CRC happens in the above cases by chance when it
is not supposed to. If this is true for a pair of tags, x and y, the reader
must break up the pair, and use them to form new pairs with other
IDs in M . Such an approach is effective because the probability for
this to happen is exceedingly small when CRC is sufficiently long.

Because each polling code represents two tag IDs, the number of
polling codes in CP is m

2
. Hence, when comparing with the basic

polling protocol, CP reduces the number of broadcasts made by the
reader by half, and it also reduces the amount of data that each tag
has to receive by half. This not only saves energy for tags, but also
reduces the protocol execution time to m

2
ttag +mtinf .

5. TAG-ORDERING POLLING PROTOCOL
(TOP)

Although CP is more efficient, the expected amount of energy
that each tag spends in receiving remains O(m). In this section,
we propose a new tag-ordering polling protocol that reduces such
energy cost to O(1).

5.1 Motivation
In the basic polling protocol, a RFID reader broadcasts m IDs in

time slots of length ttag . All tags must continuously monitor the
wireless channel in order to know whether their own IDs are in the
broadcast. In CP, the reader broadcasts m

2
polling codes also in time

slots of length ttag . Again, all tags must continuously monitor the
wireless channel. They have to keep receiving and processing the
polling codes. Each tag in the basic protocol has to receive up to m
IDs. Even though CP is more efficient, a tag still has to receive up
to m

2
codes.

We want to remove the necessity for any tag to keep monitor-
ing the wireless channel. Ideally, a tag should stay in an energy-
conserving standby mode for most of time, and only wake up at the
right time slot to receive information about itself, such as whether it
is polled and, if so, when it should transmit. To further reduce the
amount of data that tags have to receive, we let the reader broadcast
a so-called reporting-order vector V , instead of IDs in M . Each ID
in M is mapped to a bit in V through a hash function; the bit is set
as one to encode the ID in the vector. A tag only needs to check a
specific bit in V at a location determined by the hash of its ID. This
bit is called the representative bit of the tag. If its value is one, the
tag is polled by the reader for reporting, i.e., the tag belongs to M ;
if its value is zero, the tag is not polled. The vector V also carries
information about the order in which the polled tags will report their
data. Each bit whose value is one in V represents a polled tag. If a
tag finds that there are i ones in V preceding its representative bit,
it knows that it should be the (i + 1)th tag in M to report its infor-
mation. With such an ordering, it becomes possible for tags in M to
report at different times and avoid collision.

However, this basic idea has two problems. First, there should
be at least m bits in V to encode m IDs in M . The energy cost of
receiving V remains O(m). How can a tag find out the number of
ones in V preceding its representative bit without having to receive
the whole vector? Second, hash collision causes two issues. If a tag
not in M is hashed to the same bit in V as a tag in M does, it will
find its representative bit to be one, causing false positive. If two
tags in M are mapped to the same bit in V , they will transmit at
the same time, causing report collision. In the rest of this section,
we design a new tag-ordering polling protocol (TOP) to solve these
problems. It consists of three phases: ordering phase, polling phase,
and reporting phase. In the ordering phase, the reader broadcasts the
vector V so that each tag knows whether it is polled and where it is
located in the reporting order. The polling phase resolves the issues
of false positive and report collision. Finally, in the reporting phase,
tags inM report their information in the order defined by V without
collision.

5.2 Protocol Description

5.2.1 Ordering phase
The RFID reader does not broadcast any IDs or indices. It only

broadcasts the reporting-order vector, V . If V cannot fit in one time
slot of length ttag , the reader breaks the vector into segments and
broadcasts each segment in a time slot of ttag . In addition, the reader
also broadcasts the vector size v.

Knowing the vector size, a tag t is able to hash its ID and find out
the location of its representative bit in V . Because the segment size
is fixed, t also knows which segment its representative bit belongs



Figure 1: Vt is the representative segment of tag t, xt is the total
number of ones in all previous segments, and yt is the number
of ones in Vt that precede tag t’s representative bit. It is the
position of t in the reporting order. It = xt + yt.

to. This segment, denoted as Vt, is called the representative segment
of tag t. A tag will stay in the standby mode and be active only when
receiving its representative segment.

If a tag finds that its representative bit is zero, it knows for sure
that it is not a member in M . If a tag finds that its representative bit
is one, it may be a member inM or a non-member that is mapped to
a bit which a member inM is also mapped to. The latter case causes
false positive. Because the reader knows all IDs in the system, it
can pre-compute the set F of non-member tags that cause false
positive.

When the reader broadcasts any segment of V , it includes in the
same time slot the total number of ones in the previous segments. For
an arbitrary tag t, let It be the number of ones in V preceding the
representative bit of t. When tag t receives Vt, it can computes It as
the sum of (a) the number of ones in the previous segments and (b)
the number of ones in Vt before its representative bit. See Figure 1
for illustration. As we will see later, the value of It specifies when
tag t will transmit during the reporting phase.

If two tags in M are mapped to the same bit in V , they will have
the same It value and thus transmit at the same time during the re-
porting phase, causing collision. Because the reader has all IDs
in M , it knows exactly which tags will be mapped to the same
bit. This makes it easy to resolve collision. The reader simply re-
moves all but one tag that are mapped to a bit, and puts them in a
set C. These tags, together with tags in F , will not participate in the
reporting phase. They are handled separately in the polling phase.

5.2.2 Polling Phase
In this phase, the reader issues two types of polling requests. For

each tag in C, it sends a positive polling request. For each tag in F ,
it sends a negative polling request. To distinguish these two types,
the reader must transmit a one-bit flag together with a tag ID in each
request, specifying whether the polling is positive or negative and
which tag is polled.

Tags that find their representative bits to be ones in the previ-
ous phase must continuously listen to the channel during the polling
phase. After sending a positive request, the reader waits for a time
slot to receive information. The tag that finds its ID in the request
will transmit its information in this slot. This tag, which belongs to
C, will not participate in the reporting phase. After sending a neg-
ative request, the reader does not wait before sending out the next
request. The tag that finds its ID in a negative request knows that
it must belong to F and hence should not further participate in the
protocol execution.

The total number of polling requests is |F |+ |C|. By choosing an
appropriate size for the reporting-order vector, we can make sure that
|F |+ |C| = O(1) (see Section 5.3). Note that only tags inM and F
have to listen to the channel in this phase. Tags inN−M−F , which
may contain the majority of tags in the system, have already known

that they do not belong to M and thus do not need to participate in
the protocol execution.

5.2.3 Reporting phase
A tag participates in the reporting phase only if it satisfies the

following two conditions: (1) it finds that its representative bit is one
in the ordering phase, and (2) it does not find its ID in the requests
of the polling phase.

The reporting phase consists of m− |C| time slots. In each time
slot, one tag in M − C transmits its information. Recall that each
tag in M learns its index in the reporting order during the ordering
phase. The tag will transmit in the reporting phase at the time slot
of the same index.

5.2.4 Timing
Before executing the protocol, the RFID reader uses its broadcast-

ing signal to synchronize the clocks of the tags. The reader computes
the vector V and breaks it into segments. Suppose each time slot of
length ttag can carry 96 bits. We may set the segment size to be 80
bits and use the remaining 16 bits to carry the total number of ones
in the previous segments.2 The reader is able to compute the execu-
tion time T1 of the ordering phase, which is the number of segments
multiplied by ttag .

Since the reader knows all IDs in the system, it can precompute
the set F of tags that cause false positive and the set C of tags that
should not participate in the reporting phase in order to avoid colli-
sion. Based on F and C, the reader can compute the execution time
T2 of the polling phase, which is |F | × ttag + |C| × (ttag + tinf ).

Suppose all tags wake up at each scheduled execution of the pro-
tocol. The reader computes and broadcasts the values of T1 and T2

right before the ordering phase, so that the tags know when each
phase of the protocol will begin. They will remain in the standby
mode unless they have to receive their representative segments, par-
ticipate in the polling phase, or transmit their information in the re-
porting phase.

If the system requires on-demand polling of tag information in-
stead of periodic execution, there are two possible solutions to wake
the tags up in the first place. The first one is "pseudo-on-demand"
polling, where tags still wake up periodically, but the reader only
issues the polling request when needed. The second approach is to
attach a wake-up circuit to each tag, and use the two-stage wake-
up scheme proposed in [27] to activate the tags. In this approach,
tags responde almost immediately to the polling event. However,
the wake-up circuit requires the reader to be close enough so that
the radio power is strong enough to trigger the wake-up event. As a
result, we may have to deploy extra readers to cover all the tags.

5.3 Performance Analysis

5.3.1 Energy Cost
We show how to configure TOP such that the energy cost per tag

is O(1). The energy cost of a tag has four components: (1) receiv-
ing v, T1 and T2, (2) receiving a segment of V in the ordering phase,
(3) listening to the channel during the polling phase, and (4) trans-
mitting information in a slot at the reporting phase (or at the polling
phase if the tag is in C). The first two components incur small,
constant energy expenditure to every tag in the system. The fourth

2Using 16 bit to carry the number of ones in previous segments will
limit the value of m to (0, 65,535]. To get rid of this limitation, we
can use dlog2me bits instead and broadcast the value of dlog2me
to tags at the beginning of protocol. However, for the sake of sim-
plicity, we use 16 bits in this paper to help demonstrate the main
idea.



component also incurs small, constant energy cost, but only to the
tags in M . The third component incurs energy cost only to tags in
F and M . In the worse case, a tag has to listen to all |C| + |F |
polling requests from the reader. Suppose it takes one unit of energy
to receive a polling request. The total energy cost of a tag, denoted
as Ω, is

Ω ≤ |C|+ |F |+O(1). (1)

We treat |C| and |F | as random variables and derive their expected
values. Let v be the number of bits in the reporting-order vector V .
Let bi be the value of the ith bit in V , 0 ≤ i < v. For each tag in
M , the reader maps it to a random bit in V and sets the bit to one.
After encoding all m tags in V , the probability for bi to be one is

Prob{bi = 1} = 1− (1− 1

v
)m ≈ 1− e−m/v.

The bits, b0, b2, ..., bv−1, are independent of each other. Thus, the
expected number of ones in V is

∑v
i=1 Prob{bi = 1}. The value

of |C| is equal to m subtracted by the number of ones in V . Hence,
we have

E(|C|) = m−
v∑
i=1

Prob{bi = 1} ≈ m− v(1− e−m/v). (2)

A tag not in M will cause false positive when its representative bit
is one. The probability for this to happen is Prob{bi = 1}. Hence,

E(|F |) = (n−m)Prob{bi = 1} ≈ (n−m)(1− e−m/v) (3)

Both E(|C|) and E(|F |) are monotonically decreasing functions of
v. We show that E(|C|) = O(1) if v is sufficiently large. Let
v = m2

2
. From Taylor expansion, we know that

1− e−m/v =
m

v
− 1

2!
(
m

v
)2 +

1

3!
(
m

v
)3 − 1

4!
(
m

v
)4...

≥ m

v
− 1

2!
(
m

v
)2

Applying it to (2), we have

E(|C|) = m− v(1− e−m/v) ≤ 1

2!

m2

v
= 1. (4)

Next we show that E(|F |) = O(1) if v is sufficiently large. If
n = m, E(|F |) = 0. Now assume n > m. Let v = − m

ln(1− 1
n−m

)
.

It can be transformed into

(n−m)(1− e−m/v) = 1.

The left side is E(|F |). Therefore, if we choose v = max{m
2

2
,

− m

ln(1− 1
n−m

)
}, we have

E(Ω) ≤ E(|C|) + E(|F |) +O(1) ≤ 1 + 1 +O(1) = O(1).

We conclude that TOP can be configured such that the expected en-
ergy cost per tag is O(1). As we will see shortly, the protocol exe-
cution time increases when v becomes too large. To strike a balance
between energy cost and protocol execution time, we may choose
a value of v much smaller than max{m

2

2
,− m

ln(1− 1
n−m

)
}. In Sec-

tion 8, we use simulations to study the performance of TOP under
practical values of v. For example, when v = 24m, the amount of
data that a tag receives in TOP is more than an order of magnitude
smaller than what a tag has to receive in CP.

We characterize the energy cost in the polling phase by counting
the amount of data (in Kilobits) that a tag has to receive. Numerical
results are shown in the first plot of Figure 2, where n = 50, 000
and m = 5, 000, 10, 000, or 25, 000, corresponding to three curves
in the plot. Clearly, as v increases, the energy cost decreases.

5.3.2 Execution Time
The protocol execution time also consists of four components. To

begin with, it takes the reader a small, constant time to broadcast v,
T1 and T2. The time for the ordering phase is v

l
ttag , where l is the

segment size. The time for the polling phase is |F | × ttag + |C| ×
(ttag + tinf ). The time for the reporting phase is |M − C| × tinf .
Hence, the total execution time is T = ( v

l
+ |F |+ |C|)ttag +m×

tinf +O(1).
From (2) and (3), the expected protocol execution time is

E(T ) =
[v
l

+ (n−m)(1− e−m/v) +m

− v(1− e−m/v)
]
ttag +m · tinf +O(1)

≈
[v
l

+
(n−m)m

v

]
ttag +m · tinf +O(1) (5)

The second plot of Figure 2 presents the protocol execution time
(excluding the constantO(1)) when n = 50, 000,m = 5, 000, 10, 000,
or 25, 000, ttag = 3297µs, and tinf = 906µs; see Section 8 for
how they are determined. Interestingly, as v increases, the execu-
tion time first decreases and then increases. We can find the optimal
value of v that minimizes the execution time from δE(T )

δv
= 0.

Combining the results in the first and second plots, we can figure
out the tradeoff relation between energy cost and protocol execution
time, which is presented in the third plot. As v becomes large, the
energy cost decreases at the expense of increased execution time.

6. ENHANCED TAG-ORDERING POLLING
PROTOCOL (ETOP)

6.1 Motivation
If we do not want to significantly increase execution time, we

cannot choose a large value for v. In this case, we must find other
means to lower energy cost. The key is to reduce the number of
IDs that have to be transmitted in the polling phase. Namely, we
should reduce the number of tags in F and C. Let’s first focus our
discussion on false positive. Consider an arbitrary tag t /∈ M . Its
representative segment is Vt. Let q be the number of tags in M that
are also mapped to Vt. False positive occurs if t and one of those
q tags have the same representative bit. The probability for this to
happen is 1− (1− 1

l
)q , where l is the number of bits in Vt.

To further reduce the false-positive probability, we can implement
each segment of V as a Bloom filter [28, 29]. The reader uses mul-
tiple hash functions to map each tag to k(> 1) representative bits
in V , instead of just one in TOP. More specifically, for each mem-
ber t′ ∈ M , the reader first maps it to a representative segment Vt′
through a hash function whose range is [0, v

l
). Then the reader fur-

ther maps t′ to k representative bits in Vt′ and set them to ones.
After all members in M are encoded in the segments of V , the

reader broadcasts the segments in the ordering phase. A tag t only
listens for its representative segment Vt and then checks its repre-
sentative bits. If any representative bit is zero, the tag can not be in
M . If all representative bits are ones, the tag may be a member in
M or a false positive. In the case of false positive, even though the
tag does not belong to M , every one of its representative bits is set
because it is also a representative bit of a member tag in M . The
probability for this to happen is (1 − (1 − 1

l
)kq)k, where q is the

number of tags inM whose representative segments are also Vt. For
example, if l = 80, k = 3, and q = 2, the false-positive probability
is just 3.8× 10−4, much lower than 1− (1− 1

l
)q = 2.5× 10−2 in

TOP under the same parameters.
Bloom filters can reduce the false-positive probability. But it is
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Figure 2: First plot: Energy cost per tag with respect to v. Second plot: Protocol execution time with respect to v. Third plot:
Energy-time tradeoff controlled by v.

Figure 3: Vt is the representative segment of tag t. Vt is evenly
divided into k partitions, each having b l

k
c bits. Tag t has one

representative bit in every partition.

more difficult to use them to carry the reporting order, based on
which the tags will take turn to transmit during the reporting phase.
In TOP, we use the number of ones that precede the representative
bit of a tag to determine the tag’s position in the reporting order.
Bloom filters use multiple representative bits to encode each mem-
ber. The representative bits of different members may overlap in an
arbitrary way. Hence, we cannot simply use all bits whose values are
ones to represent tags in M because there is no one-to-one mapping
between them.

In the following, we design an enhanced tag-ordering polling pro-
tocol (ETOP) to solve the above problem. ETOP uses partitioned
Bloom filters, which not only reduce false positive and encode the
reporting order, but also reduce |C| as well as overall execution time
of the protocol.

6.2 Protocol Description
The main difference between ETOP and TOP is that ETOP im-

plements each segment of V as a partitioned Bloom filter instead
of a simple bit array. When we describe the protocol of ETOP, we
focuses on the difference while omitting the details that it shares in
common with TOP.

In a partitioned Bloom filter, the l bits of a segment are evenly di-
vided into k partitions. Each partition has b l

k
c bits. See Figure 3 for

illustration. For every member tag t in M , the reader applies a hash
function on its ID to obtain a number of hash bits. The reader uses
dlog2 ve hash bits to map t to a representative segment Vt, and then
uses kdlog2

l
k
e hash bits to further map t to one representative bit

in every partition of the segment. Like a classical Bloom filter, the
partitioned Bloom filter sets k representative bits for each encoded
member; unlike a classical Bloom filter, a partitioned Bloom filter
spreads the k representative bits in k different partitions.

After receiving its representative segment, a tag checks the k rep-
resentative bits to determine if it is a member in M . False positive
cases are handled by the reader in the polling phase as usual.

How does a tag t know its position in the reporting order? First
we consider the reporting order among tags that are encoded in the
same segment Vt. Since every tag has exactly one representative bit

in each partition of Vt, we may be able to use one of the partitions
to carry the order information. In other words, if there is a partition
P ∗ whose number of ones is equal to the number of tags encoded
in Vt, we know that there must be a one-to-one mapping between
these tags and the ‘1’ bits in P ∗. We can use the order of ‘1’ bits in
P ∗ as the reporting order of the corresponding tags. We will explain
shortly how the reader makes sure that such a partition exists. When
the reader sends out Vt, in the same time slot it also sends the total
number xt of tags that are encoded in all previous segments of V .
The position of tag t in the reporting order can be computed from xt
and the information in P ∗, which we will further explain later.

We want to make sure that any segment of V always has a parti-
tion whose number of ones is equal to the number of tags encoded
in the segment. The reader has to do some extra work. After en-
coding all tags in M , the reader examines the partitions one by one
for each segment. If there is not such a partition, the reader removes
an encoded tag and places it in the set C, which will be explicitly
polled in the polling phase. The reader keeps removing tags until it
finds a partition that satisfies the above requirement. Note that the
requirement is always satisfied when the number of tags encoded in
a segment is one.

After receiving its representative segment Vt, a tag t ∈ M com-
putes its position in the reporting order as follows: It finds out a
partition P ∗ in Vt that has the largest number of ones. This partition
must have a one-to-one mapping between ‘1’ bits and encoded tags.
Let yt be the number of ones in P ∗ that precedes the representa-
tive bit of t. The tag computes its position in the reporting order as
yt + xt. Recall that xt is the number of tags that are encoded in the
previous segments. It is received together with Vt in the same time
slot.

The polling phase and the reporting phase of ETOP are identical
to their counterparts in TOP.

6.3 Performance Analysis

6.3.1 Energy Cost
We show that ETOP can be configured such that the energy cost

per tag is O(1). The actual energy cost will be studied by simula-
tions in Section 8.

ETOP has the same upper bound formula on per-tag energy cost
as TOP, shown in (1), but with different values of |C| and |F |. In
the following, we will derive |C| and |F | for ETOP. Let mi be the
number of tags in M that are encoded in the ith segment, 0 ≤ i <
v
l
. Each tag in M has a probability of l

v
to be mapped to the ith

segment. Hence, mi follows a binomial distribution Bino(m, l
v

).

Prob{mi = x} =

(
m

x

)
(
l

v
)x(1− l

v
)m−x (6)



LetCi be a subset ofC, containing the tags that are removed from
the ith segment. We know the following facts: (1) When mi = 0,
|Ci| = 0. (2) When mi = 1, |Ci| = 0. (3) When mi ≥ 1,
|Ci| ≤ mi − 1. Hence, we must have

E(|Ci|) < (mi − 1) ·
(

1− Prob{mi = 0} − Prob{mi = 1}
)

= (mi − 1) ·
(
1− (1− l

v
)m − ml

v
(1− l

v
)m−1).

Since (1− l
v

)m > 1− ml
v

, we have

E(|Ci|) <
mi(m− 1)2l2

v2
<
mim

2l2

v2
.

|C| is the sum of all |Ci|s, 0 ≤ i < v
l
. We know

∑v/l
i=1mi = m.

So,

E(|C|) =

v/l∑
i=1

E(|Ci|) < m
m2l2

v2
=
m3l2

v2
.

If we let v = v1 =
√
m3l2, E(|C|) < 1.

Consider an arbitrary tag not in M . Without loss of generality,
suppose it is mapped to the ith segment. In any partition of the
segment, the probability for it to share a representative bit with a tag
in M is 1 − (1 − k

l
)mi . The probability for that to happen in all

partitions is [1− (1− k
l
)mi ]k. Hence, the probability for the tag to

cause false positive, denoted as pf is

pf =

m∑
q=1

Prob{mi = q}
[
1− (1− k

l
)q
]k

< (1− Prob{mi = 0})
[
1− (1− k

l
)m
]k
.

≈ (1− e−lm/v)(1− e−km/l)

The expected valus of |F | is

E(|F |) = (n−m) · pf
< (n−m)(1− e−lm/v)(1− e−km/l) (7)

If we let v = v2 = − ml

ln (1− 1

(n−m)(1−e−km/l)
)

and apply it to (7),

we have E(|F |) < 1. Now, if we choose v = max{v1, v2}, the
expected energy cost E(Ω) ≤ E(|C|) +E(|F |) +O(1) < 1 + 1 +
O(1) = O(1). Therefore, ETOP can also be configured such that
the energy cost per tag is O(1).

6.3.2 Execution Time
Following the same analysis as in Section 5.3.2, it is easy to see

that ETOP has the same formula for protocol execution time as TOP:
T = ( v

l
+ |F |+ |C|)ttag +m× tinf +O(1), but the values of |C|

and |F | are different. Our simulation results in Section 8 show that
ETOP has smaller execution time than TOP.

7. CHANNEL ERROR
Channel error may corrupt the data exchanged between the reader

and tags. For example, if a negative polling request is corrupted,
the tag that is not supposed to participate in the reporting phase will
transmit and cause collision in the reporting phase. A segment of V
sent from the reader may be corrupted so that tags encoded in this
segment will not report their information. There exists other scenar-
ios of corruption in the execution of TOP or ETOP. They cause two
effects: 1) A tag in M does not transmit its information in the slot
when it is supposed to transmit, and 2) it transmits but collides with
another tag that is not supposed to transmit in the slot. To detect
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Figure 4: Energy and time comparison. Parameters: m = 0.1n,
v = 24m for TOP and ETOP. Note that the horizontal ‘0’ line is
not at the bottom in order to make the ETOP curve visible.

these cases, when a tag transmits, we require it to include a CRC
checksum that is computed from the concatenation of the informa-
tion bits and the tag’s ID. When the reader expects information from
a tag in a time slot, if the slot turns out to be empty or the data re-
ceived in the slot do not carry a correct CRC, the reader knows that
information from the tag is not correctly received. At the end of the
protocol, all missed information can be retrieved by polling the tags
directly.

8. SIMULATION RESULTS
In this section, we evaluate the performance of our new proto-

cols, the tag ordering polling protocol (TOP) and the enhanced tag
ordering polling protocol (ETOP). We compare them with the basic
polling protocol (BP) and the coded polling protocol (CP). Our eval-
uation uses two performance metrics: (1) the average number of bits
that each tag has to receive during the protocol execution, and (2)
the overall execution time.

We only consider energy consumption of tags in receiving infor-
mation for two reasons. First, this is the major, variable portion of
the energy cost per tag. As we will see shortly, each tag may have
to receive hundreds of thousands of bits during protocol execution,
whereas it only sends a small, fixed amount, e.g., 32 bits. Second,
the energy cost for tags in M to transmit their information is the
same for all protocols. Omitting them does not affect the compari-
son.

We use the following parameters to configure the simulation: each
tag ID is 96 bits long, information reported from a tag to the reader is
32 bits long, and each segment in ETOP is 80 bits long and divided
into 4 partitions, i.e. k = 4. The transmission time is based on the
parameters of the Philips I-Code specification [30]. The rate from
a tag to the reader is 53Kb/sec; it takes 18.88µs for a tag to trans-
mit one bit. Any two consecutive transmissions (from the reader to
tags or vice versa ) are separated by a waiting time of 302µs. The
value of tinf is calculated as the sum of a waiting time and the time
for transmitting the information, which is 18.88µs multiplied by the
length of the information. For 32-bit information, tinf = 906µs.
The transmission rate from the reader to tags is 26.5Kb/sec; it takes
37.76µs for the reader to transmit one bit. The value of ttag is cal-
culated as the sum of a waiting time and the time for transmitting a
96-bit ID. The result is 3927µs.

8.1 Varying number n of tags
We first vary the number n of tags in the system from 10,000 to

100,000. We set v = 24m and m = 0.1n, i.e., 10% of all tags
are selected by the reader to report information. Figure 4 compares
four protocols in terms of energy cost and protocol execution time.
The left plot shows energy costs. TOP and ETOP reduce energy
consumption by one or multiple orders of magnitude. For example,



when n = 100, 000, per-tag energy cost in TOP is 9.4% of the cost
in CP, and 5.0% of the cost in BP. Per-tag energy cost in ETOP is
just 0.52% of the cost in CP, and 0.28% of the cost in BP. The right
plot shows the execution time comparison. TOP requires 25% less
time than BP, but 27% more time than CP. ETOP requires 55% less
time than BP and 24% less time than CP.

In summary, CP reduces both energy cost and execution time
nearly by half when comparing with BP. TOP makes great improve-
ment over CP in terms of energy cost, but has modestly higher ex-
ecution time. ETOP considerably outperforms CP in terms of both
energy cost and execution time.

8.2 Varying size v of reporting-order vector
Next, we show how the value of v influences the performance of

TOP and ETOP. We set n = 50, 000 and m = 5, 000, 10, 000,
or 25, 000. We vary v from 4m to 64m and use simulation to find
energy cost per tag and protocol execution time. Figure 5 shows the
simulation results. The first two plots present the average amount of
data each tag receives in TOP and ETOP, respectively. The curves
match the theoretical results we have given in Section 5.3. When v
is reasonably large, e.g., v ≥ 7m, ETOP consumes less energy than
TOP. The third and forth plots present the protocol execution time
of TOP and ETOP, respectively. ETOP also requires less time than
TOP when v ≥ 7m.

9. RELATED WORK
Much existing work on RFID systems is to design anti-collision

ID-collection protocols, which read IDs from all the tags in the sys-
tem. They mainly fall into two categories. One is ALOHA-based
[10, 11, 12, 13, 14, 15], and the other is Tree-cased [6, 7, 8, 9]. The
ALOHA-based protocols work as follows: The reader broadcasts a
query request. With a certain probability, each tag chooses a time
slot in the current frame to transmit its ID. If there is a collision,
the tag will continue participating in the next frame. This process
repeats until all tags are identified successfully.

The tree-based protocols organize all IDs in a tree of ID prefixes
[6, 7, 8]. Each in-tree prefix has two child nodes that have one
additional bit, ‘0’ or ‘1’. The tag IDs are leaves of the tree. The
RFID reader walks through the tree. As it reaches an in-tree node, it
queries for tags with the prefix represented by the node. When mul-
tiple tags match the prefix, they will all respond and cause collision.
Then the reader moves to a child node by extending the prefix with
one more bit. If zero or one tag responds (in the one-tag case, the
reader receives an ID), it moves up in the tree and follows the next
branch. Another type of tree-based protocols tries to balance the tree
by letting the tags randomly pick which branches they belong to [6,
9, 31].

Other work designs time-efficient protocols to estimate the num-
ber of tags in a large RFID system [1, 16, 17, 18]. Kodialam and
Nandagopal [16] propose a probabilistic model to estimate the num-
ber of tags. A follow-up work can be found in [1]. Qian et al. [18]
present the Lottery-Frame scheme (LoF) for a multiple-reader sce-
nario. The work by Li et al. focuses on energy efficiency, instead of
time efficiency, on their solutions for estimating the number of tags
in a system [23].

Tan, Sheng and Li [2] design a Trust Reader Protocol (TRP) to
detect the missing-tag event with probability α when the number of
missing tags exceeds m, where α and m are system parameters. Li,
Chen and Ling [20] propose a series of protocols to exactly identify
the IDs of the missing tags. Yang et al. [21] design a Single Echo
based Batch Authentication (SEBA) to authenticate a batch of tags.

10. CONCLUSION

In this paper, we propose two energy-efficient polling protocols,
TOP and ETOP, for large-scale RFID systems. These protocols are
designed to collect real-time information from a subset of tags in
the system. Our primary objective is to lower energy consumption
by tags in order to extend their lifetime. The new protocols can
be configured to achieve O(1) energy cost per tag. Performance
tradeoff between energy cost and execution time can be made by
controlling the size of the reporting-order vector. Simulation results
show that the new protocols are able to cut energy cost by more than
an order of magnitude, when comparing with other protocols.
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