
One Memory Access Bloom Filters and Their
Generalization

Yan Qiao Tao Li Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Abstract—The Bloom filters have been extensively applied in
many network functions. Their performance is judged by three
criteria: processing overhead, space overhead, and false positive
ratio. Due to wide applicability, any improvement to the perfor-
mance of Bloom filters can potentially have broad impact in many
areas of networking research. In this paper, we propose Bloom-
1, a new data structure that performs membership check in one
memory access, which compares favorably with the k memory
accesses of a classical Bloom filter. We also generalize Bloom-1
to Bloom-g, allowing performance tradeoff between membership
query overhead and false positive ratio. We thoroughly examine
the variants in this new family of filters, and show that they can be
configured to outperform the Bloom filters with a smaller number
of memory accesses, a smaller or equal number of hash bits, and a
smaller and comparable false positive ratio in practical scenarios.
We also perform experiments based on a real traffic trace to
support our new filter design.

I. INTRODUCTION

The Bloom filters are compact data structures for high-speed
online membership check against large data sets [1], [2]. They
have wide applications in routing-table lookup [3], [4], [5],
online traffic measurement [6], [7], peer-to-peer systems [8],
[9], web systems [10], firewall design [11], intrusion detection
[12], etc. Many network functions require membership check. A
firewall may be configured with a large watch list of addresses
that are collected by an intrusion detection system. If the
requirement is to log all packets from those addresses, the
firewall must check each arrival packet to see if the source
address is a member of the list. Another example is routing-
table lookup. The lengths of the prefixes in a routing table range
from 8 to 32. The router can extract 25 prefixes of different
lengths from the destination address of an arrival packet. It
needs to determine which prefixes are in the routing tables
[3], and this is a membership check problem. Some traffic
measurement functions require the router to collect the flow
labels [7], [13], such as source/destination address pairs or
address/port tuples that identify TCP flows. Each flow label
should be collected only once. When a new packet arrives, the
router must check whether the flow label extracted from the
packet belongs to the set that has already been collected before.
In the final example for the membership check problem, we
consider the CBAC (context-based access control) function in
Cisco routers. When a router receives a packet, it may want to
first determine whether the addresses/ports in the packet has a
matching entry in the CBAC table before performing the CBAC
lookup.

In all above examples, we face the same fundamental prob-
lem: For a large data set, which may be an address list, an
address prefix table, a flow label set, a CBAC table, or other
types of data, we want to check whether an arbitrarily given
element belongs to this set or not. If there is no performance
requirement, this problem can be easily solved by storing the
set in a sorted array and using binary search for membership
check, or keeping the set in a hash table and using linked lists
to resolve hash collision. However, these approaches are inad-
equate if there are stringent speed and memory requirements.

Modern high-end routers and firewalls implement their per-
packet operations mostly in hardware. They are able to forward
each packet in a couple of clock cycles. To keep up with
such high throughput, many network functions that involve per-
packet processing also have to be implemented in hardware. In
particular, they cannot store the data structures for membership
check in DRAM because the bandwidth and delay of DRAM
access cannot match the packet throughput at the line speed.
Consequently, the recent research trend is to implement mem-
bership check in the high-speed on-die cache memory, which
is typically SRAM. The SRAM is however small and must be
shared among many online functions. This prevents us from
storing a large data set directly in the form of a sorted array
or a hash table. A Bloom filter is a bit array that encodes the
membership of data elements in a set. Each member in the set
is hashed to k bits in the array at random locations, and these
bits are set to ones. To query for the membership of a given
element, we also hash it to k bits in the array and see if these
bits are all ones.

The performance of the Bloom filter and its many variants is
judged based on three criteria: The first one is the processing
overhead, which is k memory accesses and k hash operations
for each membership query. The overhead limits the highest
throughput that the filter can support. Because both SRAM
and the hash function circuit may be shared among different
network functions, it is important for them to minimize their
processing overhead in order to achieve good system perfor-
mance. The second performance criterion is the space overhead.
Minimizing the space requirement to encode each member
allows a network function to fit a large set in the limited SRAM
space for membership check. The third criterion is the false
positive ratio. A Bloom filter may mistakenly claim a non-
member to be a member due to its lossy encoding method.
There is a tradeoff between the space overhead and the false
positive ratio. We can reduce the latter by allocating more

This paper was presented as part of the main technical program at IEEE INFOCOM 2011

978-1-4244-9921-2/11/$26.00 ©2011 IEEE 1745

memory.
Given the fact that the Bloom filters have been applied so

extensively in the network research, any improvement to their
performance can potentially have broad impact. In this paper,
we design a new data structure, called Bloom-1, which makes
just one memory access to perform membership check. Yet, it
can be configured to outperform the commonly-used Bloom
filter with k = 3. We point out that the traditional Bloom
filter is not practical due to its high overhead when the optimal
value of k is used to achieve a low false positive ratio. We
generalize Bloom-1 to Bloom-2 and Bloom-3, which allow 2
and 3 memory accesses, respectively. We show that they can
achieve the low false positive ratio of the Bloom filter with the
optimal k, without incurring the same kind of high overhead.
We perform thorough analysis to reveal the properties of the
new family of filters proposed in this paper. We discuss how
they can be applied for static or dynamic data sets. We also
perform experiments based on a real traffic trace to study the
performance of the new filters.

II. BLOOM-1: ONE MEMORY ACCESS BLOOM FILTER

A. Bloom Filter

A Bloom filter is a space-efficient data structure for member-
ship check. It includes an array B of m bits, which are initial-
ized to zeros. The array stores the membership information of a
set as follows: Each member e of the set is mapped to k bits that
are randomly selected from B through k hash functions, Hi(e),
1 ≤ i ≤ k, whose range is [0,m−1). Kirsch and Mitzenmacher
have shown that we can only use two hash functions and derive
additional hash functions by a simple linear combination of the
output of two hash functions [14]. To encode the membership
information of e, the bits, B[H1(e)], ..., B[Hk(e)], are set to
ones. These are called the membership bits in B for the element
e. Some frequently-used notations in this paper can be found
in Table I.

To check the membership of an arbitrary element e′, if the
k bits, B[Hi(e

′)], 1 ≤ i ≤ k, are all ones, e′ is considered to
be a member of the set. Otherwise, it is not a member.

We can treat the k hash functions logically as a single one
that produces k log2 m hash bits. For example, suppose m is
220, k = 3, and a hash routine outputs 64 bits. We can extract
three 20-bit segments from the first 60 bits of a single hash
output and use them to locate three bits in B. Hence, from now
on, instead of specifying the number of hash functions required
by a filter, we will state the number of hash bits that are needed,
which is denoted as h. The work by Kirsch and Mitzenmacher
[14] gives us an efficient way to produce many hash bits, but it
does not reduce the number of hash bits required by the Bloom
filter.

A Bloom filter doesn’t have false negatives, meaning that if
it answers that an element is not in the set, it is truly not in
the set. The filter however has false positives, meaning that if it
answers that an element is in the set, it may not be really in the
set. According to [2], the false positive ratio fB , which is the
probability of mistakenly treating a non-member as a member,

TABLE I
NOTATIONS

n number of members in a set
B or B1 bit array

m number of bits in the bit array B or B1
k number of membership bits for each element
h number of hash bits for locating all membership bits

k∗
the optimal value of k that minimizes the false
positive ratio of a Bloom filter

k1∗
the optimal value of k that minimizes the false
positive ratio of a Bloom-1 filter

fB , fB1, fBg
false positive ratios of a Bloom filter, a Bloom-1
filter, and a Bloom-g filter, respectively

l number of words in a bit array
w number of bits in a word, m = l × w

B(k = 3)
Bloom filter that uses three bits to encode each
member

B1(k = 3)
Bloom-1 filter that uses three bits to encode each
member

B1(h = 3 log2 m) Bloom-1 filter that uses up to 3 log2 m hash bits

B(optimal k)
Bloom filter that uses the optimal number k∗ of bits
to encode each member to minimize its false positive
ratio

B1(optimal k)
Bloom-1 filter that uses the optimal number k1∗ of
bits to encode each member to minimize its false
positive ratio

is

fB = (1− (1− 1

m
)nk)k ≈ (1− e−

nk
m)k, (1)

where n is the number of members in the set. Obviously, the
false positive ratio decreases as m increases, and increases
as n increases. The optimal value of k (denoted as k∗) that
minimizes the false positive ratio can be derived by taking the
first-order derivative on (1) with respect to k, then letting the
right side be zero, and solving the equation. The result is

k∗ = ln 2×m/n ≈ 0.7m/n. (2)

B. Bloom-1 Filter

To check the membership of an element, a Bloom filter
requires k memory accesses, where k is typically chosen as
3 in many papers. We introduce a new data structure, called
the Bloom-1 filter, which requires one memory access for
membership check. The basic idea is that, instead of mapping
an element to k bits randomly selected from the entire bit
array, we map it to k bits in a word that is randomly selected
from the bit array. A word is defined as a continuous block
of bits that can be fetched from the memory to the processor
in one memory access. In today’s computer architectures, most
general-purpose processors fetch words of 32 bits or 64 bits.
Specifically designed hardware may access words of 72 bits or
longer.

A Bloom-1 filter is an array B1 of l words, each of which
is w bits long. The total number m of bits is l×w. To encode
a member e during the filter setup, we first obtain a number of
hash bits from e, and use log2 l hash bits to map e to a word
in B1. It is called the membership word of e in the Bloom-1
filter. We then use k log2 w hash bits to further map e to k
membership bits in the word and set them to ones. The total
number of hash bits that are needed is log2 l+k log2 w. Suppose

1746

m = 220, k = 3, w = 26, and l = 214. Only 32 hash bits are
needed, smaller than the 60 hash bits required in the previous
Bloom filter example under similar parameters.

To check if an element e′ is a member in the set that is
encoded in a Bloom-1 filter, we first perform hash operations
on e′ to obtain log2 l+k log2 w hash bits. We use log2 l bits to
locate its membership word in B1, and then use k log2 w bits
to identify the membership bits in the word. If all membership
bits are ones, it is considered to be a member. Otherwise, it is
not.

The change from using k random bits in the array to using
k random bits in a word may appear simple. But it is also
fundamental. An important question is how it will affect the
performance. A more interesting question is how it will open up
new design space to configure various new filters with different
performance properties. This is what we will investigate in
depth.

The false negative ratio of a Bloom-1 filter is also zero. The
false positive ratio fB1 of Bloom-1, which is the probability of
mistakenly treating a non-member as a member, is derived as
follows: Let F be the false positive event that a non-member
e′ is mistaken for a member. The element e′ is hashed to
a membership word. Let X be the random variable for the
number of members that are mapped to the same membership
word. Let x be a constant in the range of [0, n], where n is the
number of members in the set. Assume we use fully random
hash functions. When X = x, the conditional probability for
F to occur is

Prob{F |X = x} = (1− (1− 1

w
)xk)k. (3)

Obviously, X follows the binomial distribution, Bino(n, 1
l),

because each of the n elements may be mapped to any of the
l words with equal probabilities. Hence,

Prob{X = x} =
(
n

x

)
(
1

l
)x(1− 1

l
)n−x, ∀ 0 ≤ x ≤ n. (4)

Therefore, the false positive ratio can be written as

fB1 = Prob{F} =
n∑

x=0

(
Prob{X = x} · Prob{F |X = x}

)
=

n∑
x=0

((
n

x

)
(
1

l
)x(1− 1

l
)n−x(1− (1− 1

w
)xk)k

)
. (5)

C. Impact of Word Size

We first investigate the impact of word size w on the
performance of a Bloom-1 filter. If n, l and k are known, we can
numerically obtain the optimal word size that minimizes (5).
However, in reality, we can only decide the amount of memory
(i.e., m) to be used for a filter, but cannot choose the word size
once the hardware is installed. In the left plot of Figure 1, we
compute the false positive ratios of Bloom-1 under three word
sizes: 32, 64 and 72 bits, when the total amount of memory is
fixed at m = 220. Note that the number of words, l = m

w , is
inversely proportional to the word size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

w = 32
w = 64
w = 72

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0 0.05 0.1 0.15 0.2

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

w = 32
w = 64
w = 72

Fig. 1. Left Plot: False positive ratios for Bloom-1 under different word sizes.
Right Plot: Magnified false positive ratios for Bloom-1 under different word
sizes.

The horizontal axis in the figure is the load factor, n
m ,

which is the number of members stored by the filter divided
by the number of bits in the filter. Since most applications
require relatively small false positive ratios, we zoom in at
the load-factor range of [0, 0.2] for a detailed look in the
right plot of Figure 1. The result shows that comparable false
positive ratios are observed for the word sizes commonly seen
in existing hardware. The reason is that fB1 is a decreasing
function in both w and l. Hence, even though a larger word
size tends to decrease the false positive ratio, it also results in a
smaller number of words and thus a larger number of members
encoded in each word, which tends to increase the false positive
ratio. These two factors somewhat cancel each other. Without
losing generality, we choose w = 64 in our computations and
simulations for the rest of the paper.

D. Bloom-1 v.s. Bloom with k = 3

We compare the performance of three types of filters: (1)
B(k = 3), which represents a Bloom filter that uses three bits
to encode each member; (2) B1(k = 3), which represents a
Bloom-1 filter that uses three bits to encode each member; (3)
B1(h = 3 log2 m), which represents a Bloom-1 filter that uses
the same number of hash bits as B(k = 3) does.

Let k1∗ be the optimal value of k that minimizes the false
positive ratio of the Bloom-1 filter in (5). It can be computed as
follows: Take the first-order derivative with respect to k, then
let the right side be zero, and solve the equation numerically for
the optimal value of k. It may also be computed directly from
(5) through bisection search or exhaustive search. Exhaustive
search is not expensive because k1∗ is a small integer typically
less than 15, as we will show shortly.

For B1(h = 3 log2 m), we are allowed to use 3 log2 m
hash bits, which can encode up to 3 log2 m−log2 l

log2 w membership
bits in the filter, where log2 l hash bits are used to locate the
membership word and log2 w hash bits are used to locate each
membership bit in the word. However, it is not necessary to use
more than the optimal number k1∗ of membership bits. Hence,
B1(h = 3 log2 m) actually uses min{k1∗, 3 log2 m−log2 l

log2 w }
membership bits to encode each member.

Table II compares the three filters in terms of the number of
memory accesses and the number of hash bits needed for each
membership query. They together represent the query overhead
and control the query throughput. First, we compare B(k = 3)
and B1(k = 3). The Bloom-1 filter saves not only memory

1747

TABLE II
QUERY OVERHEAD COMPARISON OF BLOOM-1 FILTERS AND BLOOM

FILTER WITH k = 3.

Data Structure # memory access # hash bits
B(k = 3) 3 3 log2 m
B1(k = 3) 1 log2 l + 3 log2 w

B1(h = 3 log2 m) 1 ≤ 3 log2 m

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(k=3)
B1(k=3)

B1(h=3log m)

Fig. 2. Performance comparison in terms of false positive ratio. Parameters:
w = 64 and m = 220.

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0 0.02 0.04 0.06 0.08 0.1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(k=3)
B1(k=3)

B1(h=3log m)

Fig. 3. Magnified false positive comparison in load-factor range of [0, 0.1].

accesses but also hash bits. For example, when m = 220 and
w = 64, B1(k = 3) requires about half of the hash bits
needed by B(k = 3). When the hash routine is implemented in
hardware (such as CRC [15]), the memory access may become
the performance bottleneck, particularly when the filter’s bit
array is located off-chip or, even if it is on-chip, the bandwidth
of the cache memory is shared by other system components.
In this case, the query throughput of B1(k = 3) will be three
times of the throughput of B(k = 3).

Next, we consider B1(h = 3 log2 m). Even though it still
makes one memory access to fetch a word, the processor may
check more than 3 bits in the word for a membership query.
If the operations of hashing, accessing memory, and checking
membership bits are pipelined and the memory access is the
performance bottleneck, the throughput of B1(h = 3 log2 m)
will also be three times of the throughput of B(k = 3).

Finally, we compare the false positive ratios of the three
filters in Figure 2. We believe most real applications require
small false positive ratios. Hence, we zoom in for a detailed
look at the load-factor range of [0, 0.1] in Figure 3, where the
false positive ratios fall below 0.025. The figures show that the

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1o
p

ti
m

al
 n

u
m

 o
f

m
em

b
er

sh
ip

 b
it

s

load factor n/m

B(optimal k)
B1(optimal k)

Fig. 4. Optimal number of membership bits with respect to the load factor.
Parameters: m = 220 and w = 64.

TABLE III
QUERY OVERHEAD COMPARISON OF BLOOM-1 FILTER AND BLOOM FILTER

WITH OPTIMAL NUMBER OF MEMBERSHIP BITS. PARAMETERS: m = 220

AND w = 64.

a. Number of memory accesses per query
Load Factor n/m

0.04 0.08 0.16 0.32 0.64
B(optimal k) 17 9 4 2 1
B1(optimal k) 1 1 1 1 1

b. Number of hash bits per query
Load Factor n/m

0.04 0.08 0.16 0.32 0.64
B(optimal k) 340 180 80 30 20
B1(optimal k) 62 50 38 26 20

overall performance of B1(k = 3) is comparable to that of
B(k = 3), but its false positive ratio is slightly worse when the
load factor is small. B1(h = 3 log2 m) is consistently better
than B(k = 3).

E. Bloom-1 v.s. Bloom with Optimal k

We can reduce the false positive ratio of a Bloom filter or a
Bloom-1 filter by choosing the optimal number of membership
bits. From (2), we find the optimal value k∗ that minimizes the
false positive ratio of a Bloom filter. From (5), we can find the
optimal value k1∗ that minimizes the false positive ratio of a
Bloom-1 filter. The values of k∗ and k1∗ with respect to the
load factor are shown in Figure 4. When the load factor is less
than 0.1, k1∗ is significantly smaller than k∗.

We use B(optimal k) to denote a Bloom filter that uses the
optimal number k∗ of membership bits, and B1(optimal k) to
denote a Bloom-1 filter that uses the optimal number k1∗ of
membership bits. For B(optimal k), the number of memory
access per membership query is k∗, and the number of hash
bits needed is k∗ log2 m. For B1(optimal k), the number of
memory access per query is 1, and the number of hash bits
needed is log2 l + k1∗ log2 w.

To make the comparison more concrete, we present the
numerical results of memory access overhead and hashing
overhead with respect to the load factor in Table III. For
example, when the load factor is 0.04, the Bloom filter requires
17 memory accesses and 340 hash bits to minimize its false
positive ratio, whereas the Bloom-1 filter requires only 1
memory access and 62 hash bits. In practice, the load factor is

1748

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(optimal k)
B1(optimal k)

Fig. 5. False positive ratios of the Bloom filter and the Bloom-1 filter with
optimal k. Parameters: m = 220 and w = 64.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 0 0.05 0.1 0.15 0.2

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(optimal k)
B1(optimal k)

Fig. 6. Magnified false positive comparison in load-factor range of [0, 0.2].

determined by the application requirement on the false positive
ratio. If an application requires a very small false positive ratio,
it has to choose a small load factor.

Next, we compare the false positive ratios of B(optimal k)
and B1(optimal k) with respect to the load factor in Figure 5.
We also zoom in for a detailed look at the load factor range
of [0, 0.2] in Figure 6, where the false positive ratio is below
0.1. The performance of the Bloom-1 filter is comparable to
that of the Bloom filter when the load factor is not too small.
But when the load factor is smaller than 0.1, the Bloom filter
has a much lower false positive ratio than the Bloom-1 filter.
On one hand, we must recognize the fact that, as shown in
Table III, the overhead for the Bloom filter to achieve its low
false positive ratio is simply too high to be practical. On the
other hand, it raises a challenge for us to improve the design of
the Bloom-1 filter so that it can match the performance of the
Bloom filter at much lower overhead. In the next section, we
generalize the Bloom-1 filter to allow performance-overhead
tradeoff, which provides flexibility for practitioners to achieve
a lower false positive ratio at the expense of modestly higher
query overhead.

III. BLOOM-g: A GENERALIZATION OF BLOOM-1

A. Bloom-g Filter

As a generalization of Bloom-1 filter, a Bloom-g filter maps
each member e to g words instead of one, and spreads its k
membership bits evenly in the g words. More specifically, we
use g log2 l hash bits derived from e to locate g membership
words, and then use k log2 w hash bits to locate k membership

bits. The first one or multiple words are each assigned dkg e
membership bits, and the remaining words are each assigned
bkg c bits, so that the total number of membership bits is k.

When g = k, exactly one bit is set in each membership
word. This special Bloom-k is identical to a Bloom filter with
k membership bits. (Note that Bloom-k may happen to pick
the same membership word more than once. Hence, just like
a Bloom filter, Bloom-k allows more than one membership bit
in a word.)

To check the membership of an element e′, we have to access
g words. Hence the query overhead includes g memory accesses
and g log2 l + k log2 w hash bits.

The false negative ratio of a Bloom-g filter is zero and the
false positive ratio fBg of the Bloom-g filter, is derived as
follows: Each member encoded in the filter randomly selects g
membership words. There are n members. Together they select
gn membership words (with replacement). These words are
called the encoded words. In each encoded word, k

g bits are
randomly selected to be set as ones during the filter setup. To
simplify the analysis, we use k

g instead of taking the ceiling or
floor.

Now consider an arbitrary word D in the array. Let X
be the number of times this word is selected as an encoded
word during the filter setup. Assume we use fully random
hash functions. When any member randomly selects a word
to encode its membership, the word D has a probability of 1

l
to be selected. Hence, X is a random number that follows the
binomial distribution Bino(gn, 1

l). Let x be a constant in the
range [0, gn].

Prob{X = x} =
(
gn

x

)
(
1

l
)x(1− 1

l
)gn−x. (6)

Consider an arbitrary non-member e′. It is hashed to g
membership words. A false positive happens when its mem-
bership bits in each of the g words are ones. Consider an
arbitrary membership word of e′. Let F be the event that the
k
g membership bits of e′ in this word are all ones. Suppose this
word is selected for x times as an encoded word during the
filter setup. We have the following conditional probability:

Prob{F |X = x} = (1− (1− 1

w
)
x k

g)
k
g . (7)

The probability for F to happen is

Prob{F} =
gn∑
x=0

(
Prob{X = x} · Prob{F |X = x}

)
=

gn∑
x=0

((
gn

x

)
· (1

l
)x · (1− 1

l
)gn−x · (1− (1− 1

w
)
x k

g)
k
g

)
(8)

Element e′ has g membership words. Hence, the false posi-
tive ratio is
fBg = (Prob{F})g

=

[gn∑
x=0

((
gn

x

)
· (1

l
)x · (1− 1

l
)gn−x · (1− (1− 1

w
)
x k

g)
k
g

)]g
.

(9)

1749

TABLE IV
QUERY OVERHEAD COMPARISON OF BLOOM-2 FILTER AND BLOOM FILTER

WITH k = 3.

Data Structure # memory access # hash bits
B(k = 3), B3(k = 3) 3 3 log2 m

B2(k = 3) 2 2 log2 l + 3 log2 w
B2(h = 3 log2 m) 2 ≤ 3 log2 m

B. Bloom-g v.s. Bloom with k = 3

We compare the performance and overhead of the Bloom-g
filters and the Bloom filter with k = 3. Because the overhead
of Bloom-g increases with g, it is highly desirable to use a
small value for g. Hence, we focus on Bloom-2 and Bloom-3
filters as typical examples in the Bloom-g family. We observe
that increasing the value of g beyond 3 does not bring much
gain in false positive ratio.

We compare the following filters: (1) B(k = 3), the Bloom
filter with k = 3; (2) B2(k = 3), the Bloom-2 filter with k = 3;
(3) B2(h = 3 log2 m), the Bloom-2 filter that is allowed to
use the same number of hash bits as B(k = 3) does. In this
subsection, we do not consider Bloom-3 because it is equivalent
to B(k = 3), as we have discussed in Section III-A.

From (9), when g = 2, we can numerically find the optimal
value of k, denoted as k2∗, that minimizes the false positive
ratio. Similarly, when g = 3, we can find the optimal k3∗.
The filter B2(h = 3 log2 m) uses 3 log2 m hash bits, among
which 2 log2 l bits are used to locate two membership words
and the remaining bits are used to locate up to 3 log2 m−2 log2 l

log2 w
membership bits. However, we shall not use more than the
optimal number k2∗ of bits. Therefore, the number of mem-
bership bits for each element in B2(h = 3 log2 m) is set to
be min{k2∗, 3 log2 m−2 log2 l

log2 w }. Note that it is not expensive to
exhaustively search for the value of k2∗ or k3∗ based on (9)
because it must be less than the word size (e.g., 64).

Table IV compares the query overhead of three filters. The
Bloom filter, B(k = 3), needs 3 memory accesses and 3 log2 m
hash bits for each membership query. The Bloom-2 filter,
B2(k = 3), requires 2 memory accesses and 2 log2 l+3 log2 w
hash bits. It is easy to see 2 log2 l + 3 log2 w = 3 log2 m −
log2 l < 3 log2 m. Hence, B2(k = 3) incurs fewer memory
accesses and fewer hash bits than B(k = 3). On the other
hand, B2(h = 3 log2 m) uses the same number of hash bits as
B(k = 3) does, but makes fewer memory accesses.

Figure 7 presents the false positive ratios of B(k = 3),
B2(k = 3) and B2(h = 3 log2 m). Figure 8 gives a detailed
look at the load-factor range of [0, 0.1]. The figures show
that B(k = 3) and B2(k = 3) have almost identical false
positive ratios, whereas B2(h = 3 log2 m) performs better.
For example, when the load factor is 0.04, the false positive
ratio of B(k = 3) is 1.5 × 10−3 and that of B2(k = 3) is
1.6× 10−3, while the false positive ratio of B2(h = 3 log2 m)
is 3.1 × 10−4, about one fifth of the other two. Considering
that B2(h = 3 log2 m) uses the same number of hash bits as
B(k = 3) but only 2 memory accesses per query, it is a very
useful substitute of the Bloom filter to build fast and accurate
data structures for membership check.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(k=3)
B2(k=3)

B2(h=3log m)

Fig. 7. False positive ratios of Bloom filter and Bloom-2 filter. Parameters:
m = 220 and w = 64.

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.02 0.04 0.06 0.08 0.1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(k=3)
B2(k=3)

B2(h=3log m)

Fig. 8. Magnified false positive comparison in load-factor range of [0, 0.1].

 0

 10

 20

 30

 40

 50

 60

 70

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

o
p

ti
m

al
 n

u
m

b
er

 o
f

m
em

b
er

sh
ip

 b
it

s

load factor n/m

B(optimal k)
B1(optimal k)
B2(optimal k)
B3(optimal k)

Fig. 9. Optimal number of membership bits with respect to the load factor.
Parameters: m = 220 and w = 64.

C. Bloom-g v.s. Bloom with Optimal k

We now compare the Bloom-g filters and the Bloom filter
when they use the optimal numbers of membership bits deter-
mined from (1) and (9), respectively. We use B(optimal k)
to denote a Bloom filter that uses the optimal number k∗

of membership bits to minimize the false positive ratio. We
use Bg(optimal k) to denote a Bloom-g filter that uses the
optimal number kg∗ of membership bits, where g = 1, 2 or 3.
Figure 9 compares their numbers of membership bits (i.e., k∗,
k1∗, k2∗ and k3∗). It shows that the Bloom filter uses many
more membership bits when the load factor is small.

Next we compare the filters in terms of query overhead. For
1 ≤ g ≤ 3, Bg(optimal k) makes g memory accesses and uses
g log2 l+kg∗ log2 w hash bits per membership query. Numerical
comparison is provided in Table V. In order to achieve a small
false positive ratio, one has to keep the load factor small, which

1750

TABLE V
QUERY OVERHEAD COMPARISON OF BLOOM FILTER AND BLOOM-g FILTER

WITH OPTIMAL k. PARAMETERS: m = 220 AND w = 64.

a. Number of memory accesses per query
Load Factor n/m

0.04 0.08 0.16 0.32 0.64
B(optimal k) 17 9 4 2 1
B1(optimal k) 1 1 1 1 1
B2(optimal k) 2 2 2 2 1
B3(optimal k) 3 3 3 2 3

b. Number of hash bits per query
Load Factor n/m

0.04 0.08 0.16 0.32 0.64
B(optimal k) 340 180 80 30 20
B1(optimal k) 62 50 38 26 20
B2(optimal k) 94 70 52 40 20
B3(optimal k) 126 90 66 40 20

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(optimal k)
B1(optimal k)
B2(optimal k)
B3(optimal k)

Fig. 10. False positive ratios of Bloom and Bloom-g with optimal k.
Parameters: m = 220 and w = 64.

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.1

 0 0.05 0.1 0.15 0.2

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(optimal k)
B1(optimal k)
B2(optimal k)
B3(optimal k)

Fig. 11. Magnified false positive comparison in load-factor range of [0, 0.2].

means that B(optimal k) will have to make a large number of
memory accesses and use a large number of hash bits. For
example, when the load factor is 0.08, it makes 9 memory
accesses with 180 hash bits per query. When the load factor is
0.04, it makes 17 memory accesses with 340 hash bits, whereas
the Bloom-1, Bloom-2 and Bloom-3 filters make just 1, 2 and
3 memory accesses with 62, 94 and 126 hash bits, respectively.

Figure 10 presents the false positive ratios of the Bloom and
Bloom-g filters. Figure 11 gives a magnified view for the load-
factor range of [0, 0.2]. As we already know in Section II-E,
B1(optimal k) performs worse than B(optimal k). But the
false positive ratio of B2(optimal k) is very close to that
of B(optimal k). Furthermore, the curve of B3(optimal k)
is almost entirely overlapped with that of B(optimal k) for

the whole load-factor range. The results indicate that we do
not need to increase g beyond 3, and with just two memory
accesses per query, B2(optimal k) works almost as good as
B(optimal k), even though the latter makes many more mem-
ory accesses.

D. Discussion

The mathematical and numerical results demonstrate that
Bloom-2 and Bloom-3 have smaller false positive ratios than
Bloom-1 at the expense of larger query overhead. Below we
give an intuitive explanation: Bloom-1 uses a single hash to
map each member to a word before encoding. It is well known
that a single hash cannot achieve an evenly distributed load;
some words will have to encode much more members than
other words, and some words may be empty as no words are
mapped to them. This uneven distribution of members to the
words is the reason for larger false positives. Bloom-2 maps
each member to two words and splits the membership bits
among the words. Bloom-3 maps each member to three words.
They achieve better load balance such that most words will
each encode about the same number of membership bits. This
helps them improve their false positive ratios.

IV. USING BLOOM-g IN A DYNAMIC ENVIRONMENT

In order to compute the optimal number of membership bits,
we must know the values of n, m, w, and l. The value of m,
w and l are known once the amount of memory for the filter is
allocated. The value of n is known only when the filter is used
to encode a static set of members. In practice, however, the
filter may be used for a dynamic set of members. For example,
a router may use a Bloom filter to store a watch list of IP
addresses, which are identified by the intrusion detection system
as potential attackers. The router inspects the arrival packets and
logs those packets whose source addresses belong to the list.
If the watch list is updated once a week or at the midnight of
each day, we can consider it as a static set of addresses during
most of the time. However, if the system is allowed to add new
addresses to the list continuously during the day, the watch list
becomes a dynamic set. In this case, we do not have a fixed
optimal value of k∗ for the Bloom filter. One approach is to
set the number of membership bits to a small constant, such as
three, which limits the query overhead. In addition, we should
also set the maximum load factor to bound the false positive
ratio. If the actual load factor exceeds the maximum value, we
allocate more memory and set up the filter again in a larger bit
array.

The same thing is true for the Bloom-g filter. For a dynamic
set of members, we do not have a fixed optimal number of
membership bits, and the Bloom-g filter will also have to
choose a fixed number of membership bits. The good news
for the Bloom-g filter is that its number of membership bits
is unrelated to its number of memory accesses. The flexible
design allows it to use more membership bits while keeping
the number of memory accesses small or even a constant one.

Comparing with the Bloom filter, we may configure a Bloom-
g filter with more membership bits for a smaller false positive

1751

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

 0.018

 0 0.02 0.04 0.06 0.08 0.1

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

load factor n/m

B(k=3)
B1(k=6)
B2(k=5)

Fig. 12. False positive ratios of the Bloom filter with k = 3, the Bloom-1
filter with k = 6, and the Bloom-2 filter with k = 5. Parameters: m = 220

and w = 64.

ratio, while in the mean time keeping both the number of
memory accesses and the number of hash bits smaller. Imagine
a filter of 220 used for a dynamic set of members. Suppose
the maximum load factor is set to be 0.1 to ensure a small
false positive ratio. Figure 12 compares the Bloom filter with
k = 3, the Bloom-1 filter with k = 6, and the Bloom-2 filter
with k = 5. As new members are added over time, the load
factor increases from zero to 0.1. In this range of load factors,
the Bloom-2 filter has significantly smaller false positive ratios
than the Bloom filter. When the load factor is 0.04, the false
positive ratio of Bloom-2 is just one fourth of the false positive
ratio of Bloom. Moreover, it makes fewer memory accesses
per membership query. The Bloom-2 filter uses 58 hash bits per
query, and the Bloom filter uses 60 bits. The false positive ratios
of the Bloom-1 filter are close to or slightly better than those
of the Bloom filter. It achieves such performance by making
just one memory access per query and uses 50 hash bits.

V. EXPERIMENT

We further evaluate the Bloom-g filters through experiments
using real network traces.

A. Experiment Setup

Imagine that an intrusion detection system maintains a watch
list consisting of previously-identified external sources, which
exhibit suspicious behaviors that match the patterns of worm
attacks, DDoS attacks, scanning or reconnaissance. The intru-
sion detection system wants to further analyze the packets from
these hosts in order to capture the real offenders. It needs to
match the source addresses of the incoming packets against the
watch list and log the ones whose addresses are members of
the list. While the whole watch list is stored in a hash table
located in DRAM, it is also encoded in a Bloom or Bloom-g
filter whose small size can fit in SRAM in order to keep up
with the line speed. Suppose the watch list is updated once a
day. It can be treated as a static list during operation.

We obtain inbound packet header traces from the main
gateway at our campus. They contain 2,064,081 distinct source
IP addresses and 2,192,707 distinct destination addresses. We
randomly select 25,000 source addresses from the traces and
place them in the watch list. We generate 10 different watch
lists, perform the experiment for each of them, and average the

TABLE VI
QUERY OVERHEAD COMPARISON OF BLOOM FILTER WITH k = 3 AND

BLOOM-g FILTER WITH h = 3 log2 m. PARAMETERS: n = 25, 000 AND
w = 64.

a. Number of memory accesses per query
data structure # memory access
B(k = 3) 3

B1(h = 3 log2 m) 1
B2(h = 3 log2 m) 2

b. Number of hash bits per query
m

data structure 125Kb 250Kb 500Kb
B(k = 3) 51 54 57

B1(h = 3 log2 m) 29 42 55
B2(h = 3 log2 m) 40 54 56

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 150 200 250 300 350 400 450 500

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

m (Kb)

B(k=3)
B1(h=3log m)
B2(h=3log m)

Fig. 13. False positive ratios of Bloom with k = 3 and Bloom-g with
h = 3 log2 m in real trace experiment. Parameters: n = 25, 000 and w = 64.

results. We feed the traffic traces through the filters as well as
the hash table to identify the matching source addresses and
compute false positive ratios based on the number of matches
by the filters and the number of matches by the hash table.

Each experiment consists of two phases: the initialization
phase and the execution phase. In the initialization phase, we
set up the Bloom/Bloom-g filters, as well as the hash table, by
using a watch list of addresses. We always allocate the same
amount of memory to the Bloom filters and the Bloom-g filters
for fair comparison. We use six filters. They are (a) two Bloom
filters: B(k = 3) and B(optimal k), and (b) four Bloom-g
filters: B1(h = 3 log2 m), B2(h = 3 log2 m), B1(optimal k),
and B2(optimal k). Their definitions can be found in Section
II and Section III.

In the execution phase, we perform a membership query in
each filter for the source address of each packet. If a filter
claims that it is a member but the source is not found in the
hash table, it is a false positive.

B. Performance Comparison of Bloom and Bloom-g

First, we compare the performance of B(k = 3), B1(h =
3 log2 m) and B2(h = 3 log2 m). We vary the size m of the
filters from 125Kb to 500Kb, which translates into 5 to 20 bits
per member in the watch list. Let w = 64. Table VI presents
the query overhead of the Bloom filter and the Bloom-g filters.
B(k = 3), B1(h = 3 log2 m) and B2(h = 3 log2 m) requires
3, 1 and 2 memory accesses respectively for each query.
B1(h = 3 log2 m) and B2(h = 3 log2 m) also require less hash
bits than B(k = 3). For example, when m = 125Kb, B(k = 3)

1752

TABLE VII
QUERY OVERHEAD COMPARISON OF BLOOM FILTER AND BLOOM-g FILTER

WITH OPTIMAL k. PARAMETERS: n = 25, 000 AND w = 64.

a. Number of memory accesses per query
m

data structure 125Kb 250Kb 500Kb
B(optimal k) 3 7 14
B1(optimal k) 1 1 1
B2(optimal k) 2 2 2

b. Number of hash bits per query
m

data structure 125Kb 250Kb 500Kb
B(optimal k) 51 126 266
B1(optimal k) 29 42 55
B2(optimal k) 40 60 86

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 150 200 250 300 350 400 450 500

fa
ls

e
p

o
si

ti
v

e
ra

ti
o

m (Kb)

B(optimal k)
B1(optimal k)
B2(optimal k)

Fig. 14. False positive ratios of Bloom and Bloom-g with optimal k in real
trace experiment. Parameters: n = 25, 000 and w = 64.

requires 51 hash bits per query, while B1(h = 3 log2 m) and
B2(h = 3 log2 m) only need 29 and 40 hash bits respectively
for each query.

Figure 13 presents the false positive ratios of the filters with
respect to the amount of memory m. As our theoretical analysis
has predicted, the false positive ratio of B2(h = 3 log2 m) is
smaller than that of B(k = 3). B1(h = 3 log2 m) also has a
slightly smaller false positive ratio than B(k = 3) when m is
larger than 250Kb. When m is smaller than 250Kb, it yields a
slightly larger false positive ratio than B(k = 3). Given that the
throughput of B1(h = 3 log2 m) can potentially be up to three
times that of B(k = 3), it is an attractive option in practice
despite of its slightly higher false positive ratio.

Next, we compare B(optimal k), B1(optimal k) and
B2(optimal k). Table VII presents the query overhead of
the Bloom filter and Bloom-g filters. When m varies from
125Kb to 500Kb, the query overhead of B(optimal k) increases
dramatically. When m = 500Kb, for example, B(optimal k)
requires 14 memory accesses and 266 hash bits for each query,
making it impractical. In comparison, B1(optimal k) requires
only one memory access and 55 hash bits, while B2(optimal k)
requires just two memory accesses and 86 hash bits. They
remain practical solutions under this setting.

Figure 14 presents the false positive ratios of the filters with
respect to m. The false positive ratio of B2(optimal k) is com-
parable to that of B(optimal k) even though its query overhead
is much smaller. It is an excellent candidate for applications
that require a very low false positive ratio. The false positive
ratio of B1(optimal k) is larger than that of B2(optimal k),

but has even smaller overhead, which represents a performance-
overhead tradeoff.

VI. CONCLUSION

In this paper, we propose one memory access Bloom filters
and their generalization. The new family of data structures en-
riches the design space of the Bloom filters and their application
scope by reducing the query overhead to allow high throughput.
Using a number of random bits in a word instead of from the
entire bit array, we analyze the impact of this design change in
terms of overhead and performance. This change also opens the
door for constructing other variants for performance tradeoff.
In this enlarged design space, we can configure filters that not
only make fewer memory accesses but also have comparable
or superior false positive ratios in scenarios where the classical
Bloom filter with the optimal value of k incurs too much
overhead to be practical.

REFERENCES

[1] B. H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors,” Communications of the ACM, vol. 13, no. 7, pp. 422–426, 1970.

[2] A. Broder and M. Mitzenmacher, “Network Applications of Bloom
Filters: a Survey,” Internet Mathematics, vol. 1, no. 4, pp. 485–509, 2004.

[3] S. Dharmapurikar, P. Krishnamurthy, and D. Taylor, “Longest Prefix
Matching Using Bloom Filters,” In Proc. of ACM SIGCOMM, August
2003.

[4] H. Song, S. Dharmapurikar, J. Turner, and J. Lockwood, “Fast Hash Table
Lookup Using Extended Bloom Filter: an Aid to Network Processing,”
In Proc. of ACM SIGCOMM, August 2005.

[5] H. Song, F. Hao, M. Kodialam, and T. Lakshman, “IPv6 Lookups Using
Distributed and Load Balanced Bloom Filters for 100Gbps Core Router
Line Cards,” In Proc. of IEEE INFOCOM, April 2009.

[6] A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li, “Space-Code Bloom
Filter for Efficient Per-Flow Traffic Measurement,” In Proc. of IEEE
INFOCOM, March 2004.

[7] Y. Lu and B. Prabhakar, “Robust Counting via Counter Braids: an
Error-Resilient Network Measurement Architecture,” In Proc. of IEEE
INFOCOM, April 2009.

[8] P. Reynolds and A. Vahdat, “Efficient Peer-to-Peer Keyword Searching,”
In Proc. of the International Middleware Conference, June 2003.

[9] A. Kumar, J. Xu, and E. Zegura, “Efficient and Scalable Query Routing
for Unstructured Peer-to-Peer Networks,” In Proc. of IEEE INFOCOM,
March 2005.

[10] L. Fan, P. Cao, J. Almeida, and A. Broder, “Summary Cache: A Scalable
Wide-Area Web Cache Sharing Protocol,” IEEE/ACM Transactions on
Networking, vol. 8, no. 3, pp. 281–293, 2000.

[11] L. Maccari, R. Fantacci, P. Neira, and R. Gasca, “Mesh Network
Firewalling with Bloom Filters,” IEEE International Conference on
Communications, June 2007.

[12] D. Suresh, Z. Guo, B. Buyukkurt, and W. Najjar, “Automatic Compilation
Framework for Bloom Filter Based Intrusion Detection,” Reconfigurable
Computing: Architectures and Applications, vol. 3985, pp. 413–418,
2006.

[13] Y. Lu, A. Montanari, B. Prabhakar, S. Dharmapurikar, and A. Kabbani,
“Counter Braids: a Novel Counter Architecture for Per-Flow Measure-
ment,” In Proc. of ACM SIGMETRICS, June 2008.

[14] A. Kirsch and M. Mitzenmacher, “Less Hashing, Same Performance:
Building a Better Bloom Filter,” In Proc. of the 14th conference on Annual
European Symposium, September 2006.

[15] M. K. F. Hao and T. Lakshman, “Building High Accuracy Bloom Filters
Using Partitioned Hashing,” In Proc. of the 2007 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems, June 2007.

1753

