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Abstract: Background: Many HIV research projects are plagued by the high missing rate of self-
reported information during data collection.  Also, due to the sensitive nature of the HIV research data, 
privacy protection is always a concern for data sharing in HIV studies. 

Methods: This paper applies a data masking approach, called triple-matrix masking [1], to the context 
of HIV research for ensuring privacy protection during the process of data collection and data sharing. 

Results: Using a set of generated HIV patient data, we show step by step how the data are randomly transformed (masked) 
before leaving the patients’ individual data collection device (which ensures that nobody sees the actual data) and how the 
masked data are further transformed by a masking service provider and a data collector. We demonstrate that the masked 
data retain statistical utility of the original data, yielding the exactly same inference results in the planned logistic 
regression on the effect of age on the adherence to antiretroviral therapy and in the Cox proportional hazard model for the 
age effect on time to viral load suppression.   

Conclusion: Privacy-preserving data collection method may help resolve the privacy protection issue in HIV research. The 
individual sensitive data can be completely hidden while the same inference results can still be obtained from the masked 
data, with the use of common statistical analysis methods. 

Keywords: Contingency table analysis, Cox regression, general linear model, logistic regression, privacy-preserving data 
collection. 

1. INTRODUCTION 

 Since human immunodeficiency virus (HIV) was first 
clinically observed in 1981, the number of infections has 
steadily increased over the past three decades. It was 
estimated by CDC that the HIV incidence in the United 
States was around 50,000 per year. As of 2010, there were 
about 1,144,500 persons aged 13 years or older living with 
HIV infection in the United States, among which about 
15.8% were not aware of their infections [2]. With new 
treatments, approximately 85% of HIV patients survive more 
than 4 years after the infection [3]. The mandatory domestic 
care and treatment programs result in significant increment 
of the federal funding for HIV over the course of the 
epidemic. The federal budget for HIV in the fiscal year 2015 
is estimated to be $30.4 billion, which reflects an increment 
of $5.4 billion since 2009 [4]. HIV research plays an 
irreplaceable role in providing better patient care and more 
reasonable medical resource allocation. 
 The availability of patient data, particularly truthful data, 
is critical in HIV studies. However, such data are sensitive to 
the patients. Studies have shown that disclosing sensitive 
personal information may lead to risks of discrimination, 
social stigma, and physical harm, where sensitive  
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information can be related to genetics, mental health, 
reproductive care, substance abuse and sexually transmitted 
diseases [5]. In extreme cases, the risks can extend beyond 
the individual to his or her family, employer or others. 
 As a result, privacy concern presents a serious obstacle to 
researchers in their effort to obtain truthful patient data. 
More specifically, without ensuring privacy during the data 
collection process, researchers face the problem of missing 
data in two categories: missing of subjects and missing of 
items. Missing of subjects refers to those patients who do not 
consent to release their information in HIV studies. Missing 
of items refers to those patients who agree to participate in 
the study but refuse to provide some sensitive self-reported 
information because they do not have enough trust in the 
confidentiality protection. A significant amount of HIV data 
such as substance use, medication adherence and sexual 
behaviors were often determined by self-reported data and 
participants often under-report this kind of sensitive 
information [6]. The importance of HIV self-reported data 
has been widely acknowledged [7, 8], but the integrity of 
sexual behavior data has also been questioned since Kinsey’s 
pioneering survey sexuality in 1950’s [9, 10]. The rate of 
missing data in HIV research can be high. For example, in a 
research studying the relationship characteristics associated 
with sexual risk behavior among MSM (men who have sex 
with men) in committed relationships, the Sexual Agreement 
Investment Scale score had roughly 20% of values missing, 
which is a nontrivial amount of incomplete data [11]. Such 
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missing data can lead to severe underreport and inaccurate 
estimation. 

 The relatively high rate of missing or skewed information 
during data collection can potentially cause bias in HIV 
research. To address the privacy issue, this paper adapts a 
generic privacy-preserving data collection method, called 
triple-matrix masking and proposed by Wu et al. (2014) [1] 
to the context of HIV studies with domain-specific 
considerations in an effort to relieve the privacy concern and 
encourage patients to report truthful data in HIV research. 
The proposed approach enhances current practice with new 
technologies for full privacy protection, ensuring that raw 
data stay with patients and only masked data are collected. 
Not only will de-identification be now performed directly by 
patient devices right after data are produced, but also the data 
themselves are completely masked right away, such that 
sensitive information can be transferred without worry of 
identification or data leak. These technologies hold the 
promise of removing the trust obstacle, promoting objective 
data collection, and helping unrestricted sharing of data 
across different HIV studies. The masked data do not give 
out individual information but the statistical inference on 
parameters of interest can be conducted with the same results 
on masked data as on the raw data, under general linear 
model, chi-square test, logistic regression, and Cox 
proportional hazard regression. The motive of this work is to 
contribute to the security of sensitive data of HIV patients, 
beyond the simple removal of personal identifiers from 
databases. As an added value, this additional security may 
lead to a less cumbersome IRB approval process and it will 
encourage data retention and sharing even after research 
projects are completed. 

 The rest of the paper is organized as follows: Section 2 
discusses the related work. Section 3 briefly summarizes the 
generic triple-masking method for privacy-preserving data 
collection. Section 4 adapts the method to the domain of HIV 
studies through an example, and shows how various 
statistical analyses can be performed on the masked data. 
Section 5 draws the conclusion. 

2. RELATED WORK 

 Traditionally, to mitigate the privacy concern in HIV 
studies, the researchers first try to build patients’ confidence 
in the pre-data collection stage and then apply some remedy 
methods to handle missing values in the post-data collection 
stage. In a study to investigate the young age effect on the 
antiretroviral adherence and viral load suppression among 
the injection drug users, researchers put a significant effort to 
assure confidentiality and to build trust with all the 
participants [12]. Another study was conducted in a 
predominantly Hispanic-serving community health center in 
a high HIV prevalence area to understand patient beliefs of 
who should be tested for HIV in the routine HIV testing era. 
The researchers reformatted the survey questions: they 
queried participants on what populations they thought were 
at risk for HIV and should be tested instead of asking them 
about their own risks [13]. Despite of all these efforts, self-
reported data still carry a large portion of missing or skewed 
information because the patients know that as long as the 

raw data are collected, their privacy cannot be fully 
protected, subject to intentional or unintentional leaks. 
 In the post-data collection stage, there are many methods 
to treat missing values. One simple approach is to separate 
patients with missing values [14]. Other approaches may 
estimate the missing values by mean substitution, hot deck 
imputation or regression substitution [15, 16]. Although 
these methods can mitigate the problem, they cannot 
completely solve it. 
 Besides the missing values in the data collection phase, 
information confidentiality is also a critical issue in the data 
sharing phase, particular in the era of big data. Various types 
of HIV patient data such as demographics, clinical 
measurements, social characteristics and genomic 
information are collected and cumulated by different data 
centers. While the data sharing among data centers may lead 
to broader and more profound results, it faces the legal issue 
of privacy protection [17-19]. 
 Most existing privacy protection methods are designed to 
share obfuscated data by entities that have already collected 
raw data, and they include addition of noise [20-22], multiple 
imputation [23], information preserving statistical 
obfuscation [24], post randomization method [25], controlled 
tabular adjustment [26], data shuffling [27], random 
projection based perturbation [28], and random orthogonal 
matrix masking [29]. These methods perform data 
obfuscation after raw data are collected. They are 
ineffectiveness against the security breach of the data 
management centers themselves, which face real threats 
from the cyberspace, as is evident from the recent well-
publicized online stealing of credit card information from 
major retailers and hacks against bank servers. 

3. PRIVACY-PRESERVING DATA COLLEECTION 
THROUGH TRIPLE-MATRIX MASKING 

 A new method called triple-matrix masking is developed 
by Wu et al. [1]. It advances the data masking from 
centralized data centers all the way to patients themselves in 
order to achieve a full privacy protection. Specifically, the 
data are randomly transformed at the time of collection to 
ensure that no raw data could be seen in the entire data 
lifecycle. However, because of the specially designed 
transformations, statistical inference on parameters of 
interest can be conducted with the same results as if the 
original data were used. This is achieved by assigning 
multiple keys to different parties. 
 We give a brief overview of the generic method: The 
system consists of data providers, data collectors, data users, 
and a masking service provider. In most applications, data 
providers are patient participants, and data users are study 
investigators as well as other researchers who can access the 
information. Typically, the data managers and statistical 
analysts in the study investigative team are in charge of data 
collection. Also, they release transformed data to the data 
users once the data have been collected. The masking service 
provider may be a private business or a government entity 
established to promote data sharing. A masking service 
provider only receives masked data from data providers and 
then applies a second mask. The data collectors who hold the 
key to the first mask partially decrypt the doubly masked 
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data and apply a third mask before releasing the data to the 
public. The critical feature of the method is that the keys 
used to generate the masking matrices are held separately by 
the masking service provider and the data collectors. This 
ensures that nobody sees the actual data, but statistical 
inference on parameters of interest can be conducted with the 
same results on masked data as on the raw data. 
 In the following, we adapt the above generic privacy-
preserving data collection method to the context of HIV 
studies with domain-specific considerations in order to 
address the practically important privacy protection issue in 
HIV research.   

4. PROTECT PRIVACY THROUGH TWO METHODS 
OF PRIVACY-PRESERVING DATA COLLECTION 

4.1. Data Set 

 We generate patient data based on Hadland et al. [12] to 
study the effect of age on adherence to antiretroviral therapy 
for HIV and on time to viral load suppression among young 
injection drug users. The data set contains sensitive 
information on 7 sociodemographic factors and 8 substance 
use behaviors, in addition to age, baseline CD4+ cell count 
and baseline plasma viral load. For simplicity, we present the 
data masking procedure and how the masked data enable the 
same statistical inference as the original data using only 30 
observations that contain 2 sensitive variables: sex trade 
involvement and daily heroin use in the last six months (see 
Table 1 for the generated patient data). 

4.2. Orthogonally Record-Transformed Data Preserve 
Useful Statistics 

 First we show that, with the use of general linear model 
and contingency table analysis, orthogonally record-
transformed data preserve sufficient statistics and enable us 
to obtain the exact same analytical results with masked data 
as with the original data. 
 Step 1. Before the data collection, the data collector 
creates a database consisting of the nine variables listed in 
Table 1, plus a binary variable for young age (age <=29), a 
variable for quality assurance and a variable for noise. Also, 

a web-based data entry system is developed for each 
participant to enter the data. In addition, the data collector 
chooses a key of 535 as the random seed to generate a 12 by 
12 random invertible matrix B, which is given below. 
 Step 2. At the time of data collection, the first participant 
enters its data which are shown in the first row of Table 1. 
The record is immediately transformed by B and only the 
masked data xB, are sent to the masking service provider. 
This is repeated for all 30 subjects, resulting attribute-
transformed data XB. 
 Step 3. The masking service provider chooses a different 
key 536, and uses the Matlab program described in the 
Appendix 1 of Wu et al. [1] to generate a 30 by 30 random 
orthogonal matrix A2 = GenerateROM(536, 30). Due to 
space limit, we omit the A2 matrix here but readers can 
easily get the matrix by running the Matlab program. After 
receiving attribute-transformed data from all participants, the 
masking service provider applies record transformation to 
XB and sends the doubly masked data, A2XB, to the data 
collector. 
 Step 4. The data collector chooses another key 537 to 
produce a 30 by 30 random orthogonal matrix A1= 
GenerateROM(537, 30), which is generated in a similar way 
as A2. Then A2XB is multiplied by B-1 to get back A2X, 
which is further left-multiplied by A1 before publishing. At 
the end, the data users have access to orthogonally 
transformed data A1A2X (see Table 2). 
 Table 2 shows that the transformed data for the binary 
variables (ADH, Male, STI, DHU, and Young) take real 
values. From these masked data, users can only guess each 
participant’s sensitive characteristics - whether she or he had 
sex trade involvement and daily heroin use in the last six 
months. However, for statistical inference, users can obtain 
the exact counts for contingency tables based on the masked 
data A1A2X. Specifically, the frequency counts can be 
obtained from the masked data use the inner-product of the 
masked vectors. For example, the number of subjects that 
adhered to antiretroviral therapy (n=8) can be calculated 
using the sum of squares over the masked ADH variable; and 
the number of male subjects that adhered (n=4) can be 
calculated using the sum of cross product of the masked 
ADH and Male variables. These two numbers, along with the 

 
 

 

 

0.36 0.13 0.53 0.52 0.61 0.83 0.09 0.88 0.11 0.04 0.89 0.96 
 

 

0.75 0.19 0.65 0.78 0.09 0.89 0.32 0.21 0.56 0.11 0.73 0.72 
0.16 0.44 0.97 0.63 0.16 0.80 0.86 0.90 0.84 0.16 0.76 0.56 
0.67 0.42 0.64 0.10 0.16 0.97 0.99 0.56 0.94 0.99 0.34 0.28 
0.67 0.69 0.50 0.19 0.32 0.82 0.63 0.97 0.10 0.03 0.69 0.74 

B = 0.44 0.95 0.72 0.33 0.69 0.90 0.39 0.45 0.49 0.69 0.20 0.86 
0.34 0.55 0.54 0.02 0.95 0.63 0.17 0.72 0.55 0.20 0.58 0.42 
0.48 0.11 0.49 0.64 0.47 0.87 0.06 0.21 0.76 0.17 0.65 0.98 
0.81 0.97 0.63 0.99 0.35 0.40 0.82 0.34 0.17 0.63 0.28 0.43 
0.53 0.66 0.25 0.13 0.83 0.06 0.36 0.31 0.75 0.59 0.24 0.19 
0.55 0.76 0.16 0.70 0.06 0.36 0.54 0.82 0.74 0.46 0.07 0.10 
0.18 0.65 0.42 0.89 0.63 0.57 0.91 0.82 0.98 0.15 0.53 0.72 

xB = [877.8 1002.7 525.0 554.8 310.7 910.5 844.5 1275.2 523.8 311.6 623.9 682.9], 
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total sample size, are sufficient to create the 2 by 2 
contingency table between ADH and Male; hence the 
masked data yield exactly the same association analysis 
results between the two variables (see Table 3). In addition, 
it has been shown in [1] that any multivariate regression 
analysis (e.g., Log10PVL predicted by age and CD4 counts) 
based on the masked data will also give the same results as if 
the original data are used. 

 

4.3. Attribute-Transformed Data Preserve Useful 
Statistics 

 Many applications conduct logistic regression for binary 
outcomes and Cox regression for survival times. For 
example, to adjust for gender, STI, DHU, and baseline CD4 
and Log10PVL, we may use logistic regression to study the 
association between age and adherence and use Cox 
regression to study the association between age and time to  
 
 

Table 1. Original data set X, which was generated according to Hadland et al. (2012), along with a quality assurance and noise 
variable. 

  

Time Censoring ADH Age CD4 Log10PVL Male STI DHU Young QA Noise 

12.13 1 0 28 815 3.93 1 0 0 1 555 0.1731 

12.71 1 1 37 591 3.76 1 1 1 0 555 0.0087 

21.35 1 0 40 715 3.75 1 1 1 0 555 0.9313 

3.76 1 0 28 430 4.47 1 1 0 1 555 0.8825 

6.32 0 0 44 643 3.65 0 0 0 0 555 0.8402 

10.01 1 1 47 283 4.45 0 0 0 0 555 0.1311 

1.73 1 1 33 261 4.70 1 0 1 0 555 0.7811 

1.52 1 0 54 377 3.33 1 0 0 0 555 0.9929 

0.56 1 0 30 133 3.95 1 0 0 0 555 0.8086 

2.52 1 0 35 456 3.03 1 1 0 0 555 0.0114 

10.05 1 0 25 546 4.44 1 0 0 1 555 0.7029 

7.29 1 1 44 424 3.47 0 0 0 0 555 0.9023 

2.10 1 0 50 292 5.48 1 1 1 0 555 0.3907 

19.91 1 0 49 751 2.63 1 1 1 0 555 0.9351 

2.39 0 1 35 573 4.11 1 0 0 0 555 0.0947 

0.50 1 0 28 488 4.82 0 0 1 1 555 0.0128 

0.66 0 0 33 313 4.21 0 0 0 0 555 0.391 

1.06 0 0 46 477 3.71 0 0 1 0 555 0.5762 

22.04 1 0 50 293 3.05 1 0 1 0 555 0.5132 

1.99 0 1 27 218 4.61 1 0 0 1 555 0.26 

1.65 1 0 28 347 4.34 0 1 0 1 555 0.7415 

3.80 0 0 32 113 4.87 0 1 0 0 555 0.6293 

7.29 0 0 35 114 4.06 1 0 0 0 555 0.8766 

0.50 1 1 33 434 4.93 0 0 1 0 555 0.4116 

9.31 1 0 30 192 3.73 1 0 0 0 555 0.8075 

23.13 0 0 31 372 2.49 0 0 0 0 555 0.5768 

2.32 1 0 30 0 6.25 1 1 0 0 555 0.6599 

4.60 0 0 44 429 5.30 1 1 0 0 555 0.104 

3.32 1 0 42 154 4.80 0 0 0 0 555 0.8714 

7.58 0 1 29 626 3.70 0 0 0 1 555 0.0957 
Time=Time to viral load suppression (< 500 copies per milliliter); Censoring=Censoring indicator (1=not censored, 0= time censored by end of follow-up); ADH=Adherence to 
antiretroviral therapy (Yes=1/No=0); Age=Baseline age in years; CD4= Baseline CD4+ cell count as a continuous variable in cells/μL; Log10PVL=Baseline plasma viral load in 
log10[number of HIV RNA copies per milliliter]; Male=Male gender; STI=Sex trade involvement in the last six months (Yes=1/No=0); DHU=Daily heroin use in the last six 
months (Yes=1/No=0); QA=Quality assurance. 
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viral suppression. In this case, we reverse the usage of 
random matrix masking: the data collector generates the row 
operator A and the masking service provider applies the 
column operator B. Both operators are invertible matrices, 
but not required to be orthogonal. The new procedure is as 
follows: 
 Step 1. The data collector creates the database structure, 
programs the data collection system, and chooses a key of 
535 to generate an 8 by 8 random invertible matrix A, which 
is distributed to the participants’ data collection devices. 
 Step 2. At the time of data collection, the first 
participant’s data are independently augmented with 6 extra 
rows of normal random noise (which the data collector does 
not know) and a row of quality assurance data (see Table 
4a). The augmented data matrix, denoted by x*, is 
immediately masked and only the transformed data Ax* (see 
Table 4b) are sent by the participant to the masking service 
provider. 
 Step 3. The masking service provider generates a column 
operator which is constructed to be block-diagonal so that it 

keeps the first 4 columns invariant and the lower 5 by 5 
block is randomly generated. Then the masking service 
provider applies attribute-transformation B1, and sends the 
doubly masked data Ax*B1 (see Table 4c) to the data 
collector. 
 Step 4. The data collector left-multiplies Ax*B1 by 
inverse of matrix A to get back x*B1, and extracts the first 
row of x*B1 to get back xB1. 
 Step 5. After receiving such attribute-transformed data 
from all participants (repeat Steps 1-4), the data are 
aggregated to be XB1. Then, the data collector generates a 
random column operator B2. 
 Step 6. The data collector right-multiplies XB1 by B2, 
and publishes XB1B2 so that data users have access to the 
column transformed data. 
 It is easy to check that the masked data XB1B2 provides 
exactly the same results as the original data X in terms of the 
planned logistic regression and Cox regression on the effect 
of age. Specifically, in the logistic regression to study the  
 

 

 

0.3622 0.8146 0.6877 0.5300 0.6252 0.1891 0.6139 0.3486 

 

 

0.7470 0.5330 0.9458 0.6486 0.2512 0.3250 0.0904 0.8303 

0.1635 0.5532 0.5465 0.9722 0.1597 0.0221 0.1620 0.0578 

A= 0.6691 0.1752 0.1052 0.6382 0.4226 0.6365 0.1629 0.6275 

0.6674 0.1261 0.9745 0.5047 0.5198 0.9869 0.3162 0.8318 

0.4392 0.1946 0.6600 0.7202 0.7759 0.1257 0.6940 0.8877 

0.3429 0.4399 0.7629 0.5385 0.6283 0.6993 0.9477 0.8043 

0.4811 0.4247 0.6468 0.4894 0.1014 0.8917 0.4742 0.9711 
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0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

B1= 0 0 0 0 -0.0417 -0.2300 -0.0966 0.6893 0.6789 

0 0 0 0 0.8559 -0.1341 0.2334 -0.2890 0.3338 

0 0 0 0 0.4556 0.3547 0.0450 0.6442 -0.4995 

0 0 0 0 -0.0309 0.8880 -0.1384 -0.1348 0.4161 

0 0 0 0 -0.2389 0.1213 0.9566 0.0903 0.0708 
 
 

 

1 0 0 0 0 0 0 0 0 

 
 

 

0 1 0 0 0 0 0 0 0 

0 0 1 0 0 0 0 0 0 

0 0 0 1 0 0 0 0 0 

 B2= 0 0 0 0 0.7254 0.0021 -0.3332 0.0034 0.6023 

0 0 0 0 0.3211 0.7867 0.3838 -0.3162 -0.1754 

0 0 0 0 -0.1887 0.5267 -0.2257 0.7917 0.0960 

0 0 0 0 -0.3320 0.0064 0.5971 -0.0017 0.7302 

0 0 0 0 0.4742 -0.3219 0.5781 0.5227 -0.2531 
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Table 2. Matrix-masked data released to data users, A1A2X. 
 

Time Censoring ADH Age CD4 Log10PVL Male STI DHU Young QA Noise 

2.10 0.82 0.16 36.81 651.16 4.08 0.39 0.64 0.06 0.64 555 -0.0928 

6.74 1.19 0.22 29.47 698.86 5.33 1.05 1.22 0.89 0.02 555 0.1781 

4.43 0.65 0.45 44.25 112.85 4.92 0.30 0.38 -0.32 -0.07 555 1.0048 

13.99 0.87 0.28 59.87 723.31 3.51 0.52 0.69 0.08 -0.35 555 0.777 

3.34 1.03 -0.37 40.87 392.55 2.89 1.11 0.35 -0.08 0.06 555 0.9925 

7.92 1.13 0.10 38.41 276.44 4.63 0.87 0.83 0.34 0.39 555 0.812 

6.82 0.45 0.02 50.21 313.06 4.53 0.69 0.44 0.25 -0.21 555 0.5471 

3.70 0.81 0.77 27.13 133.90 4.00 0.99 -0.50 -0.24 0.30 555 0.955 

23.71 -0.24 -0.24 33.40 820.82 2.01 1.20 0.58 0.40 0.54 555 0.555 

20.27 0.84 0.71 38.88 563.13 3.20 0.35 0.06 0.66 0.55 555 -0.0736 

-5.05 0.67 0.44 27.55 478.66 4.95 0.54 1.18 0.26 0.95 555 0.6835 

12.04 1.26 0.95 47.76 631.01 3.36 0.47 0.09 1.44 0.18 555 0.7957 

19.14 0.71 0.73 36.55 162.74 3.50 1.09 0.84 0.39 -0.41 555 0.6246 

3.50 0.49 0.43 24.97 298.59 4.56 0.99 0.62 -0.17 0.28 555 0.5491 

12.45 0.36 -0.49 22.01 293.20 4.63 -0.60 -0.20 -0.25 0.93 555 0.8924 

7.58 0.36 0.79 22.40 524.95 4.19 0.37 0.32 -0.80 0.93 555 0.2048 

0.14 0.31 0.20 35.50 445.83 4.52 1.20 0.28 0.31 0.96 555 0.3654 

12.35 0.80 -0.14 41.36 606.04 2.91 0.10 -0.11 0.67 -0.14 555 0.7267 

4.73 0.87 0.23 35.89 328.11 4.51 0.63 0.73 0.97 0.11 555 0.3877 

6.41 1.42 -0.26 35.74 124.57 5.01 1.82 0.33 0.10 0.08 555 0.3935 

3.81 -0.11 0.92 38.46 396.74 4.68 -0.06 0.41 0.68 -0.09 555 0.2429 

4.39 0.90 -0.14 31.45 245.04 4.09 0.29 0.68 0.52 0.22 555 0.7566 

2.14 0.55 0.26 41.09 96.84 3.20 -0.18 0.37 0.06 -0.38 555 0.2243 

8.66 0.81 0.09 35.53 409.02 4.59 0.94 0.46 0.36 0.81 555 0.1285 

5.79 1.78 0.20 30.17 522.22 3.71 0.39 -0.04 0.45 0.72 555 0.881 

-1.19 -0.39 -0.14 43.26 303.39 3.90 0.11 -0.26 -0.08 -0.09 555 0.6556 

1.97 0.74 1.18 39.15 461.83 4.54 0.52 -0.69 0.85 0.42 555 0.2262 

-0.96 -0.14 1.00 27.35 435.59 4.20 0.36 -0.69 -0.15 0.00 555 0.094 

-2.91 0.42 -0.08 37.62 10.03 6.10 0.41 0.65 0.61 0.02 555 0.5082 

16.09 0.65 -0.28 43.91 399.51 3.80 1.13 0.35 0.75 -0.37 555 1.118 
*Variable abbreviations are the same as those in Table 1. 
 
Table 3. Association between adherence to antiretroviral therapy and sociodemographic characteristics as well as recent substance 

use behaviors. 
 

Variable Total 
Adherence 

p-Value 
No (n=22) Yes (n=8) 

Male gender 18 14 (63.6%) 4 (50.0%) 0.50 

Sex trade involvement 10 9 (40.9%) 1 (12.5%) 0.14 

Daily heroin use  9 6 (27.3%) 3 (37.5%) 0.59 

Young (age<30) 7 5 (22.7%) 2 (25.0%) 0.90 
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effect of age on the adherence to antiretroviral therapy, Table 
5a shows that the masked data and the original data yield 
exactly the same adjusted odds ratio, Wald confidence 
interval and p-value corresponding to the age effect. 
Similarly, in the Cox proportional hazard model to study the 
effect of age on time to viral load suppression, the masked 
data also yield the same results for the adjusted hazard ratio 
on the age effect (see Table 5b). It is worthy pointing out 
that, because of the attribute transformation, the effects 
corresponding to the covariates are no longer the same. 

CONCLUSION 

 In this paper, we use a privacy-preserving data collection 
method to help resolve the privacy protection issue in HIV 
research. It is shown that the individual data can be 
completely hidden while the same inference results can still 
be obtained from the masked data, with the use of common 
statistical analysis methods. Specifically, orthogonally 
transformed data enable us to obtain the same results with 
the use of general linear model and contingency table 

Table 4.  Augmented data x*, initially masked data Ax*, and doubly masked data Ax* B1 for the first observation. 
 
4a.  Augmented data x* containing the first observation (first row) along with 6 rows of normal random noise and 1 row for 

quality assurance. 
 

Time Censoring ADH age CD4 Log10PVL Male STI DHU 

12.13 1 0 28 815 3.93 1 0 0 

-0.73 -0.65 -1.52 0.10 0.17 0.18 0.02 -1.92 0.1439 

0.43 -0.07 -1.34 -0.97 0.18 -0.07 1.12 0.19 -0.667 

-0.65 0.42 -0.20 1.84 0.96 0.44 0.25 0.86 -0.7951 

0.30 0.13 -0.41 0.52 0.33 -0.37 -0.80 -0.98 -1.4992 

0.56 0.26 0.63 0.49 0.02 -1.15 -1.59 0.32 -0.7516 

-0.23 -0.59 0.94 0.11 0.33 -0.14 -0.70 1.74 0.2906 

777 777 777 777 777 777 777 777 777 

 
4b. Initially masked data Ax* for the first observation. 
 

Time Censoring ADH Age CD4 Log10PVL Male STI DHU 

274.78 270.64 269.05 281.89 567.21 272.09 270.93 270.41 269.21 

654.01 645.78 643.10 666.66 1254.90 647.88 646.31 644.84 643.45 

46.13 45.02 43.26 50.93 179.37 45.95 45.68 44.93 43.66 

495.62 488.49 487.40 507.93 1033.72 489.58 487.04 487.86 485.94 

655.06 647.19 645.44 665.80 1191.27 647.75 646.01 647.06 643.86 

694.87 690.01 688.82 703.27 1048.98 691.23 689.78 690.58 687.68 

629.11 624.86 624.21 635.61 905.66 625.37 624.00 625.95 622.87 

760.48 754.90 753.93 768.90 1147.50 755.58 754.09 755.31 753.13 

 
4c.  Doubly masked data Ax*B1 for the first observation. 
 

Time Censoring ADH Age CD4 Log10PVL Male STI DHU 

274.78 270.64 269.05 281.89 260.00 201.97 241.02 474.73 472.13 

654.01 645.78 643.10 666.66 623.01 504.49 585.38 1065.30 1059.20 

46.13 45.02 43.26 50.93 40.84 13.99 31.00 137.67 136.08 

495.62 488.49 487.40 507.93 466.66 361.58 433.68 862.93 859.30 

655.06 647.19 645.44 665.80 625.25 521.06 591.57 1021.02 1017.06 

694.87 690.01 688.82 703.27 676.52 607.44 653.32 936.66 934.32 

629.11 624.86 624.21 635.61 613.64 560.64 595.77 817.39 816.42 

760.48 754.90 753.93 768.90 739.15 664.39 715.37 1024.58 1022.12 
*Variable abbreviations are the same as those in Table 1. 
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analysis; and certain attribute transformed data enable us to 
achieve the same statistical inference on the parameter of 
interest in logistic regression or Cox proportional hazard 
regression. 
 It is worthy to note that the new method hides sensitive 
data with no efficiency loss for statistical inference of binary 
and normal data, which improves over Warner’s randomized 
response technique, which randomly flips an interviewee’s 
true binary response with a predetermined probability [29-
32]. In addition, the new method builds data masking into 
the data collection device/system so that no additional 
random device is needed. 
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