
Dependable Policy Enforcement in Traditional Non-SDN Networks

Olufemi Odegbile∗, Shigang Chen† and Yuanda Wang‡
Department of Computer and Information Science and Engineering

University of Florida, Gainesville, Florida, USA
Email: ∗oodegbile, †sgchen, ‡yuandawang@ufl.edu

Abstract—Middleboxes are widely used in modern net-
works for a variety of network functions in cybersecurity,
performance enhancement, and monitoring. Middlebox policy
enforcement is however complex and tedious with unreliable
manual re-configuration of legacy routers. The existing solution
on automated policy enforcement relies on software-defined
networking and does not apply to the traditional non-SDN net-
works, which remain popular today in enterprise deployment
and core networks. This paper proposes a new architecture
based entirely on software-defined middleboxes (instead of using
software-defined switches in the prior art) to enable dependable
and automated policy enforcement in non-SDN networks whose
routers forward packets based on traditional routing protocols
that are not policy-sensitive. We present a hot-potato enforce-
ment strategy, which is then enhanced with two optimizations
for load-balanced policy enforcement. Further enhancements
are made to relieve middlebox processing overhead and avoid
packet fragmentation due to policy enforcement.

I. INTRODUCTION

Middleboxes offer a powerful and flexible means to

augment a network with additional functions (such as fire-

walling, intrusion detection, proxying, caching and traffic

monitoring) which are not provided by the existing routers

and other network devices [1], [2]. After middleboxes are

deployed into a network, policies are used to define what

types of packets should be processed by which middleboxes.

Policy enforcement, however, has been a great challenge in

traditional networks [3]. Without a central controller, routing

paths in traditional networks are determined automatically

by distributed execution of routing protocols that are de-

signed primarily for connectivity, stability and efficiency,

whereas middlebox policies require selected packets to be

forwarded to one or multiple middleboxes and processed in a

specific sequence (e.g., FW → IDS → web proxy). The task

of reconciling the difference between policy requirements

and underlying routing is complex and tedious, involving

unreliable and error-prone manual re-configuration of legacy

routers.

One class of solutions relies on the use of software-defined

networking (SDN) to provide dependable enforcement of

middlebox policies [2], [4], where software-defined switches

enable dynamic flow-level routing and a central controller

is responsible for establishing the forwarding paths of indi-

vidual flows through middleboxes based on policy require-

ments. Given a set of policies, the controller configures

the SDN switches with specific forwarding rules and tunnel

rules that direct the policy-matching packets to appropriate

middleboxes in proper orders for processing. However, these

prior solutions work only with SDN networks. They are

not intended for non-SDN traditional networks, which re-

main popular on today’s Internet, particularly for enterprise

networks and core networks. Without SDN switches, the

routers in a traditional network do not support flow-level

routing. Our goal is to enable dependable and automated

enforcement of middlebox policies on traditional non-SDN
networks whose routers forward packets based on classical

routing protocols such as OSPF [5] and EIGRP [6].

Since we cannot rely on software-defined switches, our

idea is to introduce software-defined middleboxes (SDM), ei-

ther implemented by software on general-purpose computers

or by hardware on specialized devices, which are deployed

as an augmentation to an existing network either off-path by

connecting to a subnet off a router as an IDS is typically

installed or in-path by sitting between two routers as a

firewall is typically installed. These software-defined mid-

dleboxes are configured by a central middlebox controller
that has the knowledge of network topology, placement of

the middleboxes, policies, and traffic measurements reported

from the middleboxes. At the architectural level, in the

prior SDN solutions [2], [4], their controller configures the

SDN switches to enforce the policies; in our SDM solution,

the controller cannot configure the routers (which are not

SDN-capable) but instead configures the SDMs for policy

enforcement over a traditional network where routers and

other network devices perform their operations oblivious

to policy enforcement. Unlike SDN controllers, our con-

troller is not involved in determining switch-to-switch packet

forwarding at individual flow level. It only pre-configures

the middleboxes based on user-specified policies. It is not

invoked as individual flows enter the network, and thus is

unlikely to become a bottleneck.

The contributions of this paper are summarized as follows:

First, we introduce a new architecture for dependable and

automated middlebox policy enforcement in traditional non-

SDN networks. Our solution replaces the need for software-
defined switches in prior art [4] with the use of software-
defined middleboxes, making policy enforcement transparent

to an existing, traditional network. Second, we present a

simple hot-potato enforcement strategy as a basic framework

545

2019 IEEE 39th International Conference on Distributed Computing Systems (ICDCS)

2575-8411/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDCS.2019.00061

Figure 1: a) a network path; b) insert a middlebox in the

path; c) insert a middlebox off the path.

for policy enforcement by software-defined middleboxes.

Third, we propose a load-balanced enforcement strategy

with two linear program optimizations that help to pre-

vent unbalanced traffic distribution from overloading some

middleboxes while under-utilizing others. Fourth, we pro-

vide alternative designs that relieve middlebox processing

overhead and avoid packet fragmentation due to policy

enforcement. Finally, we evaluate the effectiveness of the

proposed solution in load-balanced policy enforcement.

The rest of the paper is organized as follows. Section II

formulates our research problem. Section III presents the

detailed architecture of our solution, a hot potato packet-

forwarding strategy, an optimized load balancing strategy,

and other enhancement techniques. Section IV evaluates the

proposed software-defined middlebox solution. Section V

discusses the related work. Section VI concludes the paper.

II. NETWORK MODEL AND PROBLEM STATEMENT

Consider a large non-SDN enterprise network, consisting

of (1) edge routers that connect stub networks and (2) core

routers that interconnect the edge routers. Assume that the

routers run OSPF [5] to establish their routing tables for

packet forwarding. We study how to enforce network man-

agement policies automatically in a traditional network with

the help of software-defined middleboxes. A middlebox [4]

is a network device that is deployed in path (Figure 1.b) or

off path (Figure 1.c) to implement a network function such

as firewalling, intrusion detection, proxying, measurement

or access control in software or hardware. A middlebox that

is dynamically reconfigurable based on policies is called a

software-defined middlebox.

A policy consists of a traffic descriptor and an ordered

action list. The traffic descriptor contains a number of

packet-header fields, and wildcards may be used as masks to

allow a policy to match multiple traffic flows. Table II gives

six policy examples, where only four header fields and the

action list are shown, with other fields being wildcards by

default. Let subnet a be the address prefix for the enterprise

network, e.g., 128.40.*.*. The first two polices state that the

internal web traffic is permitted without further action. The

next two policies state that web access from external hosts to

internal web servers must go through firewall and intrusion

detection. The following two policies state that web access

from internal hosts to external web servers must go through

firewall, intrusion detection, and web proxy.

Table I

src addr dst addr src port dst port action list
subnet a subnet a * 80 permit
subnet a subnet a 80 * permit

* subnet a * 80 FW, IDS
subnet a * 80 * IDS, FW

subnet a * * 80
FW, IDS,

proxy

* subnet a 80 *
proxy, IDS,

FW
...

Given a network and an ordered list of n networkwide

policies P = {〈di, ai〉 | 1 ≤ i ≤ n} where di is a traffic

descriptor and ai is an ordered action list, the problem of
policy enforcement is that, for each packet that matches a

policy 〈dj , aj〉, we make sure that the actions in aj are

performed on the packet in the specified order. When there

are multiple policy matches, we apply the first matching

policy to the packet.

Like [4], we study how to use middleboxes (which

implement the required actions, i.e., network functions) to

enforce network management policies. Unlike [4], which is

designed for SDN switches, we consider policy enforcement

in traditional enterprise networks that are not SDN-capable.

Such networks still dominate on today’s Internet, and the

methods developed in [4] are not applicable to them.

III. POLICY ENFORCEMENT BY SOFTWARE DEFINED

MIDDLEBOXES

In this section, we begin with a new system architecture

that includes a controller and policy proxies to support

automated policy enforcement by software-defined middle-

boxes deployed in traditional networks. We then introduce

a baseline hot-potato enforcement strategy and improve it

through a series of optimizations and augmentations.

A. New System Architecture

As illustrated in Figure 2, the proposed system is com-

posed of a centralized management server called the con-
troller, a policy proxy for each stub-network, and software-

defined middleboxes. Our controller is different from the

controller in SDN networks; it manages the middleboxes,

not SDN switches. A stub-network is a subnet that does not

546

Figure 2: a) a network path; b) insert a middle box in the

path; c) insert a middle box off the path.

route transient traffic and is connected to the core network

through an edge router. A policy proxy identifies traffic that

is subject to policies, and it assists in policy enforcement.

Analogous to a web proxy on web traffic, a policy proxy

will intercept traffic for policy compliance.

A policy proxy may be considered as a special software-

defined middlebox configurable by the controller. It can be

connected to the network in one of two ways: off-path or in-

path. Edge router z in Figure 2 connects to an off-path proxy

y. Router z is configured with a loopback interface that

forwards all received packets to proxy y and after receiving

these packets back, performs regular routing-table lookup

and packet forwarding. Proxy x is connected in-path to

edge router w, and in this case the policy enforcement is

completely transparent to router w.

Similarly, the middleboxes that implement network func-

tions can be connected to routers in the above two ways. No

loopback will be performed by a core router. Hence, in our

design, no matter whether a middlebox is in-path (FW in the

figure) or off-path (IDS in the figure), they are transparent

to the core routers, which are policy-unaware.

Some notations are defined as follows: Let S be the set

of stub-networks (or simply referred to as subnets), each

behind a policy proxy, M be the set of all middleboxes,

and R be the set of all policy proxies. Let Π be the set of

network functions that the middleboxes implement. Consider

an arbitrary proxy or middlebox, denoted as x. Let Πx be

the set of network functions that x does not implement. If x
is a proxy, then Πx = Π. For an arbitrary network function

e ∈ Π, we use Me to denote the subset of middleboxes

that implement e. The notations defined above and later are

summarized in Table II for quick reference.

Table II

Notations Definition
S set of stub-networks
M set of all middleboxes
R set of all policy proxies
Π set of network functions the middleboxes im-

plement
P list of networkwide policies
x an arbitrary proxy or middlebox
e an arbitrary network function
Πx set of network functions not implemented by x
Me set of all middleboxes offering e ∈ Π
me

x the closest middlebox to x offering e
Me

x a subset of middleboxes, which offers e and are
assigned to x

Px a subset of policies whose descriptors overlap
the subnet address of x

Ps,d set of policies that match any source address
in s and any destination address in d, s, d ∈
R, s �= d

Tp traffic volume of flows matching p ∈ P
Ts,p traffic volume from s that matches p
Td,p traffic volume received by d that matches p
Ts,d,p traffic volume from s to d that matches p
C(x) processing capacity of a middlebox x ∈ H

B. Hot-Potato Enforcement Strategy

The controller is configured with the complete network

topology with subnet addresses, the placement of all middle-

boxes, and the user-specified policies. Consider an arbitrary

middlebox or policy proxy x. For each function e ∈ Πx, the

controller finds a middlebox me
x that implements e and is

closest to x. This can be easily done using a shortest-path

algorithm such Dijkstra’s algorithm [7]. The controller sends

me
x, ∀e ∈ Πx, to middlebox/proxy x so that x knows where

to forward a packet that requires function x.

In addition, if x is a policy proxy, the controller finds

the subset Px of policies whose traffic descriptors contain

at least one source address from the subnet behind x. It

informs the proxy x of these relevant policies in Px. If x is

a middlebox, the controller finds the subset Px of policies

whose action lists contain any function that x performs. It

informs the middlebox x of its relevant policies as well. Px

will be stored in the local policy table at the recipient proxy

or middlebox.

We now describe the enforcement operations: When a

proxy x receives an outbound packet, it matches the relevant

packet-header fields against the traffic descriptors in its

policy table Px. Policy matching is outside the scope of this

paper; there is a large body of literature on how to perform

multi-field matching in software or hardware [8], [9], [10]. If

the packet does not match any policy in Px, it is forwarded

to the connected edge router. Otherwise, let p be the first

policy in Px that matches the packet. The proxy finds the

first network function e in the action list of p. It tunnels

547

the packet IP-over-IP [7] to the closest middlebox me
x that

implements the function, traditionally referred to the hot-

potato strategy in packet forwarding. More specifically, the

proxy adds a new IP header on top of the original one, with

its own address as the source and me
x as the destination.

The packet will be routed to me
x, where the outer IP header

will be striped and the required action e will be taken. After

that, me
x will match the packet against its policy table to find

a matching policy (which will be p), it identifies the next

function e′ in the list, and tunnel the packet IP-over-IP to the

closest middlebox for function e′. The process is repeated

until the last function in the list is performed by a middlebox,

which will then simply forward the original packet (without

an outer IP header any more) to its connected router. From

there, the packet takes its normal routing path towards its

destination.

The above approach has three problems. First, forwarding

packets to the middleboxes me
x on the topologically shortest

paths does not take the workload into consideration, which

may overload some middleboxes while letting others idle.

Second, it is inefficient for each middlebox to perform

multi-field matching for every received packet. This may

overload the middleboxes in the core and create throughput

bottlenecks. Third, IP-over-IP increases packet size and

may cause packet fragmentation, which causes additional

overhead. In the sequel, we will solve these problems.

C. Load-balanced Enforcement Strategy

To solve the first problem, we allow each middlebox x
more flexibility in forwarding packets towards the next-hop

middleboxes. Instead of assigning a single middlebox me
x

for each function e ∈ Πx, we can assign a subset of Me,

denoted as Me
x , from which x can choose one to forward

packets that require the next function e. For example, Me
x

may consist of k members from Me that are closest to x,

where k(≥ 1) is a system parameter that can be arbitrarily

set; when k = 1, it becomes the hot-potato enforcement

strategy.

While all packets that arrive at x and require the network

function e can be forwarded to any member in Me
x , our

goal is to distribute such traffic among the members of Me
x

to achieve load-balanced policy enforcement. Periodically,

all policy proxies send their measured traffic volumes to

the controller. Consider an arbitrary source subnet s and an

arbitrary destination subnet d 	= s. Let Ps,d be the set of

policies that match at least one source address in s and at

least one destination address in d. Let Ts,d,p, ∀s, d ∈ R, s 	=
d, p ∈ P , be the traffic volume from s to d that matches p,

which can be measured at the policy proxy of source s and

reported by the proxy to the controller.

With the above traffic measurements, the controller solves

a load-balancing linear programming optimization to assign

a traffic volume between any two middleboxes, denoted as

ts,d,p(x, y), for the amount of traffic in Ts,d,p that should be

sent from middlebox x to middlebox y.

Before formulating the load-balancing optimization to

determine ts,d,p(x, y), we introduce three binary indicators:

Is,d,p(e, e
′
), Js,d,p(e) and J

′
s,d,p(e). Specifically, Is,d,p(e, e

′
)

is set to 1 if (1) p matches any source address from s and

any destination address from d and (2) e and e
′

are two

adjacent functions in the action list of p, or 0 otherwise.

Js,d,p(e) is set to 1 if (1) p matches any source address

from s and any destination address from d and (2) e is the

first network function in the action list of p, or 0 otherwise.

J
′
s,d,p(e) is set to 1 if (1) p matches any source address

from s and any destination address from d and (2) e is the

last network function in the action list of p, or 0 otherwise.

Let C(x) be the processing capacity of a middlebox x ∈ M ,

and λ be the largest load factor among all middleboxes. Our

load-balancing optimization problem is

min λ

s.t.
∑

x ts,d,p(x, y) =
∑

z∈Me
′

y

Is,d,p(e, e
′
) · ts,d,p(y, z) +

∑
(s,d,p) J

′
s,d,p(e) · ts,d,p(y, d), ∀e, e′

, s, d, yp
∑

x∈Me

∑
y∈Me

′
x

ts,d,p(x, y) =

Is,d,p(e, e
′
) · Ts,d,p, ∀e, e′

, s, d, p
∑

y∈Me
s
ts,d,p(s, y) = Js,d,p(e) · Ts,d,p, ∀e, s, d, p

∑
x∈Me ts,d,p(x, d) = J

′
s,d,p(e) · Ts,d,p, ∀e, s, d, p

∑
e′∈Πx

∑
(s,d,p),y∈Me

x
Is,d,p(e, e

′
) · ts,d,p(x, y) +

∑
(s,d,p) J

′
s,d,p(e) · ts,d,p(x, d) ≤ λ · C(x), ∀x ∈ M

ts,d,p(x, d) ≥ 0, ∀x ∈ M

ts,d,p(x, y) ≥ 0, ∀e, e′
, x ∈ Me, y ∈ Me

′

x

ts,d,p(x, y) = 0, ∀e, e′
, x ∈ Me, y 	∈ Me

′

x

λ ≤ 1,
(1)

The first constraint ensures flow conservation at each

middlebox y for traffic Ts,d,p from source s to destination

d that matches policy p. The left side of the constraint is

the sum of the traffic matching (s, d, p) that y receives,

and the right is what y forwards. The second constraint

ensures that the total traffic volume sent from source s to

other middleboxes towards destination d matching p is equal

to Ts,d,p. The third constraint ensures that the total traffic

volume sent by source s to destination d and matching p is

Ts,d,p. Likewise, the fourth constraint ensures that the total

traffic volume received by destination d from source s that

matches p is also Ts,d,p. The fifth constraint makes sure that

the capacity of each middlebox is not exceeded, where λ is

the largest load factor among all middleboxes. We want to

minimize λ. Eq. (1) is a linear programming problem and

548

can be solved in polynomial time.

After ts,d,p(x, y) for all s, d, p, x, y combinations is de-

termined, the controller sends each middlebox/proxy x the

values of ts,d,p(x, y), ∀s, d, p, y. After receiving these val-

ues, when x receives a packet that matches policy p from

a source address in s and a destination address in d, it

forwards the packet to a middlebox y selected from Me
x

with a probability proportional to ts,d,p(x, y), where e is

the next function in the action list of p; if there is no next

function, the packet is forwarded towards the destination

address. To implement the probabilistic middlebox selection,

x hashes the flow identifier of the packet (including source

address, destination address, source port, destination port,

and protocol ID from the packet header). Let r be the hash

output in the range of [0, N), where N is the maximum

hash value. Let Me
x = {y1, y2, ..., yk}. Middlebox yi will be

selected if
∑i−1

j=1 ts,d,p(x, yj)/
∑k

j=1 ts,d,p(x, yj) ≤ r/N <
∑i

j=i ts,d,p(x, yj)/
∑k

j=1 ts,d,p(x, yj).

The number of decision variables, ts,d,p(x, y) for all

s, d, p, x, y combinations in (1), can be numerous in a large

network with many policies. Although the calculation is

done offline by the controller, we offer a different problem

formulation to reduce the number of decision variables

and consequently reduce the computation overhead at the

controller as well as the communication overhead for the

controller to send these values to the middleboxes.

Consider an arbitrary function e ∈ Π and an arbitrary

proxy/middlebox x with e ∈ Πx. Let te,p(x, y), ∀y ∈ Me
x ,

be the volume of all traffic from x to y that matches p and

requires the next function e. Let tp(x, d) be the size of all

traffic that matches p and is sent directly from middlebox

x to a destination d. The controllers solve a simplified

load-balancing linear programming optimization to assign

(1) te,p(x, y), an aggregate volume of traffic matching p
between any two middleboxes x and y for function e and

(2) tp(x, d), an aggregate volume of traffic matching p
between any middleboxe x and a destination d. Similar to the

previous formulation, we introduce three binary indicators:

Ip(e, e
′
), Jp(e) and J

′
p(e), ∀e, e′ ∈ Π, e 	= e′, p ∈ P .

Specifically, Ip(e, e
′
) is set to 1 if e and e

′
are two adjacent

functions in the action list of p, or 0 otherwise. Jp(e) is set

to 1 if e is the first network function in the action list of

p, or 0 otherwise. J
′
p(e) is set to 1 if e is the last network

function in the action list of p, or 0 otherwise.

Let Tp be the total traffic volume that matches p regardless

of source and destination. Let Ts,p be the traffic volume

from s that matches p, and Td,p the traffic volume received

by d that matches p. They can be measured at the policy

proxies and tallied at the controller. The new load-balancing

optimization is formulated as follows:

min λ

s.t.
∑

x te,p(x, y) =
∑

e′∈Πy

∑
z∈Me

′
y

Ip(e, e
′
) · te′ ,p(y, z)

+
∑

d∈R J
′
p(e) · tp(y, d), ∀e, e′

, p, y
∑

x∈Me

∑
y∈Me

′
x

te′ ,p(x, y) = Ip(e, e
′
) · Tp, ∀e, e′

, p
∑

x∈Me

∑
d∈R tp(x, d) = J

′
p(e) · Tp, ∀e, p

∑
x∈Me

s
te,p(s, x) = Jp(e) · Ts,p, ∀s, e, p

∑
x∈Me tp(x, d) = J

′
p(e) · Td,p, ∀d, e, p

∑
e′∈Πx

∑
p∈P,y∈Me

x
Ip(e, e

′
) · te′ ,p(x, y)

+
∑

p∈P,d∈R J
′
p(e) · t(x, d) ≤ λ · C(x), ∀x

tp(x, d) ≥ 0, ∀x ∈ M,d ∈ R

te′ ,p(x, y) ≥ 0, ∀e, e′
, x ∈ Me, y ∈ Me

′

x

te′ ,p(x, y) = 0, ∀e, e′
, x ∈ Me, y 	∈ Me

′

x

λ ≤ 1
(2)

Similar to the previous formulation, the first constraint

ensures flow conservation at each middlebox. The second

and third constraints ensure flow conservation for each

policy p after implementing each networking function in

it action list. The fourth constraint ensures that the total

volume of traffic matching p sent from source s to all

middleboxes offering function e is equal to the total mea-

sured volume. Likewise, the fifth constraint ensures that the

total volume of traffic matching p received by destination

d from all middleboxes offering function e is equal to the

total measured volume. The sixth constraint makes sure that

the capacity of each middlebox is not exceeded. Eq. (2) is

again a linear programming problem and can be solved in

polynomial time.
After te,p(x, y) for all e, p, x, y combinations is deter-

mined, the controller sends each middlebox/proxy x the val-

ues of te,p(x, y) for different functions e, different policies p,

and different next-hop middleboxes y. After receiving these

values, x forwards all packet matching a policy p with the

next function being e to a middlebox y selected from Me
x

with a probability proportional to te,p(x, y).

D. Avoid Multi-field Policy Matching at Middleboxes
Policies may contain wildcards as the examples in Table II

show. TCAM can be used to support lookups of such

policies. However, the size of TCAM is typically small. In

order to support a large number of policies, we may resort

to software lookups using trie-based data structures [11] to

implement the policy table, which is slower than TCAM and

may cause throughput bottleneck in the core network under

heavily traffic load conditions.
We propose to implement a hash table at each prox-

y/middlebox to avoid the need of multi-field policy matching

549

for most packets. The table stores 〈f, a〉 pairs, where f
is a flow identifier (5-element tuple) and a is an action

list. When a proxy/middlebox receives a packet with flow

identifier f , it hashes f as index into the table to see if

there is a matching pair 〈f, a〉. If there is one, a will be

the action list. If there is no matching pair in the hash

table, the proxy/middlebox resorts to the multi-field lookup

in the policy table as is described previously to find the first

matching policy p = 〈d, a〉. It then inserts 〈f, a〉 into the

hash table so that the subsequent packets of the flow will

find a quickly in the hash table, without having to perform

expensive lookup in the policy table. Pairs stored in the hash

table are soft-state, which will be timed out after a certain

period absent of matching.

If a packet does not find a match in the hash table and the

policy table, we insert 〈f, null〉 in the hash table so that the

proxy/middlebox will find null for the subsequent packets

of the flow, which will then be forwarded without further

action — no need to consult with the policy table.

E. Avoid Packet Fragmentation

IP-over-IP adds an additional IP header to the packets,

increases the packet length, and thus may result in packet

fragmentation. One possible alternative is to modify the hash

table for label switching, which helps reduce the need for

IP-over-IP. This approach requires an additional label table

at each middlebox.

Consider the first packet of a flow that is received by

a policy proxy x. If the packet is not fragmented (which

is generally true in properly configured networks [12]), as

the proxy inserts 〈f, a〉 into its hash table, it adds an extra

label field, l, which is locally unique in the table. The proxy

inserts l into the unused fields in the packet header, such as

the ToS byte and the fragmentation offset. It then forwards

the packet (as payload) IP-over-IP to the next middlebox

x′. When x′ receives the packet, it also inserts an entry

〈src | l, a〉 into a label table, where ‘|’ is the concatenation

operator and a is the action list retrieved from its policy

table using f . Middlebox x′ then forwards the packet IP-

over-IP to the next middlebox. When the packet reaches the

last middlebox y specified in a, as the middlebox inserts an

entry into its label table, it adds an extra field dst for the

destination address of the packet. In other words, the last

middlebox inserts 〈src | l, a, dst〉 in its label table before

forwarding the packet. Moreover, it sends a control packet

carrying f back to the proxy x; it knows the address of x
because we can keep x as the source address in the outer

IP header for all IP-over-IP tunnels from x all the way to

y. When proxy x receives this control packet, it uses f to

identify the entry 〈f, a, l〉 in its flow table and flags this

entry for label switching.

For a subsequent, non-fragmented packet of flow f , as

the proxy finds a matching entry 〈f, a, l〉 in its flow table, if

the entry is not flagged for label switching, the same action

as described in the previous subsection is performed. If the

entry is flagged for label switching, the proxy will insert l
into the packet header. It will then replace the destination

address of the packet with the address of the next middlebox

me
x and forward the packet, without an outer IP header as

IP-over-IP will do.

When a middlebox x′ receives a packet addressed to the

middlebox without an outer IP header, it will use the label

l and the source address src from the packet header to

search the label table for a matching entry 〈src | l, a〉. It

then replaces the destination address with the address of the

next middlebox me′
x′ before forwarding the packet.

When the last middlebox in the action list a receives

the packet, it searches its label table for a matching entry

〈src | l, a, dst〉 and replaces the destination address with dst
before forwarding the packet.

The above approach switches from IP-over-IP to label

switching after the first packet of a flow reaches its final

middlebox, allowing the subsequent packets of the flow to

be routed through a policy-enforced path without increasing

packet length.

F. An Example

In Figure 3, we use an example to show how a network

policy in Figure 3.a can be enforced with our design. The

policy is to first forward web traffic from stub-network A

to a web proxy. If the current version of pages requested

is already cached, the request is honored. Otherwise, the

web traffic is routed through the following sequence of

middleboxes: Firewall → IDS. Let f be a flow from a host in

stub-network A to a web server outside the network depicted

in Figure 3. When policy proxy y receives the first packet

of f , an associated action list, a, is retrieved from its policy

table. In this case, a is {web proxy, FW, IDS}, where web

proxy, FW1, and IDS are closest middleboxes implementing

required network functions. The policy proxy embeds a

locally unique label (1) into the header of the first packet of

f before forwarding it (as a payload) IP-over-IP, with proxy y
as the source, to the closest middlebox implementing the first

network function in a (web proxy). As shown in Figure 3.b,

〈f, a, 1, 0〉 is also inserted in the policy proxy’s hash table

for quicker processing of subsequent packets of f .

If the requested page is not yet cached in the web proxy,

then f will be forwarded to FW1. Once web proxy receives

the first packet of f from policy proxy y, it retrieves f and

the incoming label from the packet and a from its policy

table. Afterwards, an entry 〈src|1, a〉 is inserted into its

label table (Figure 3.d), where the source address of f is

src. The packet is then tunneled to the nearest middlebox

implementing the next network function in a (FW1) without

changing the incoming source address and label on the outer

header. The packet is similarly processed by subsequent

middleboxes on its path until it reaches the last middlebox

(see Figure 3.e). When the middlebox implementing the last

550

Figure 3: An example

network function in a (IDS) receives the packet, it inserts

〈src|1, a, dst〉 into its label table (Figure 3.f), where the

destination address of f is dst. Henceforth, the packet is

routed along a shortest path to its destination: IDS → core

router → edge router w → Gateway.

At the same time, a control message is sent back to policy

proxy y, which then turn on the label switching flag in its

flow table (Figure 3.c). The control message is sent through a

shortest path: IDS → core router → edge router x → proxy y.

Consequently, subsequent packets of f are simply forwarded

through the label switching path established above.

IV. PERFORMANCE EVALUATION

We use OMNET++ [13] to evaluate the performance of

the proposed solution for automated policy enforcement in

non-SDN networks. The prior work on automated policy

enforcement [2], [4] relies on forwarding flexibility of

software-defined switches. They can only be applied to SDN

networks. In contrast, the proposed solution is designed

solely for non-SDN networks, without any software-defined

switches. Therefore, comparing with [2], [4] does not make

sense. Because there is no prior art on automated policy

enforcement based on software-defined middleboxes, we

will use the hot-potato enforcement strategy (HP) and a

randomized enforcement strategy (Rand) as the baselines

to demonstrate the effectiveness of our load-balancing opti-

mization.

A. Evaluation Settings

We implement the proposed solution on OMNET++ [13],

which is a popular network simulation platform. In addi-

tion, we utilize the standard Internet stack, such as TCP,

IPv4 OSPF, provided by the INET framework [14]. Our

simulations use two network topologies. One is a real-world

campus network topology, with two main gateways to the

Internet, 16 core routers each connecting to both gateways

and 10 edge routers. The second topology is randomly

generated based on the Waxman model [15], in which the

number of edge routers is set to 400, and the number of

core routers is set to 25, each of which is connected to

an equal number of edge routers. The core routers are

interconnected based on the Waxman model [15], in which

each router is assigned a pair of coordinates in a 100-by-100

region at random and the connection between two routers is

probabilistically established with a distribution exponentially

decreasing in their distance. The number of links from each

core router to other core routers is set to 4. The forwarding

paths in each network is determined by OSPF [5] using

shortest-path routing.

We simulate three typical types of network policies: (1)

many to one, (2) one to many, and (3) one to one. A many-

to-one policy specifies a sequence of network functions

to be applied on traffic from many source subnets to one

destination subnet (or host). A one-to-many policy specifies

a sequence of network functions to be applied on traffic

from one subnet to many different destination. A one-to-

one policy specifies a sequence of network functions to

be applied on traffic from one subnet (or host) to another

subnet (or host). More specifically in our simulations, for

each many-to-one policy, we randomly choose a destination

subnet (behind an edge router), use wildcard as the source,

and consider an arbitrary service (i.e., destination port), with

the action list being FW and IDS to protect the destination

service from all external threats. For each one-to-many

policy, we randomly choose a source subnet (behind an

edge router), use wildcard as the destination, and consider

551

http traffic, with the action list being FW, IDS and WP for

both security and web caching. Each such policy will have a

many-to-one companion policy for the return web traffic. For

each one-to-one policy, we randomly choose a pair of source

subnet and destination subnet, with an arbitrary service and

an action list being IDS and TM for intrusion detection and

traffic measurement, as a means for the network admin to

investigate the traffic between two subnets when malicious

activities are suspected.

We apply four types of middleboxes in our simulation,

implementing four functions: web proxing (WP), firewalling

(FW), intrusion detection (IDS) and traffic measuremen-

t (TM). Their numbers are 4, 7, 7 and 4, respectively.

The different numbers reflect their different frequencies of

appearance in the policies. Each middlebox is connected

to a randomly-chosen core router. In our load-balanced

enforcement strategy, for each middlebox x that does not

implement FW, we let MFW
x contain 4 closest middleboxes

that implement FW; for each middlebox x that does not

implementing IDS, we let M IDS
x contain 4 closest mid-

dleboxes that implement IDS; for each middlebox x that

does not implement WP, we let MWP
x contain 2 closest

middleboxes that implement WP; for each middlebox x that

does not implement TM, we let MTM
x contains 2 closest

middleboxes that implement TM.

We simulate one unit of time, during which the number

of policy-matching flows ranges from 30000 to 300000, and

their sizes follow a power law distribution in the range from

1 to 5000 packets. The total number of packets generated by

these flows ranges from 1000000 to 10000000. These flows

are randomly assigned to the three policy classes discussed

above in the following way: one third to the one-to-many

policy class (with the action list being FW → IDS), one

third to the many-to-one policy class (with the action list

being FW → IDS → WP), and one third to the one-to-one

policy class (with the action list being IDS → TM).

B. Simulation Results

We first compare the hot-potato enforcement strategy (H-

P), a randomized enforcement strategy (Rand) and the load-

balanced enforcement strategy (LB) in terms of maximum

load on a middlebox in each type. In hot-potato enforcement,

each middlebox or proxy forwards all packets that require

a certain function to the closest middlebox of that function

type. In random enforcement, each middlebox or proxy x
forwards a flow that needs a certain function e to a randomly

chosen member of Me
x . In load-balanced enforcement, each

middlebox or proxy x forwards a flow that requires a certain

function e to a middleboxes y selected from Me
x with a

probability proportional to te,p(x, y), computed from Eq. 2.

The results on the university campus topology are shown

in Fig. 4, where the four plots from left to right present the

maximum loads on a firewall (FW), an intrusion detection

system (IDS), a web proxy (WP), and a traffic measurement

device (TM), respectively, in terms of number of packets

in millions. In each plot, the horizontal axis represents

the total traffic volume (in millions) of all flows in the

network, and the vertical axis represents the maximum load

(in millions) processed by a middlebox. In all four plots, the

maximum loads increase linearly with traffic volume in the

network, and as we expect, the load-balanced enforcement

has a smaller maximum load than the random and hot-potato

enforcement strategies. For example, in Figure 4(b), when

the traffic volume is 5M, the maximum load on IDS is 1.66M

packets under hot-potato enforcement, 1.01M under random

enforcement and 0.74M under load-balanced enforcement.

The results on the Waxman topology are shown in Figure

5. Similar conclusions can be made: In all four plots, the

maximum loads increase linearly with traffic volume in the

network, and the load-balanced enforcement has smaller

maximum load than the random and hot-potato enforcement

strategies

Table III shows the load distribution for each type of the

middleboxes in the university campus topology. The table

shows maximum and minimum loads for firewalls, intrusion

detection systems, web proxies and traffic measurement de-

vices. We can see that the load-balanced enforcement works

much better than the hot-potato and random enforcement

strategies. For example, the loads on FWs range from 0.4M

to 1.89M under hot-potato and from 0.69M to 1.22M under

random v.s. from 0.91M to 0.98M under load-balancing; the

loads on IDSes range from 0.11M to 3.40M under hot-potato

and from 0.93M to 1.99M under random v.s. from 1.37M

to 1.47M under load-balancing; the loads on WPs range

from 0.01M to 2.20M under hot-potato and from 0.45M to

1.24M under random v.s. from 0.47M to 1.10M under load-

balancing; the loads on TMs range from 0.04M to 1.88M

under hot-potato and from 0.44M to 1.23M under random

v.s. from 0.51M to 0.98M under load balancing. The loads

on WPs and TMs are less balanced because there are fewer

numbers of them, allowing less flexiblity for balancing.

Table III: Load distribution in maximum and minimum loads

(in number of packets) among middleboxes in the campus

topology.

Middlebox Hot-potato
(HP)

Random
(Rand)

Load-balance
(LB)

FW max. 1891652 1223174 977257
FW min. 402753 687877 910051
IDS max. 3395230 1986925 1468925
IDS min. 106713 926704 1365438
WP max. 2203942 1235988 1105270
WP min. 12737 446230 464976
TM max. 1879304 1232254 978894
TM min. 44724 442673 511895

552

(a) Maximum load of an FW (b) Maximum load of an IDS (c) Maximum load of a WP (d) Maximum load of a TM

Figure 4: Comparison of maximum load on any middlebox in the campus topology

(a) Maximum load on an FW (b) Maximum load on an IDS (c) Maximum load of a WP (d) Maximum load of a TM

Figure 5: Comparison of maximum load on any middlebox in the Waxman topology

V. RELATED WORK

End-to-End Explicit (E2E) Routing like Multi Proto-

col Label Switching (MPLS) [16] provides more efficient,

flexible and robust traffic engineering mechanisms than

the traditional IP network. However, due to a potentially

large number of tunnels to be created and maintained, an

exploding number of states needed to be stored in each

switch, which will cause significant scalability issues when

implementing a traffic engineering mechanism in MPLS

based on Resource Reservation Protocol - Traffic Engi-

neering (RSVP-TE) [17]. Our work does not store any

states in the underlying switches/routers. Rather, network

policy enforcement routing information are stored compactly

in middelboxes/policy proxies through software for quick

retrieval.

Another source routing architecture similar to our work is

Segment Routing (SR) [18]. In SR framework, packets are

routed through paths embedded in their header as an ordered

list of segments. Segments can be ”follow the shortest path to

a host, switch or router”, ”switch to a port or link” or ”apply

a given service or policy”. Traffic engineering requires one

or more labels be encoded in packets. Strict encoding, which

involves encoding segment identifier (SID) of all the hops

and services on a packet path in its header, may increase the

packet overhead and violate the hardware limitation to the

length of segment lists [19], [20]. One of our design goals is

to avoid increasing packets length to prevent fragmentation.

We do not manipulate network functionalities of each

middlebox like [1], but simply steers packets through

sequences of middleboxes. PLayer [21] forward packets

to unmodified middleboxes through policy-aware switches.

Other SDN-based network policies enforcement schemes

use tagged tunnels to route packets through sequences of

middleboxes [2], [4]. Our work is deployable on the tra-

ditional IP networks with no restriction on the placement

of middleboxes. Through a software-defined data structure,

our work is able to store much more states information

than flow table in SDN. In addition, only select network

devices (polixy proxies and middleboxs) are connected to

the controller, compare to all underlying switches in SDN.

These greatly enhance scalability of our work.

VI. CONCLUSION

This paper proposes a new network policy enforcement

architecture by introducing software-defined middleboxes

that can be directly configured by a centralized controller.

Unlike SDN controllers, the middlebox controller is not

553

involved in assisting packet forwarding at flow level. It

only configures the middleboxes based on user-specified

policies and traffic measurement, and thus is unlikely to

become a bottleneck. We propose a lightweight hot-potato

enforcement strategy and an optimized load-balanced policy

enforcement. We enhance them with middlebox-based flow

table and label switching to relieve processing overhead and

avoid packet fragmentation. We use OMNET++ simulation

to demonstrate the effectiveness of the proposed solution

with load-balancing optimization.

ACKNOWLEDGMENT

This work was supported by National Science Foundation

of US under grant CNS-1719222.

REFERENCES

[1] Z. G. A. Gember, P. Prabhu and A. Akella, “Toward
software-defined middlebox networking,” in Proceedings of
the HotNets-XI. IEEE, 2012.

[2] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using sdn,” in
Proceedings of ACM SIG-COMM. ACM, 2013.

[3] W. Z. M. C. A. Khurshid, X. Zou and P. B. Godfrey,
“Veriflow: Verifying network-wide invariants in real time,”
in Proceedings of the HotSDN, 2012.

[4] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C.
Mogul, “Enforcing network-wide policies in the presence of
dynamic middlebox actions using flowtags,” in Proceedings of
the 11th USENIX Conference on Networked Systems Design
and Implementation. USENIX Association, 2014.

[5] J. Moy, “Ospf version 2,” Internet Request For Comments
RFC 1247, July 1991.

[6] J. Smith. Introduction to eigrp. [Online]. Available:
https://www.cisco.com/c/en/us/support/docs/ip/enhanced-
interior-gateway-routing-protocol-eigrp/13669-1.html

[7] J. F. Kurose and K. W. Ross, Computer Networking: A Top-
Down Approach, 6th ed. Pearson, 2012.

[8] P. Gupta and N. McKcown, “Packet classification on multiple
fields,” in Proceedings of the conference on Applications,
technologies, architectures, and protocols for computer com-
munication, vol. 29. ACM, 1999, pp. 147–160.

[9] D. E. TAYLOR, “Survey and taxonomy of packet classifica-
tion techniques,” ACM Computing Surveys (CSUR), vol. 37,
no. 3, pp. 238–275, Sep. 2005.

[10] B. Y. Y. X. Y. Qi, L. Xu and J. Li, “Packet classification
algorithms: From theory to practice,” in Proceedings of the
INFOCOM. IEEE, 2009.

[11] D. P. Mehta and S. Sahni, Handbook of Data Structures and
Applicationsh. Chapman and Hall/CRC, 2018.

[12] D. M. C. Shannon and k. Claffy, “Characteristics of frag-
mented ip traffic on internet links,” in Proceedings of the 1st
ACM SIGCOMM Workshop on Internet measurement (IMW).
ACM, 2001, pp. 83–97.

[13] Omnet++ discrete event simulator. (2019). [Online].
Available: https://omnetpp.org/

[14] Inet framework. (2019). [Online]. Available: http-
s://inet.omnetpp.org/

[15] B. M. WAXMAN, “Routing of multipoint connections,” IEEE
JOURNAL ON SELECTED AREAS IN COMMUNICATIONS,
vol. 6, no. 9, December 1988.

[16] I. Minei et al., MPLS-enabled applications: emerging devel-
opments and new technologies. John Wiley & Sons, 2010.

[17] A. Cianfrani, M. Listanti, and M. Polverini, “Incremental
deployment of segment routing into an isp network: a traf-
fic engineering perspective,” in IEEE/ACM Transactions on
Networking, vol. 25, no. 5, pp. 3146–3160, Oct. 2017.

[18] C. Filsfils, N. K. Nainar, C. Pignataro, J. C. Cardona, and
P. Francois, “The Segment Routing Architecture,” Proc. of
IEEE GlobeCom, 2015.

[19] A. Giorgetti, P. Castoldi, F. Cugini, J. Nijhof, F. Lazzeri, and
G. Bruno, “Path encoding in segment routing,” in Proceedings
of the Global Communications Conference (GLOBECOM).
IEEE, 2015, pp. 1–6.

[20] R. Guedrez, O. Dugeon, S. Lahoud, and G. Texier, “Label
encoding algorithm for mpls segment routing,” in Proceedings
of the 15th International Symposium on Network Computing
and Applications (NCA). IEEE, 2016, pp. 113–117.

[21] A. T. D. A. Joseph and I. Stoica, “A policy-aware switching
layer for data centers,” in Proceedings of SIGCOMM. IEEE,
2008.

554

