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Abstract

The future high-speed networks will need to support
diverse traffic and provide services to flows with Qual-
ity of Service (QoS) requirements as well as to best
effort flows. In this paper we analyze the coexistence
of the QoS and best effort flows from the routing and
scheduling point of view. We concentrate in our rout-
ing and scheduling analysis on the network bandwidth
We present two sets of source routing al-
gorithms: (1) the bandwidth-constrained routing with
imprecise state information for QoS flows, and (2) the
mazxmin fair routing for best effort lows. The routing
analysis includes an extensive description of various
algorithms in their domains and their complexity dis-
cussion. Furthermore, we discuss two level hierarchical
scheduling which is tailored towards the needs raised
by the coexistence of QoS and best effort flows. We
show that this scheduling design accomplishes two de-
sign goals (1) guaranteeing QoS for QoS flows and (2)
ensuring fairness for best effort flows, and the overhead
is reasonably small and comparable with the time com-
plexity of the single-level fair queuing scheduling.

resource.

1 Introduction

The future high-speed networks will carry many con-
current flows with diverse requirements. Hence, it is
crucial that the network bandwidth and other net-
work resources are shared effectively and fairly among
all competing flows. In this paper we will consider
two sets of flows: QoS flows which post QoS require-
ments on the established end-to-end path, and best
effort flows which do not have any specific QoS re-
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quirements on the established end-to-end path. There
exist numerous network services which need to be ex-
amined and revisited when coexistence of these flows
is studied. In this paper we will analyze two network
services: Routing and Scheduling. In our analysis we
will concentrate on network bandwidth resource.

1.1 Routing

In general, the problem of routing is difficult due to a
number of reasons.

e First, distributed applications such as teleconfer-
ence, video-on-demand, Internet phone and web-
based games have very diverse QoS constraints
on delay, delay jitter, lose ratio, bandwidth, etc.
Multiple constraints often make the QoS routing
problem intractable. In particular, finding the
least-cost path with one path constraint or finding
a feasible path with two independent path con-
straints is NP-complete [11].

e Second, any future integrated-service network will
carry both QoS traffic and best-effort traffic,
which makes the issue of performance optimiza-
tion complicated. A primary task of routing is to
maximize the resource efficiency, which is mea-
sured by two goals. One goal is to maximize the
number of QoS flows that are admitted into the
network, which is equivalent to minimize the call-
blocking ratio. The other goal is to optimize the
throughput and responsiveness of best-effort traf-
fic. The two goals may contradict each other.
That is because (1) the first goal considers only
QoS traffic, (2) the second goal considers only
best-effort traffic and (3) however the two types of
traffic may have very different distributions. Gen-
erally speaking, it is hard to determine the best
operating point for both types of traffic if their



distributions are independent. Although the QoS
traffic will not be affected by the best-effort traf-
fic due to resource reservation, the throughput of
the best-effort traffic will suffer if the overall traf-
fic is misjudged. For example, links with light
QoS traffic may have heavy best-effort traffic, and
by many QoS routing algorithms, these links are
often considered as good candidates for new QoS
flows, which however causes the already congested
best-effort traffic even more congested.

e Third, the network state changes dynamically due
to transient load fluctuation, connections in and
out, and links up and down. The growing network
size makes it increasingly difficult to gather up-
to-date state information in a dynamic environ-
ment, particularly when wireless communication
is involved. The performance of a QoS routing
algorithm can be seriously degraded if the state
information being used is outdated.

In this paper we present two sets of source routing
algorithms: (1) the bandwidth-constrained routing with
imprecise state information for QoS flows, and (2) the
mazxmin fair routing for best effort flows. The goal
of our bandwidth-constrained routing algorithm with
imprecise state informations is to maximize the proba-
bility of success in finding a feasible path for a new QoS
flow in a dynamic network environment. The goal of
our maxmin fair routing algorithm is to assign routes
to new best effort flows such that the performance of
the maxmin bandwidth allocation can be maximized.
The routing analysis includes an extensive description
of various algorithms in their domains and their com-
plexity discussion.

1.2 Scheduling

Scheduling of flows with diverse network requirements
can be done by a single-level weighed fair queuing algo-
rithms. However, the complexity of this algorithm in-
creases with the number of flows and the book-keeping
of flow states becomes more complex. Hence, a hi-
erarchical scheduling is more appropriate to deploy
as it scales better towards the increasing number of
flows with different network requirements. We modi-
fied the hierarchical fair queuing scheduling algorithm
proposed by Bennett and Zhang [2] and tuned it to-
wards specific needs raised by the co-existence of QoS
flows and best effort flows.

In this paper we discuss the two-level hierarchical
scheduling. The top scheduler schedules a QoS server
and best-effort server which enforce the bandwidth
QoS requirements for QoS flows and ensure fairness
for best effort flows. Both servers as well as the top
level scheduler use weighted fair queuing for bandwidth
allocation. We show that this scheduler design ac-
complishes the two design goals (guaranteeing QoS for
QoS flows and ensuring fairness for best effort flows),
and the overhead is reasonably small and comparable
with the time complexity of the single-level fair queu-
ing scheduling.

1.3 Outline

The core of the paper is divided into four sections.
The Section 2 presents the network model and speci-
fies the notation for the bandwidth partition between
the QoS and best effort flows. Section 3 describes
bandwidth-constrained routing algorithms using the
imprecise state model. Section 4 analyses the best ef-
fort maxmin routing algorithm which uses the fairness-
throughput relation for route finding and allocation.
Furthermore, we will discuss an approximation algo-
rithm which decreases the communication overhead for
collecting the routes of all flows. Section b proposes
an integrated hierarchical packet scheduling which en-
forces network bandwidth for both QoS and best effort
flows. The paper concludes with Section 6.

2 Model

A network is modeled as a set V' of nodes that are in-
terconnected by a set E of full-duplex, directed com-
munication links. Let F' be the set of flows in the net-
work. We study connection-oriented networks where
each flow has a fixed source (destination) and is as-
signed a fixed route through which all packets of that
flow are transmitted in the FIFO order [5, 13, 12]. For
a flow f € F, the set of links on its route is denoted
as L(f). The set of flows through a link [ is denoted
as F(I).

We study two types of flows in this paper. A QoS
flow f has a bandwidth requirement B(f), which must
be guaranteed (reserved for f on each link in L(f)) in
order to ensure an acceptable quality. An example is
an audio session between two remote users. The set
of QoS flows in the network is denoted as Fg,,;. The
set of QoS flows through a link [ is denoted as Fyo,(1).



A best-effort flow can operate at any bandwidth level,
and hence the reservation of bandwidth is not needed.
Examples are file transmission (ftp), web-page down-
load and database retrieval. The set of best-effort flows
in the network is denoted as Fi.,:. The set of best-
effort flows through a link [ is denoted as Fpeqt(I). We
have Fyos + Frest = F and Fyou(l) 4+ Frest (1) = F(1).

Each link [ has a bandwidth capacity C(I), among
which the part reserved by the QoS flows is denoted as
Cgos(l) and the part available to the best-effort flows
is denoted as Cpest(l). Coos(l) = X4er,,,1yB(f), and
Chest(l) = C(I) — Cyos(l). It is clear that the values of
Cgos(l) and Chest(l) are not fixed. When a new QoS
flow f is routed through I, Cyo,(1) is increased by B(f)
and Chest(l) is decreased by the same amount. In or-
der to prevent the best-effort flows from being starved,
Cgos(1) is upper-bounded by AC(I), where A is a system
parameter less than 1. For every link [, the condition
Cgos(l) < AC(l) must always be satisfied. Hence, the
bandwidth for best-effort flows is at least (1 — A)C/(I).

A new QoS flow f with B(f) requirement can be
accepted by a link { only if AC(I) — Cyos(l) > B(f).
AC (1) —Cyos(1) is called the residual bandwidth of [ and
is denoted as bandwidth(l). A simple path p consists
of a set of connected links. The residual bandwidth of
a path is defined as

bandwidth(p) = T,in{bandwidth(l)}
€p

3 QoS Routing

3.1 Bandwidth-constrained routing and

imprecise state information

We study the bandwidth-constrained routing prob-
lem, i.e., finding a path p from s to t such that
bandwidth(p) > B, where s, t and B are the source
node, the destination node and the bandwidth require-
ment ! of a new QoS flow, respectively. Any path from
s to t satisfying the above constraint is called a feastble
path.

We use the source routing strategy [7, 12, 14], in
which every node maintains an image of the global net-
work state, based on that a routing path is computed
at the source node. However, the global state, which

!We use B as an abbreviation of B (f) when only a single QoS
flow is in discussion.

(V, E) the set V' of nodes and the set E of links in
the network

F the set of flows in the network

Fygos the set of QoS flows in the network

Fyegt the set of best-effort flows in the network

F() the set of flows through a link I, F(I) C F

Faos(1) the set of QoS flows through a link [

Frest(1) the set of best-effort flows through a link !

L(f) the set of links on the route of a flow f

B(f) the bandwidth requirement of a QoS flow f

c) the capacity of a link [

Cqos(l) the bandwidth reserved by the QoS flows in
0

AC() the maximum bandwidth that can be reserved
by the QoS flows, Cyos(l) < AC(1)

Chest(l) the bandwidth available to the best-effort
flows in Fyest(l), Chest(l) = C(I) — Cgos(l)

bandwidth(l) the residual bandwidth of a link |,
bandwidth(l) = X C(I) — Cyos(1)

Table 1: Notations

is typically maintained by a link-sate ( or distance-
vector) protocol, is inherently imprecise in a dynamic
network where the traffic load changes constantly.
The imprecision is especially noticeable in large wide-
area networks due to the following reasons. First,
it takes non-negligible propagation delay for a local
state change to be broadcasted to other nodes. Sec-
ond, a link-state (or distance-vector) protocol updates
the state information periodically or upon triggering
when significant state change is detected. There ex-
ists a tradeoff between the update frequency and the
overhead involved. For large scale networks, the exces-
sive communication overhead often makes it imprac-
tical for the update frequency to be high enough to
cope with the dynamics of network parameters such
the bandwidth availability on every link. Third, the
hierarchical approach is likely to be used to solve the
scalability problem of routing in large networks [10].
However, the state aggregation in hierarchical routing
increases the level of imprecision [12].

The imprecision of state information directly affects
the routing performance. The goal of our algorithm
is to maximize the probability of success in finding a
feasible path in a dynamic network environment where
the available information is imprecise. In the following,
we shall first propose an imprecise state model, based
on which the routing algorithm is described.




B the estimated residual bandwidth of
a link [

AB; the estimated maximum change of B;
before the next update period

Table 2: Notations

3.2 Imprecise state model

Every node maintains a state vector which has an en-
try, denoted as By, for every link [ € E.

1) Bandwidth: B; keeps the residual bandwidth
available on link [.

By is updated periodically by a link-state protocol.
It is inherently imprecise in a dynamic network as dis-
cussed in Section 3.1. We propose a simple imprecise
state model which can be easily implemented. An ad-
ditional state variable ABj is required.

2) Bandwidth Variation: AB; keeps the esti-
mated maximum change of B; before the next update.
The actual residual bandwidth of link [, denoted as
bandwidth(l), is expected to be between B; — AB; and
B; + AB;j in the next period.

In the following, we describe a possible way to cal-
culate AB;. AByis updated periodically together with
B;. Consider an arbitrary update of AB; and B;. Let
ABfld and AB*¥ be the values of AB; before and
after the update, respectively. Similarly, let Bfld and
B7*" be the values of B; before and after the update,
respectively. Bj**" is provided by a link-state protocol.

AB" is calculated as follows.
ABM™Y = o x AB"® 4 (1 — a) x |Br* — B/l

The above formula is similar to the one used by TCP
to estimate the round-trip delay. The factor o (< 1)
determines how fast the history information (AB{'?)
is forgotten, and (1 — a) determines how fast ABP*¥
converges to |Bre¥ — Beld|.

By the above formula, it is still possible for the
actual residual bandwidth to be out of the range
[B; — ABy, B + AB;]. One way to make such prob-
ability negligible small is to enlarge AB;. Hence, we
shall modify the formula and introduce another factor

B8 (>1).

ABMY = o x ABf"® 4+ (1 - a) x 8 x |BM¥ — BfY|

ABP*¥ converges to 3 x |B'Y — BPY| at a speed de-
termined by (1 — ).

The most related work was done by Guerin and
Orda [12] and by Lorenz and Orda [14]. Their im-
precision model is based on the probability distribu-
tion functions. For instance, every node maintains, for
every link [, the probability p;(w) of link ! having a
residual bandwidth of w units, where w ranges from
zero to maximum possible value. The problem of how
to maintain the probability distribution was not dis-
cussed. QOur imprecision model is much simpler. For
every link [, a node maintains two values, B; and A B;,
from which the probability p;(w) can be derived, as
shown in Section 3.3.

3.3 Routing algorithm

The purpose of our routing algorithm is to maximize
the probability of success in finding a feasible path,
given By and AB;, VIl € E. An important part of the al-
gorithm is to calculate the probability of a link [ satis-
fying a given bandwidth requirement. Such a probabil-
ity is determined by the probability distribution func-
tion of bandwidth(l). Let us consider the simple case.
Assume that bandwidth(l) is a random variable whose
value is uniformly distributed in [B; — ABy, Bi+ ABy].
The probability density function of bandwidth(l) is

f(m) _ ﬁ T c [Bl — ABy, B+ AB[]
0 z Q [Bl — ABy, B+ AB[]

Consider a new flow which source node, destination
node and bandwidth requirement are s, ¢t and B, re-
spectively. The probability of a link [ satisfying the
bandwidth requirement is

Pr(bandwidth(l) > B)

= /]:oo f(z) dz

BUSBB B¢ (B — ABy, B+ AB)]
=41 B < Bi— AB;
0 B > B+ AB;

The probability of a path p satisfying the require-
ment is



Pr(bandwidth(p) > B)
= lH Pr(bandwidth(l) > B)
ep

Iep 3AB, Viep,B< B+ AB

H m?:’rL{Bl-l—ABl—B,ZABl}
_{0 3 ep, B> B +AB,

The routing algorithm is designed to find a path p
from s to t which maximizes Pr(bandwidth(p) > B).
Algorithm 1.

1. Let E' = {l{|B < By + AB;,l € E}. Remove all
links in £ — E’, and the resulting graph is denoted
as (V, E'). If there does not exist a path from s
to ¢ in (V, E'), reject the flow and return.

min{Bl+ABl—B,2ABl}

2.Vl € E', a weight w; = —log NG

is assigned.

3. Use the Dijstra’s shortest path algorithm to find
the least-weighted 2 path p from s to ¢ in (V, E).

4. Select p as the routing path. If the flow is success-
fully established through p, return. Otherwise,
reject the flow and return.

We can also assume other distribution functions for
bandwidth(l). A more generic routing algorithm is pre-
sented below:

Algorithm 2.

1. Let E' = {l| Pr(bandwidth(l) > B) > 0,l € E}.
Remove all links in E—E’, and the resulting graph
is denoted as (V, E’). If there does not exist a path
from s to t in (V, E'), reject the flow and return.

2. Vl € E', a weight w; = —log Pr(bandwidth(l) >
B) is assigned.

3. Use the Dijstra’s shortest path algorithm to find
the least-weighted path p from s to ¢ in (V, E').

4. Select p as the routing path. If the flow is success-
fully established through p, return. Otherwise,
reject the flow and return.

where the value of Pr(bandwidth(l) > B),l € E is
determined by the probability distribution function of
bandwidth(l).

2The least-weighted path p is the one which minimizes ¥ w;.
lep

The design goal of Algorithm 2 is to maximize the
probability for the selected path to satisfy the band-
width requirement. It does not consider other opti-
mization criteria such as the path length. When there
exist many paths that satisfy the QoS requirement,
the shortest path in terms of number of hops is often
desired due to a better statistical performance [15]. Al-
gorithm 3 tries to take the path length into account.
Let d,; be the distance between the source s and the
destination t.

Algorithm 3

1. Let E' = {l| Pr(bandwidth(l) > B) > 0,l € E}.
Remove all links in E—E’, and the resulting graph
is denoted as (V, E’). If there does not exist a path
from s to ¢t in (V, E'), reject the flow and return.

2.Vl € E, a weight w; =
B) is assigned.

—log Pr(bandwidth(l) >

3. Run the Bellman-Ford algorithm, which consists
of |V] — 1 iterations.

(a) After the d,th iteration, it finds the least-
weighted path Py from s to ¢t with a length
of dg .

(b) After the (d,: + 1)th iteration, it finds the
least-weighted path P, from s to ¢ with a
length of no more than d,; 4 1.

(c) After the (|V| — 1)th iteration, it finds the
least-weighted path P, among all simple
paths from s to .

4. Select Py as the routing path. If the flow is suc-
cessfully established through Py, return. Other-
wise, go to the next step.

5. If P, = Fy, go to the next step. Otherwise, select
P, as the routing path. If the flow is successfully
established through P, return. Otherwise, go to
the next step.

6. Select P, as the routing path. If the flow is suc-
cessfully established through P,, return. Other-
wise, reject the flow and return.

4 Best-Effort Routing

For the best-effort flows, we shall first review the
mazmin bandwidth allocation, based on which a new



routing policy, called the mazmin fair routing, is de-
fined. Throughout this section, we call Chest(l) the
available bandwidth (capacity) for best effort flows of
link .

4.1 Maxmin Bandwidth Allocation

4.1.1 Brief Review

The maxmin allocation was first proposed by Jaffe
[9] as a flow control technique which distributes the
network bandwidth fairly among the best-effort flows.
Much further research [1, 3, 4, 5, 17] has been done
since then. It has been accepted by the ATM Forum
as one of the traffic management approaches for the
ABR(Available Bit Rate) service.

Its name comes from the fact that the maxmin al-
location always maxzimizes the bandwidth allocated
to those flows that receive the minimum bandwidth
among all flows. The maxmin allocation has two basic
properties:

1. Fairness property: At each link [, every flow
J € Fiest(l) is allocated an equal share of the
available bandwidth Ches:(l). However, if f re-
ceives a lower bandwidth at another link on its
route, the bandwidth of f is allocated according
to the bandwidth allocation at the bottleneck link
on its route.

2. Mazimum throughput property: The entire avail-
able bandwidth Chest(I) must be allocated to the
flows in Fiest (1) unless every flow f in Fies: (1) has
a bottleneck link elsewhere on its route which lim-
its the maximum bandwidth f can receive.

The maxmin bandwidth of each best-effort flow is
determined by the bottleneck link on its route. A
global bottleneck based algorithm which assigns the
maxmin bandwidth to each best-effort flow was de-
scribed in [5, 16] and is briefly summarized below. A
distributed algorithm was given in [9].

A global bottleneck link [ is defined as the link
which has the smallest bandwidth per flow, |g::::((ll:))|
Since [ is the most congested link in the network, it
is the bottleneck link for each flow f € Fiest(lp). We
allocate an equal share of the available bandwidth, i.e.

%, to each f. Then all flows in Fies:(lp) are re-

moved from the network. The available bandwidth of
every affected link is reduced by the amount consumed

by the removed flows: For each f € Fiest(lp), the avail-
able bandwidth of every link on the route of f is re-
duced by % After that, the above procedure is
repeated until every flow is assigned a bandwidth and

removed from the network.

4.1.2 Fairness-Throughput Optimality

We formalize an important property for the maxmin
allocation. A feasible bandwidth allocation ¥ : Fp.op —
R is a function which satisfies the following condition

Vi e E: X \I’(f) S Cbest(l)

.ferest(l)

Let W(Fpest) be the list of values (¥(f) | Vf € Fest)
in the increasing order. Note that in mathematics
U ( Fpest) normally represents a set of values {¥(f)|f €
Frest }- In this paper we make a different interpretation
by introducing an increasing order to ¥ (Fpes:) and us-
ing it as an ordered list. A link [ is said to be saturated
by ¥ if
fngst(l)\I’(f) Chen (1)

Definition 1 Given two feasible bandwidth alloca-
tions ¥ and ¥' on Fp.,, we define the fairness-
throughput relations: (1) U(Fpest) = W'(Fpest) if the
two lists are identical, and (2) ¥(Fpest) > U/ (Frest) if
there exists a prefix of ¥(Fpest), (b1,d2,...,0;), and a
prefiz of U'(Fpest), (b7, b5, ..., b%), such that b; > b and
bj:b;-,lgjgi—l.

The above relations place a total order on the set
of all feasible allocations. The ordering is based
on two performance measurements, fairness and
throughput. In more descriptive and less precise
words, an allocation is larger than the other if it is
fairer and/or generates more throughput, which is il-
lustrated by Figure 1, where three best-effort flows,
fi, fo and f3, share two links with available band-
widths 8 and 10, respectively. Consider three dif-
ferent allocations, ¥;, ¥5 and ¥3. By Definition 1,
W1 (Fpest) > Wa(Fpest), The reason is that ¥, is fairer
as it splits the available bandwidth of link [; equally
between f; and fs and thus maximizes the smallest el-
ement in the list of ¥y (Fpest). U3 is also fair. However,
it does not fully utilize the capacity of link /5. Hence,
\Ill(Fbest) > \Il3(Fbest)-

Fairness and throughput are often conflicting mea-
surements. For example, ¥y(Fpest) has more overall



Pa(f1) =4
o 11 8 12 10
Yot =4

Py(fa)=6

f1

P 1Fpegt) = (44.6)

PoAf) =2 Paf1)=4
PAr)=6 Yot =4
YAfa) =8 Yoy =4

Y AFpest) = (268  VIAFpe) = (4.44)

Figure 1: Consider three different allocations, ¥ (Fiest) = (4,4,6), Wa(Frest) = (2,6,8), and ¥3(Fhest) =
(4,4,4), among which ¥, is the maxmin fair allocation. ¥;(Fpest) > Wa(Fpest) because it is fairer. Wq(Fpest) >

W3 (Fpest) because it generates more overall throughput.

throughput 3 but W, (Fpe,:) is fairer between f; and fs.
The fairness-throughput relations defined in Definition
1 evaluate an allocation based on a measurement which
provides a tradeoff between the fairness and the over-
all throughput. We shall establish a theorem showing
that the maxmin allocation maximizes the fairness-
throughput performance, i.e. ¥,,(Frest) > Y (Fpest),
where W is an arbitrary feasible allocation and ¥,, is
the notation specially for the maxmin allocation here
and in the rest of the paper. The proof of the following
theorem can be found in [6].

Theorem 1 ¥,,(Fpest) > Y (Fhest), for any feastble
allocation ¥.

4.2 Maxmin Routing

In this section, the optimization property of the
maxmin bandwidth allocation illustrated in Theorem 1
is extended from the domain of flow control to the do-
main of routing. We first define the concept of mazmin
routing.

4.2.1 Definition of Maxmin Routing

Let (V, E') be a network where bandwidth is alway al-
located to flows by maxmin. Let Fp.,; be the set of
existing best-effort flows, each of which has a fixed
route. Consider a new best-effort flow fy. The task
of routing is to assign a route r to fy. Each differ-
ent route for fy results in a different maxmin band-
width allocation ¥,,, on Fpes U{fo}. The purpose
of mazmin routing is to find a route r such that
\I’m,r(Fbest U{fO}) > \I’m,r’(Fbest U{fﬂ})i for any fea-
sible route 7’ of fy.

The maxmin routing is a new problem which is dif-
ferent from the maxmin allocation studied by the pre-

3We define the overall throughputas the aggregate throughput
of all flows.

vious publications. The problem solved by the latter
is as follows: given a network and a set of flows with
fixed routes, how to assign the network bandwidth to
the flows such that the network performance is opti-
mized. The maxmin routing, however, assumes the
network bandwidth is assigned based on the maxmin
allocation. It then introduces another dimension, new
flows. The problem to be solved is how to assign routes
to new flows such that the performance of the maxmin
allocation can be maximized.

4.2.2 Maxmin Routing Algorithm

The maxmin routing algorithm first adds fy to every
link in the network * and then iteratively removes fo
from the links which have the smallest per-flow band-
width until the route for fy is found. By removing fo
from the links with the smallest bandwidth per flow,
the algorithm effectively routes fy around the most
congested links and therefore maximizes the band-
width allocated to the congested flows, which equals
maximizing the low end of ¥,, . and thus equals max-
imizing ¥,, , because the low end of ¥,, . is of more
significance by definition.

The algorithm below consists of two phases. In the
first phase, the bottleneck link of fy is found, which
determines the maxmin bandwidth for fy; in the sec-
ond phase, the algorithm finds the rest of the route
which maximizes ¥,, .. We mark links either green
or red. Green links are candidates to form a route
for fo; red links are either not on any paths from
the source to the destination or considered to be con-
gested and thus rejected by the algorithm. A path
consisting of only green links is called a green path.
When we say “remove a best-effort flow f from the net-

work”, we mean, VI € L(f), Feest(l) = Frest(I) — {f}

*Note that we are not adding the flow to the links of the real
network but to the data structure representing the network at a
node doing the source routing.



and Chest(l) = Chest(l) — ¥mr(f), where ¥, .(f) is
the bandwidth assigned to the flow by the algorithm.
When we say the source (destination), we mean the
source (destination) of fo. The first phase of the algo-
rithm is as follows.

1. For every link [/ that is on a path from the source
to the destination, add fo to Fpest(!) and mark [
as a green link. Mark other links red.

2. Find the global bottleneck link [ which has the

smallest bandwidth per flow, “,:—(‘::((5—3—'

(a) If Iy is a red link, ® then

i. assign bandwidth &—:?(l—")— to every flow
in Fbest(lb);
ii. remove all flows in Fpest(lp) as well as
link I from the network, and
iii. repeat Step 2.

(b) If Iy is a green link and not all green paths
from the source to the destination pass I3,
then

i. remove fo from Fies(ly),
ii. mark [, as a red link, and
iii. repeat Step 2.
(c) If Iy is a green link and all green paths from
the source to the destination pass [, then
i. Iy is the bottleneck link for fy, and will
be denoted as lg in the second phase,
ii. assign bandwidth %:::((ll_:% to every flow
in Fpest(Ip) including fo,
iii. remove all flows in Fpese(lp) except fo
from the network, & and

iv. go to the second phase of the algorithm.

Let Iy be the bottleneck link of fy, which is found
at Step 2(c) in the first phase. Let ¥,,,.(fo) be the
bandwidth assigned to fy. The second phase is to find
the rest links which together with [y will form a route
for fo. It has the same control structure as the first
phase except the subtle differences in the calculation
of the global bottleneck and the treatment of fy. The

5By the construction of the algorithm, fo ¢ Fyese(lp) if lp is a
red link; fo € Fyest(ly) if I is a green link.
5We can not remove fo from the network because the route

of fo,1.e. L(fo), is unknown.

first phase focuses on finding the bottleneck link I
and determining ¥, .(fo) whereas the second phase
focuses on finding the rest of the route.
ceptual differences make us decide to separate them,
which also seems to make the algorithm more under-
standable. When the second phase terminates, L(fo)
contains the links which form the route for fy.

L(fo) = {lo}

2. Among the links in E — L(fo), find the global
bottleneck link I which has the smallest band-
width per flow. The bandwidth per flow of a link

l € E— L(fo) is calculated by %W if {

is a green link or SGrestllo) i¢ 7 ig 3 red link.
|Fbest(lb)|

(a) If I is a red link, then

i. assign bandwidth Flr"—e”(—")— to every flow
in Fbest (lb)7

ii. remove all flows in Fpest(lp) as well as
link I from the network,

Their con-

iii. repeat Step 2.

(b) If Iy is a green link and not all green paths
from the source to the destination pass [,
then

i. remove fo from Fies(lp),
ii. mark [, as a red link, and
iii. repeat Step 2.

(c) If Iy is a green link and all green paths from

the source to the destination pass [, then

i. L(fo) = L(fo) U{ls},

ii. assign bandwidth C"ei“}(ble"s)tzlf)'r_’l(fo)

ery flow in Fpeqt(Ip) except fo,

to ev-

iii. remove all flows in Fpest(lp) except fo
from the network, and

iv. terminate if the links in L(fp) form a
path from the source to the destination,
or repeat Step 2 otherwise.

4.2.3 Discussion

The maxmin routing avoids the congested links by
marking them red, and routes fy along those links
whose per-flow bandwidth is as large as possible.
Hence, it helps to improve the overall throughput of
the network. However, in a long term, fairness may
contradict throughput as the proposed algorithm may



select an excessively long path which reduces the over-
all bandwidth available for flows arriving successively.
Research showed that short routing paths tend to yield
high overall throughput [15]. The proposed algorithm
can be modified to take the path length into consider-
ation. A maximum allowable length is specified for a
new flow based on the distance from the source to the
destination. After marking a green link [ red, the algo-
rithm tests whether there still exists a green path from
the source to the destination whose length is bounded
by the maximum allowable length. If the answer is
false, the algorithm marks [ back green, selects the
shortest green path from the source to the destination
and then terminates.

4.3 An Approximation Algorithm

The proposed maxmin routing algorithm requires the
knowledge of the routes of all existing flows. When
flows join and leave the network frequently, the com-
munication overhead for collecting the routes of all
flows will be excessively high. Many routing algo-
rithms [16, 19, 20] rely on the state information of the
links in the network, instead of that of the flows. The
state of the links can be collected and maintained at
each node by the link-state algorithm [18], which has
been implemented on many internetworks. In the fol-
lowing, we approximate the proposed maxmin routing
algorithm by using a new state defined on each link.
Each link ! monitors the actual data rate r(f) of
every flow f € Fyest(1).” By using the dynamic band-
width allocation discussed in the next section, the ac-
tual data rate of a flow will approximate the expected
maxmin bandwidth. The link [ keeps track of the set
F? (1) of flows whose bottleneck links are I. How to
maintain FP, () is also discussed in the next section.
Note that, according to the maxmin allocation, the
rates of flows in F?,,,(I) are higher than those of flows
in Fest (1) — FF,,(I) whose bottleneck links are else-
where on their routes other than [ [3]. A new state

r(l) is defined for .

r
.ferest(l)_F}:)est(l) Cbest (l)

|Fls)est(l)| —I_ 1

If a new flow fy is routed through [ and [ is the bottle-

"Note that the monitoring as well as other link operations is
in fact done by the node in charge of the link.

' |Fbest(l)| + 1

neck link of fo, 7(I) is an approximation of the band-
width allocated to every flow in FZ,_, (1) U{fo}

At every node in the network, the link state algo-
rithm collects all #(I),l € E. When a new flow fy ar-
rives, the source routing is done by using the Bellman-
Ford algorithm to find a path p which maximizes the
smallest 7(!) on the path, i.e. to maximize nl?,ez;?,{r(l)}

If there are multiple such paths, choose one which
maximizes the second smallest 7(), and so on. This
procedure continues until a single path is found or a
pre-determined maximum allowable length has been
reached.

4.4 Dynamic Bandwidth Allocation

The bandwidth allocated to a flow changes as other
flows join and leave the network dynamically. The
source of a flow must adjust its data rate according to
the network dynamics. The dynamic bandwidth allo-
cation is used to adjust on the fly the bandwidth of
all flows and inform the sources to change their data
rates accordingly. The design requirement of dynamic
bandwidth allocation is that, given any initial state, it
must be able to converge to the maxmin allocation in
finite time if there is no further arrival of new flows and
no further leave of existing flows. Anna Charny et al
[5] proposed a distributed algorithm which fulfills such
a requirement. We modify the algorithm in order to
maintain Fp,,,(I) and r(l) at each link [ and therefore
provide the information needed by the approximation
algorithm in Section 4.3. The value r(I) will be sent to
every router in the network by the link-state algorithm
for the purpose of maxmin routing.

1. The source of each flow f sends out forward con-
trol messages, RM cells in the ATM context, along
its route periodically to determine the expected
maxmin bandwidth. The rate of control messages
should be bounded by certain low percentage of
the average data rate.

2. When a link receives a forward control message,

Cbest(l)_ b "'(.f)

_pb
F€Fpest Fbest(l)

|Fp, (D)l
the message 8 and forwards the message to the

it assigns bandwidth to

}

8In the above formula, we ignore the bandwidth consumed by
the control messages for the purpose of simplicity. Readers are
referred to [5], where the traffic volume of control messages are
considered.



next hop on its route. By traversing every link on
its route, the forward control message keeps the
smallest assigned bandwidth, and the link which
assigns such a bandwidth is also kept as the bot-
tleneck link.

. When the destination receives a forward control
message, it turns the message around as a back-
ward control message which traverses back along
the route to the source.

When a link receives a backward control messages,
it checks whether it is the bottleneck link for this
flow. If it is, FP,,(I) = F,,(1) + {f}; otherwise,

FE.. ()= FE,,() — {f}. r(1) is recomputed when
necessary.

. When the source receives a backward control mes-
sage, it adjusts the data rate according to the
smallest assigned bandwidth carried back by the
message. °

5 Integrated Packet Scheduling

We propose an integrated hierarchical packet schedul-
ing scheme which provides the network support for

both QoS and best-effort flows.

5.1 Design Goals

When there exist many concurrent flows in the net-
work, it is crucial that the limited bandwidth and other
resources are shared effectively and fairly among all
competing flows. We have two design goals for the
scheduling of data packets:

1. Guaranteeing QoS: The bandwidth require-
ment B(f) must be guaranteed for each f € F,.
The total bandwidth needed by the QoS flows on

link lis Cgos(l) = X B(f). The QoS guaran-
FEFq0s(1)
tee is provided in a use-or-lose-it sense: A band-

width of B(f) is guaranteed for f (€ Fyos(l)) as
long as the incoming data rate of f is high enough
to consume it; however, the reserved bandwidth
for the current moment, if not used, will not be

°If the assigned bandwidth is much greater than the current
data rate, the source may choose to increase the data rate grad-
ually in order to avoid oscillation or temporary overloading of
the bottleneck link.
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Figure 2: two-level hierarchical scheduling

added up to the bandwidth entitled to be used for
the next moment.

. Ensuring fairness: After the bandwidth for the
QoS flows is taken off, the rest of the bandwidth,

Chrest(l) = C(1) — > B(f), is shared 1l
best (1) D) P (f), is shared equally

among all flows in Fpest(!). Each best-effort flow
is entitled to the same share of bandwidth as any
other best-effort flow on the link. A flow may
receive a less share due to insufficient input data
because of an upstream bottleneck link.

5.2 Hierarchical Scheduling

We propose a hierarchical scheduling algorithm which
achieves the two design goals. Our algorithm is similar
to the one proposed by Bennett and Zhang [2]. How-
ever, it is tuned toward the specific needs raised by the
co-existence of QoS flows and best-effort flows.

5.2.1 Overview

A packet scheduling algorithm operates on each indi-
vidual link . The algorithm is a two-level hierarchy as
shown in Figure 2. On the first level, the link capac-
ity is divided between two logical scheduling servers:
the QoS server and the best-effort server. The ca-
pacity of the QoS server is Cyo,(l) = feFEs(l)B(f)’

and the capacity of the best-effort server is Chest(l) =
C(l)— X B(f). The values of Cys(l) and Chest (1)

FEF 05(1)

change when the flow set Fy,,(l) changes. On the
second level, the QoS server schedules the flows in
Fuos(l) and the best-effort server schedules the flows
in Fiest(1). The QoS server guarantees that every flow
J in Fyos(1) receives a bandwidth of B(f). The best-
effort server makes sure that every flow in Fie,;: receives
an equal share of Chest(l) according to maxmin band-

width allocation.



5.2.2 QoS Server
The QoS server must maintain two invariants.

I1. The capacity of the QoS server, Cyos(l), must be

Y B(f) at any time. Whenever a new QoS
fEFgos(l)

flow f joins in Fyo,s(l), Cyos(l) must be increased
by B(f) immediately; whenever an existing QoS
flow f leaves Fyou(l), Cgos(l) must be decreased by

B(f)-

I2. Vf € Fyos(1), the QoS server assigns a bandwidth
no less than B(f) to f, regardless the dynamics
of the network state.

5.2.3 Best-effort Server
The best-effort server has two properties.

P1. The capacity of the best-effort server, Chest(l),
is always equal to the link bandwidth left over
by the QoS server. When a new QoS flow joins
and thus Cyo,(l) increases, Chest(!) must decrease
accordingly; when an existing QoS flow leaves
and thus Cyo,(l) decreases, Che,t(l) must increase
accordingly!®

P2. The best-effort server distributes its capacity
Chest(l) fairly among all flows in Fpese(l). Any
two flows whose packet queues remain back-logged
should receive the same share of bandwidth. The
flows whose queues are not back-logged receive
less bandwidth which is equal to the incoming
data rate.

5.3 Implementation

The implementation of the hierarchical scheduling al-
gorithm consists of three parts: (1) scheduling within
the QoS server, (2) scheduling within the best-effort
server and (3) scheduling between the two servers.

// two-level hierarchical scheduling on link !
while true do
(1) a packet n is selected from flows in Fy,, (1)
by the QoS server
(2) a packet m is selected from flows in Fpese(l)
by the best-effort server
(3) select n or m for transmission by top scheduler

1Note that Cgos(l) has an upper bound (AC(l), where A < 1
and C(l) is the overall link capacity) as specified in Section 2.
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Referring to Figure 2, (1) and (2) are the second-level
schedulings; (3) is the first-level scheduling. All three
parts can be implemented by the weighted fair queuing

[8].

5.3.1 Scheduling within QoS Server

Assume the invariant I1 (Section 5.2.2) always holds,
i.e., the capacity of the QoS server, Cyo4(l), is always

¥ B(f). How to maintain such a capacity in a
F€Fq0s(1)
dynamic network is discussed in Section 5.3.3. We

implement the scheduling within the QoS server by
the weighted fair queuing as follows.

1. A packet queue is maintained for each flow f €
Fuos(l). The arrival packets are inserted into the
queue in the FIFO order. A timestamp tf]os is
calculated for the ¢th arrival packet.

Spi
B(f)

where Vo, is the reference wirtual time [2] of the
QoS server, sp; is the length of the packet, tf;sl is
the timestamp of the (¢ — 1)th packet and B(f)
is used as the weight. See Table 3 for a quick
reference to the notations introduced here and in

the following paragraphs.

i i—1
t 08) tqos

gos

— maz{V, }+

Vgos is a variable maintained by the QoS server,
keeping track of the timestamp of the last trans-
mitted packet from Fgo,(I). It is used to deter-
mine where the timestamp of a new or resumed
QoS flow should start. Note that there is a single
variable V,, used by all flows in Fy,,(l).

. The scheduling among flows in Fy,,(l) is based
on the timestamps. Whenever the QoS server be-
comes idle, the packet with the smallest times-
tamp among all queues is selected for transmis-
sion.

The above weighted fair queuing assigns bandwidth to
flows based on their weights. The bandwidth received

by f € Fgs(l) is equal to EB(f)B(f,) X Cgos(l) =
f’Gqus(l)
C—]i)(i% X Cgos(l) = B(f), if all flows are back-logged.

Hence, the invariant 12 holds. Readers are referred to
[2, 8, 21] for the detailed study of fair queuing.



a; the arrival time of the ¢th data packet

sp; the size of the ¢th packet in term of number of
bits

g0s the timestamp assigned to the ith packet by
the QoS server for scheduling within the server

thest the timestamp assigned to the ith packet by
the best-effort server for scheduling within the
server

Tgos the timestamp assigned to the ith packet by
the QoS server for scheduling between the QoS
and the best-effort servers

Tyest the timestamp assigned to the ith packet by
the best-effort server for scheduling between
the QoS and the best-effort servers

Vgos the reference wirtual time of the QoS server,
keeping track of the timestamp of the last
transmitted packet from Fy,, (1)

Viest the reference wvirtual time of the best-effort
server, keeping track of the timestamp of the
last transmitted packet from Fpes:(l)

Table 3: Additional notations for the hierarchical
scheduling

5.3.2 Scheduling within Best-effort Server

Assume the property P1 (Section 5.2.3) always holds,
i.e., the capacity of the best-effort server, Cpes: (1), is al-

Y B(f). How to achieve this
f€Fqos(l)

will be discussed shortly. We implement the schedul-
ing within the best-effort server by the weighted fair
queuing as follows. The property P2 is achieved by

ways equal to C'(I) —

assigning an equal weight to every flow.

1. A packet queue is maintained for each flow f €
Fiest(1). The arrival packets are inserted into the
queue in the FIFO order. The weight of each flow
is 1. A timestamp t};est is calculated for the ith
arrival packet of f.

SPpi
Cbest (l)/|Fbest(l)|

Viest is a variable maintained by the best-effort
server, keeping track of the timestamp of the last
transmitted packet from Fpest(l). Viest is used as
a reference virtual time of the server to determine
where the timestamp of a new or resumed best-
effort flow should start.

4 i—1
best < mam{‘/best; tbest} +

2. The scheduling among flows in Fie,s: (1) is based on
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the timestamps. Whenever the best-effort server
becomes idle, the packet with the smallest times-
tamp among all non-empty queues is selected for
transmission.

We have three observations about the above schedul-
ing.

Ol. Those flows whose queues remain back-logged re-
ceive the same share of bandwidth from the best-

effort server because they have the same weight of
1.

02. There may exist flows with empty queues due to
insufficient incoming data packet rate, which may
result from an upstream bottleneck link. These
flows consume less bandwidth than the others sim-
ply because at times there are no packets in the
queues for scheduling. Because the queue is not
back-logged, the outgoing data rate, which is the
actual bandwidth consumed, must be equal to the

incoming data rate.

03. Our scheduling is work-conserving, which means
the capacity of the best-effort server will be fully

utilized as long as there are back-logged queues.

Additional flexibility may be achieved by assigning
different weights to different types of flows. Some
interactive flows demand relatively small bandwidth.
However, the instant bandwidth availability is critical
to their performance. Examples are distributed games
such as playing chess or cards over the Internet. Some
other flows are relatively bandwidth-insensitive. Ex-
amples are non-interactive video retrieval and large file
transmission working in the background. We can mod-
ify the scheduling of the best-effort server by classify-
ing the flows into different categories, to each of which
a different weight w is assigned. The timestamp cal-
culation becomes t};est +— maz{Viest, tz;lt} + i The
flows with larger weights receive more prompt service
and/or larger bandwidth shares. For the most critical
flows, a special timestamp of —1 is assigned to every of
their packets so that the packets will always be trans-
mitted before those of other flows.

5.3.3 Scheduling between Two Servers

The QoS server and the best-effort server are logi-
cal servers using the same physical link. When both
servers have packets to send, we must select one



We want the
scheduling between the two servers satisfies the in-
variant I1 (Section 5.2.2) and the property P1 (Sec-
tion 5.2.3), i.e., the QoS server receives a capacity of

of them for the actual transmission.

Y B(f) and the best-effort server receives a ca-
f€Fqos(l)
acity of C'(I) — X B(f).
paciy © F€F (1) ()

The weighted fair queuing is used again, where the
two servers are modeled as two logical flows, whose
packets are from the physical flows in Fyos(1) (Fpest(l))
sorted by the timestamps. Let the weight of the QoS
server be Wy, = X B(f) and that of the best-

f€Fqos(l)
ffort be Weeot =C(I)— X B(f). Wyos and
effort server be Wies: D) remy (f). Wyos an

Whest are not fixed in the run-time; they change when
Fuos(l) changes.

1. The ith packet selected by the QoS server is as-
signed a timestamp

Spi

Ti— 1
qus

gos

Ti

gos

< maz{Viink, Tgo, } +

where T;o_sl is the timestamp assigned to the (i —
1)th packet selected by the QoS server. Vijne will
be explained shortly. The ¢th packet selected by

the best-effort server is assigned a timestamp

SPpi
Wbest

Ti—l

1
Tbest — mam{‘/link: best

}+

where Tg;% is the timestamp assigned to the (i —

1)th packet selected by the best-effort server.

Viink is a variable maintained by the physical
link,!! keeping track of the timestamp — T;os
Tg,,, depending which server the packet is from
— of the last packet transmitted by the physical
link. Vj;nr is used as a reference wvirtual time of
the link to determine where the timestamp should
start when a packet arrives at an empty QoS or

best-effort server,

or

. When both servers select packets, the packet with
the smaller timestamp will be transmitted.

QoS

The

bandwidth received by the server
qus qos

m X C(l) W X C(l) qus

¥ B(f), and the bandwidth received by the best-
fEFgos(l)

is

1In more precise words, by the node in charge of the link.
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. W,
effort server is T
q

os+Wbest
>  B(f).
F€Fqos(l) ()

X C(l) = Wiest = C(I) —

5.3.4 Overhead

We study the per-packet computational overhead of
our algorithm. For scheduling within the QoS server,
finding the smallest timestamp among all flows in
Fuos(l) takes O(log|Fyos(l)]), if a balanced binary tree
such as a heap tree is maintained. For schedul-
ing within the best-effort server, finding the smallest
timestamp takes O(log|Fpest(l)|). For scheduling be-
tween the QoS server and the best-effort server, find-
ing the smaller timestamp takes O(1). Two times-
tamps, tflos and T;os or i . and T{ ,, are calculated
for each packet, which takes a small constant time.
Therefore, the total overhead for scheduling a single
packet is O(log|Fyos(l)| + l0g| Fpest(l)]), which is rea-
sonably small and comparable to the time complexity
O(log|F(1)|) of the single-level fair queuing scheduling.

6 Conclusion

We presented several possible algorithms for routing
and scheduling which allow coexistence of QoS and
best effort flows in future high-speed networks. Our
network routing algorithms took into account state
imprecision in routers, maxmin bandwidth allocation,
and existing link state information. Our scheduling al-
gorithms enforced effective and guaranteed bandwidth
allocation for QoS flows, and fair sharing of bandwidth
for best effort flows.

In summary, our integrated routing and scheduling
framework allows for

e bandwidth QoS routing when intermediate nodes
carry imprecise state information which is a real-
istic assumption in current and future networks.

e finding a best-effort route according to fairness-
throughput performance relation. This type of
relation optimizes the maxmin bandwidth alloca-
tion, hence with our maxmin routing algorithm
we find a route which will be optimized according
to the maxmin bandwidth allocation.

approximation algorithm to find best-effort routes
according to maxmin bandwidth allocation using
link states only.



e starvation avoidance in case of best effort flows be-
cause we maintain an upper bound on the band-
width allocation for QoS flows, which never en-
compasses the entire link bandwidth.

maximal throughput/link utilization because we
allow for sharing of bandwidth by best-effort flows
which is not utilized by QoS flows. This means
that if only few QoS flows are routed and sched-
uled through a link, the remaining bandwidth can
be shared among best-effort flows.

Our future work will consider other possible QoS
routing algorithms (distributed, hierarchical) for mul-
tiple QoS requirements and their coexistence with
best-effort routing algorithms. Within the two-level
hierarchical scheduling, we will investigate and an-
alyze adaptive mechanisms to incorporate schedul-
ing of QoS flows with range parameter specification
(Q0Smin, Q0Smaz) and their impact on best-effort
scheduling.
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