
An Efficient Dynamic Proof of Retrievability (PoR)
Scheme

Zhen Mo Yian Zhou Shigang Chen
Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Abstract—Cloud storage has been gaining popularity because
its elasticity and pay-as-you-go manner. However, this new type of
storage model also brings security challenges. This paper studies
the problem of how to ensure data integrity in cloud storage
systems.

In the Proof of Retrievability (PoR) model, after outsourcing
the preprocessed data to the server, the client will delete its local
copies and only store a small amount of meta data. Later the
client will ask the server to provide a proof that its data can
be retrieved correctly. However, most of the prior PoR works
apply only to static data and the existing dynamic version of PoR
scheme has an efficient problem.

In this paper, we extend the static PoR scheme to dynamic
scenario. That is, the client can perform update operations, e.g.,
insertion, deletion and modification. After each update, the client
can still detect data losses even if the server tries to hide them.
We develop a new version of authenticated data structure based
on a B+ tree and a merkle hash tree. We call it Cloud Merkle B+
tree (CMBT). By combining the CMBT with the BLS signature,
we propose a dynamic version of PoR scheme. Compared with
the existing dynamic PoR scheme, We improve the worst case
performance from O(n) to O(logn).

I. INTRODUCTION

Cloud storage is a type of online storage model. Instead
of providing a product, the cloud storage business provides
data access and storage services in a pay-as-you-go manner.
Developers and users do not need to know about the physical
location and configuration of the system that delivers the
services. They can easily and quickly adjust the resources
to their needs. This elasticity of resources, without any pre-
investment, attracts more and more people join the cloud
storage.

Although envisioned as a promising service model, cloud s-
torage also brings security concerns. One of the major concerns
is about integrity of the data stored at the cloud side. After
outsourcing the data to an off-site storage system and deleting
the local copies, clients can be relieved from the burden of
storage. However, at the same time, the clients lose physical
control of their data. As the cloud storage system is maintained
by a third party who cannot be totally trusted, it is extremely
important for the clients to find an effective and efficient way
to check the integrity of their data periodically.

In order to solve this problem, many schemes are proposed
[1], [2], [3], [4], [5], [6], [7]. Considering different design goal-
s, these schemes fall into two categories: Proof of Retrievability
(PoR) [1], [2], [4], [6] and Provable Data Possession (PDP)
[3], [7]. The PoR model is proposed by Juels and Kaliski in

[4]. Their design goal is to ensure that the clients can retrieve
the data from the server side. Ateniese et al. [3] propose a
similar construction called Provable Data Possession (PDP)
which demonstrates with the clients that the server side stores
the files correctly. The PDP model is weaker than the PoR
because its assurance is weaker than the PoR model. The PDP
model does not guarantee that the clients can retrieve their
data intactly. In the PDP model, the clients query the server
periodically and the server returns a proof to guarantee that a
certain percentage (e.g., 99%) of the file are intact. But if a
very small amount of the file is lost or corrupted, the clients
may not be able to detect it. In this case, the clients cannot
retrieve their data intactly. However, in the PoR model, even if
the clients may not detect the corruption, they can still recover
the file with the help of erasure code. So we mainly consider
the PoR scheme.

Another important concern is about supporting dynamic
updates. In a cloud storage system, clients should not only
be able to access the data, but also perform dynamic update
operations, e.g., modification, deletion and insertion. However,
most of previous works [2], [4], [6], [3], [7] can only apply to
static data files. Though Wang et al. propose a dynamic version
of PoR model in [1], unfortunately, the performance of their
scheme is not tightly bounded.

In this paper, we propose a new dynamic PoR scheme
constructed based on a modified merkle hash tree and the
Boneh-Lynn-Shacham (BLS) signature construction [8]. Our
contribution can be summarized as follows: (1) We design a
dynamic version of PoR model for the cloud storage system.
(2) We propose a new data structure called Cloud Merkle
B+ Tree (CMBT). By combining the CMBT with the BLS
construction, the worst case performance of our scheme is
O(logn).

The rest of the paper is organized as follows: In Section
II, we define the system model and security model. Then we
introduce preliminary works in Section III and present our
scheme in Section IV. Finally we analyze the simulation results
in Section V.

II. SYSTEM AND THREAT MODEL

A typical cloud storage system includes two parties: cloud
storage servers and clients. The clients are limited in storage
but have a large amount of data to be stored. On the contrary,
the cloud storage servers have a huge amount of storage space
and are providing storage services in a pay-as-you-go manner.

The cloud storage servers are maintained by a cloud service
provider (CSP), such as Amazon or google. The clients will
divide the data files into blocks. After putting data files to the
cloud storage servers, the clients will delete the local copies
and only keep a small amount of meta data. In addition, The
storage service is not static. The clients will perform block-
level update operations, such as modify a block, insert a block
or delete a block.

As a third party, the CSP cannot be completely trusted. We
define the following semi-trust model: In normal cases, the
CSP will perform operations correctly, and will not deliberately
delete or modify clients’ data. But because of management
errors, Byzantine failures and external intrusions, the CSP may
lose or corrupt the hosted data inadvertently. When these errors
happen, the CSP will try to save its reputation by hiding the
truth of data loss.

In this paper, we fix the efficient problem in the existing
dynamic PoR scheme, and propose a new dynamic version of
PoR scheme. Our scheme can detect file corruptions with high
probability even if the CSP tries to hide them. Moreover, our
scheme is able to support dynamic updates while keeps the
same detection probability of file corruption.

To simplify our discussion, we logically treat the cloud
storage servers as one entity, called the server and the clients
as the other entity, called the client.

III. RELATED WORK

Juels and Kaliski first formalize a scheme called Proofs of
Retrievability (PoRs) [4]. By randomly embedding “sentinel”
blocks into the outsourcing file and hiding these “sentinel”
blocks’ position by encryption, their scheme can detect static
data corruption effectively. However, their scheme cannot sup-
port any data update, and the number of queries a client can
perform is fixed.

Ateniese et al. [3] first propose the provable data possession
(PDP) model to ensure the integrity of outsourced data. they
implement RSA-based homomorphic tags in their scheme.
However, their scheme cannot be apply in dynamic scenario.
Following their previous work, Ateniese et al. [7] introduce
a dynamic version of PDP model. But their scheme cannot
support fully dynamic data operations.

Shacham et al. introduce an improved version of PoRs
scheme called Compact PoR [2] with rigorous security proofs.
Based on the BLS signature, they aggregate the proofs into a
small value and their scheme can support public verifications.
However, using their scheme in dynamic scenario is impractical
and insecure due to the following two reasons: First, its block
signatures contain the indices of blocks. If a client deletes (or
inserts) a block with index i, then any block with index j
larger than i will have to change its index from j to j − 1
(or j + 1). So the client will need to re-sign all of the blocks
whose indices have been changed, which makes this scheme
impractical for supporting dynamic updates. Second, using [2]
in dynamic scenario cannot prevent replay attacks.

Following the work of [2], Wang et al. [1] define a dynamic
version of PoR model based on the BLS signature and the

Merkle Hash Tree (MHT) [9]. They try to use a modified BLS
signature and the classic MHT construction to realize integrity
verification in cloud storage. In their scheme, in order to build
a MHT over a large piece of data, such as a file, the client first
divides the file into a series of data blocks mi (1 ≤ i ≤ n) and
computes the hash value for each block ni = H(mi). We call
ni the “block tag” of the block mi. Then the client constructs
a binary tree whose leaf nodes are the hashes of the “block
tags” and the nodes further up in the tree are the hashes of
their respective children. Finally, the client generates a root R
based on the construction of MHT and takes the signature of
the root sigsk(R) as meta data.

However, using the classic MHT construction will cause an
efficiency problem: After inserting or deleting some blocks, the
MHT will become unbalanced. Particularly, if the client keeps
appending blocks at the tail of the file, the height of the tree
will increase linearly. As a result, the worst case of integrity
check will be O(n) instead of O(logn) as described in [1],
where n is the total number of blocks.

IV. OUR SCHEME

A. Overview

Our scheme can be summarized as the following three
stages: (1) Preprocess stage: Before outsoucing the file to the
server, the client will first encode the file with an erasure code
and divide the encoded file into blocks. Then it constructs an
authenticated data structure and generate the meta data. Next
it will only keep the meta data and outsource others to the
server. (2) Verification stage: After oursourcing the file to the
server, the client will periodically check the integrity of its
data. It queries the server with a subset of the data blocks and
requires the server to provide a proof. By verifying the proof
with the meta data, the client can detect the file corruption
with high probability. (3) Update stage: The client will send the
server a request to update the file. After each update, the server
will prove to the client that the update operation is correctly
executed.

B. Model

Our scheme can be described by the following algorithms:
•KeyGen(1k) −→ (pk, sk) is an algorithm run by the client.

It takes a security parameter as input, and returns a public key
pk and a private key sk. The client stores the private key and
sends the public key to the server.
• Prepare(sk, F ′, Ftags) −→ (Φ, sigsk(l(R)), CMBT) is

executed by the client. As input, It takes an encoded file F ′

which is composed by a sequence of blocks mi, where 0 ≤
i ≤ n, the block tag set Ftags = {H(mi), 0 ≤ i ≤ n} and the
private key sk. It outputs a signature set Φ which is an ordered
collection of signatures {σi} on {mi}, where 0 ≤ i ≤ n. We
will define the signature set in the following subsection. The
client also constructs a CMBT based on the block tags Ftags
and signs the label value of root sigsk(l(R)) using the private
key sk.
• GenChallenge(n) −→ Q is an algorithm executed by the

client. The input is the total number of blocks and the output

2

is a query Q which contains a set of IDs I = {i1, i2, ..., ik}.
Q is sent to the server as a request to verify the integrity of
blocks whose index number i ∈ I .
• GenProof(Q,CMBT,F ′, Ftags,Φ) −→ P is run by the

server. It takes the query Q, the CMBT , the encoded file F ′,
the block tag set Ftags and the signature set Φ as input. It
outputs a proof P to let the client check the integrity of the
blocks in query Q.
• V erify(pk,Q, P, l(R)) −→ (TRUE,FALSE) is an al-

gorithm executed by the client. After receiving the proof P ,
the client will check the integrity of blocks in Q. It outputs
TRUE if the integrity of the blocks are verified as correct.
Otherwise, it returns FALSE.
• UpdateRequest() −→ Request is executed by the client. It

takes nothing as input and outputs an update request Request
which contains: an Order ∈ {Insert,Delete,Modify}, a
index number i. Also if the Order is Modify or Insert, the
request R should also contain: a new file block m∗ and its
signature σ∗.
• Update(F ′, Ftags,Φ, R) −→ (Pold, Pnew) is an algorithm

run by the server. After receiving the update request from the
client, It takes the encoded file F ′, the block tag set Ftags, the
signature set Φ and an update request R as input, outputs two
proofs Pold and Pnew.
• UpdateV erify(Pold, Pnew) −→ (TRUE,FALSE) is

executed by the client. With the inputs Pold and Pnew, the
client outputs TRUE if the server’s behaviors are honest in
the update process. Otherwise, it returns FALSE.

C. Preprocess

Before outsourcing the files to the server, the client will
first encode the file F to F ′ using an erasure code. Then it
will run the algorithms KeyGen(1k) to create a pair of keys,
and use Prepare(sk, F, Ftags) to generate a signature set Φ,
a CMBT and the meta data sigsk(l(R)). The signature set Φ
and the CMBT are defined as follows.

1) BLS signature: We use the same BLS signature as
defined in [1]. For a bilinear map e : G×G→ GT , the private
key and the public key are defined as x ∈ Zp and v = gx ∈ G
separately, where g is a generator of G. For each block mi,
where i ∈ [1, n], the signature on the block mi is defined as
σi = [H(mi)u

mi]x, where u is a generator of G. We denote
the set of signature as Φ = {σi}, where 1 ≤ i ≤ n.

2) CMBT: The merkle hash tree [9] has been widely used in
checking memory integrity [10], [11] and certificate revocation
[12], [13] because it is easy to realize and has O(logn) com-
plexity in both the worst case and the average case. However,
directly using the classic merkle tree in cloud storage may
cause some problems (see III). So we develop an authenticated
data structure based on a B+ tree and a merkle hash tree. We
call it Cloud Merkle B+ tree (CMBT). In our construction,

Fig. 1. The cloud merkle B+ tree

we choose a B+ tree of order three1 and require that each data
node can store three elements at most.

We treat the sequence of block tags H(m1), H(m2),...,
H(mn) as elements and insert them into a B+ tree sequentially,
then we can get a B+ tree (see Figure 1), we will construct the
CMBT based on it.

For each node w in CMBT , we store six values:
• left(w), middle(w) and right(w): For an index node,

these three variables represent its left child, middle child and
right child. If this node has only two children, then right(w)
will be NIL. For a data node, these three variants represent the
elements it stores from left to right. If corresponding position
has no element, NIL will be set.
• r(w): Rank of node. For an index node w, r(w) stores

the number of elements1 that belong to the subtree whose root
is w. For a data node w, r(w) stores the number of elements
that belong to w. In Figure 1, we show the rank value for each
node. For example, the rank of node d1 is 2 because from d1
we can visit 2 elements H(m1) and H(m2).
• t(w): We do not store keys in index node because we do

not need to search the CMBT . Instead, we store the type of
the node as t(w). The definition of t(w) shows as follows.

For a node w in the tree:

DEFINITION 1.

t(w) =

{
0 if w has 2 children or contains 2 elements
1 if w has 3 children or contains 2 elements

• l(w): The label of node. l(w) is defined as follows:
First, we define a collision resistant hash function h(∗),

which has two inputs.

DEFINITION 2.
h(a, b) = h(a||b)

1The B+ tree[14] is different from the B tree in following three aspects: 1.
A B+ tree has two types of nodes - index nodes and data nodes. Index nodes
store keys while data nodes store elements. But a B tree has only one type
of node - data nodes 2. All data nodes in a B+ tree are linked together by a
doubly linked list, but data nodes in a B tree are not linked. 3. The capacity of
data nodes and index nodes can be different in a B+ tree, while the capacity
of nodes in a B tree should be the same. For example, a B+ tree of order n
means that the index nodes (except for the root node) can hold n − 1 keys
at most and hold dn/2− 1e keys at least. But each data node can contain c
elements at most and dn/2e elements at least. c and n can be different. The
root node can hold n children at most and two children at least.

3

where || means concatenation.

Then we extend the function to more than two inputs.

DEFINITION 3.

h(a1, a2, ..., an−1, an) = h(a1||a2||...||an−1||an)

Now we define the value of node l(w) as:

DEFINITION 4.

l(w) = h(l(left(w)), l(middle(w)), l(right(w)), t(w), r(w))

Also for each element e that contains a block m, we define
the value of the element as follows:

DEFINITION 5.
l(e) = h(H(m))

With above definitions, the client can construct a CMBT
and get the label value of the root R. Then the client will
sign the root label l(R) using its private key: sigsk(l(R)) ←
(l(R))sk. Next the client will outsources the encoded file F ,
the block signature set Φ, the CMBT and the root signature
sigsk(l(R)) to the server.

D. Query

Suppose the encoded file F ′, CMBT etc have been out-
sourced to the server. The client only stores the meta data
and the number of blocks n. The client generates a query to
check the integrity of a series of random blocks whose index
numbers belong to the set I = {i1, i2, ...ik}. It uses algorithm
GenChallenge(n) −→ Q to generate a query Q. For each index
number i ∈ I , the client chooses a random element vi ← Zp.
Then a query Q is defined as Q = {(i, vi)}i1≤i≤ik .

After receiving the query, the server will run algorithm
GenProof(Q,CMBT,F, Ftags,Φ) −→ P to generate a proof
P by first computing:

µ =

ik∑
i=i1

vimi ∈ Zp

σ =

ik∏
i=i1

σi
vi

Then the server generates a sequence of messages for each
block tag H(mi) in the block tag set S = {H(mi), where
i ∈ I . Suppose {w1, w2, w3, ..., wh, wh+1} denotes the path
from the root node to the element H(mi), where i ∈ [i1, ik],
h is the height of the CMBT and the node wj is the parent
of wj+1. For each node wj , j ∈ [1, h], the server will provide
a message Mj .

The message Mj is a 2-tuple value. We define nj+1 and
n′j+1 as two neighbors of the node wj+1 and the location of
n(j + 1) is always on the left of n′j+1. We denote T as a set
of nodal information which is defined as follows.

Tnj+1 = {l(nj+1), r(nj+1), t(nj+1), p(nj+1)}

Tn′
j+1

= {l(n′j+1), r(n′j+1), t(n′j+1), p(n′j+1)}

If wj+1 has only one sibling, then T (n′j+1) = NULL. We use
p(nj+1) to represent the location relationship between nj+1

and wj+1.

p(nj+1) =

{
0 if nj+1 is on the left of wj+1

1 if nj+1 is on the right of wj+1

(1)

So the definition of message for a node wj is

DEFINITION 6.

Mj = {Tnj+1 , Tn′
j+1
}

We denote the message sequence γi = {M1,M2, ...,Mh}
for element H(mi), and for all elements in set I , the message
set will be Γ = {γi1 , ..., γik}. So the definition of the proof P
is P = {µ, σ, S,Γ}.

If the client only wants to check the integrity of one block
instead of a group of blocks, we use the following definition
to represent the proof of a single block with index i.

DEFINITION 7.

Query(i) = {vimi, σi
vi , H(mi), γi}

E. Verification

After receiving the proof P from the server, the client will
run the algorithm V erify(pk,Q, P, l(R)) (see Algorithm 1)
to check the integrity of blocks whose indices belong to the
set I . In Algorithm 1, {w1, w2, w3, ..., wh, wh+1} is the node
sequence from the root to the element H(mi). To compute the
value of wj(1 ≤ j ≤ h), the client first determines how many
children the node wj has. Then it uses a function GetV alue
who takes the children’s values and their location relationship
p (see Equation 1) as inputs, and compute the value of wj (see
definition 4). The computation procedure will continue until
reaching the root node. During the procedure, the client can
verify the index number idx of the block tag H(mi).

F. Updates

Now we will show that our scheme can effectively and
efficiently support dynamic update operations which include:
modification, insertion and deletion. We assume that the en-
coded file F ′, the block signature set Φ, the CMBT etc have
been generated and stored at the server.

Suppose the client wants to update the jth block, where 1 ≤
j ≤ n. The client will first run algorithm UpdateRequest() −→
Request to generate an update request and send the re-
quest to the server. Upon receiving the modification request
the server will update the block and run the algorithm
Update(F ′, Ftags,Φ, R) to generate two proofs Pold and
Pnew. Based on the Pold and Pnew, the client will use the
algorithm UpdateV erify(Pold, Pnew) to ensure correctness of
the update.
• Modification: Suppose a client wants to modify the jth

block, where 1 ≤ j ≤ n, from mj to m′j . The client
generates an update request Request = {Modify, j,m′j , σ

′
j}

and sends the request to the server. The server will update
the block, reconstruct the CMBT and generate the proof

4

Algorithm 1 V erify(pk,Q, P, l(R)) −→ (TRUE,FALSE)

1: Verify e(σ, g)
?
= e(

∏ik
i=i1

H(mi)
vi · uµ, v)

2: for i from i1 to ik do
3: γi = {M1,M2, ...,Mh}, Mj = {Tnj+1 , Tn′

j+1
}

4: Tnj+1
= {l(nj+1), r(nj+1), t(nj+1), p(nj+1)}

5: Tn′
j+1

= {l(n′j+1), r(n′j+1), t(n′j+1), p(n′j+1)}
6: idx = 1
7: for j from h down to 1 do
8: if Tn′

j+1
6= NULL then

9: r(wj) = r(wj+1) + r(nj+1) + r(n′j+1)
10: t(wj) = 1
11: l(wj) = GetV alue(Tnj+1

, Tn′
j+1

)

12: if p(n′j+1) = 0 then
13: idx = idx+ r(n′j+1)
14: end if
15: else
16: r(wj) = r(wj+1) + r(nj+1)
17: t(wj) = 0
18: l(wj) = GetV alue(Tnj+1

)
19: end if
20: if p(nj+1) = 0 then
21: idx = idx+ r(nj+1)
22: end if
23: end for
24: if l(w1) = l(R) AND idx = i then
25: if i = ik then
26: return TRUE
27: end if
28: else
29: return FALSE
30: end if
31: end for

Pold = Query(i) (see Definition 7). Based on the Pold, the
client can not only check the integrity of the block mj (see
Algorithm 1), but also construct a partial CMBT . Figure 2
shows an example. The partial CMBT constructed from the
query on the CMBT in Figure 1. The client will get enough
information to update the CMBT from the partial CMBT . In
this case, the client can compute the new root Rnew based on
Pold. The server only needs to send Pnew = R′ which is the
new root node to the client. After verifying the correctness of
the new root R′, the client will sign the new root sigsk(l(R′))
and send it back.
• Insertion: The procedure of insertion is similar to mod-

ification. The only difference is that when we insert an new
element into a data node which already contains three elements,
the data node will split into two nodes. The procedure will
keep going up until one index node has only two children or
we need to generate a new root and increase the height of
the tree by one. With the partial CMBT constructed from
the proof Pold = Query(i), the client will have enough
information to compute new root Rnew. Also, after verifying
the correctness of the new root R′, the client will sign the new

Fig. 2. The partial CMBT constructed from Pold = Query(4).

root sigsk(l(R′)) and send it back.
• Deletion: The procedure of deletion is different from

insertion and modification because deleting an element from
a data node who has two elements will cause the data node
become deficient. So we need to do some “borrow” or merge
operations to keep the tree balanced (See [14] for more details).
However, with the partial CMBT constructed from the proof
Pold = Query(i), the client may not acquire enough informa-
tion to finish these operations and compute a new root Rnew.
Accordingly, server will need to send another proof Pnew to
help the client verify the correctness of the new root R′. Here
we define another algorithms: Algorithm Querynew(i) is used
to return the proof of the ith element in the updated CMBT .

Based on Pold = Query(i), the client can generate a partial
CMBT which contains the node sequence {wi} and their
siblings {ni, n′i}, where i ∈ [1, h + 1]. wh+1 is the element
that the client wants to delete. The deletion procedure falls into
three cases:

1) If the leaf node wh contains three elements, then the client
only need to delete the element wh+1 and generate a new root
R′ based on the proof Pold. Otherwise, the client will keep
searching the node sequence from wh to w1 until it finds a
node wj , where j ∈ [1, h] whose right or left sibling node has
three children or wj itself has three children.

2) If one of wj’s sibling has three children, then the client
needs to “borrow” a child from its sibling to generate a new
node. But the proof Pold does not contain the information
of this child. So the client will use algorithm Querynew(i)
and Query(k) to acquire additional information to delete
the element wh+1 and generate a new root. k is the index
number of the element belongs to the subtree whose root is
the sibling node. The client can get k easily based on Pold.
The information from Querynew(i) can be verified by Pold.

3) If wj has three children, the client will delete the
element and merge two children into one. By using algorithm
Querynew(i), it will acquire enough information to generate
the new root. If the client cannot find the node until it reaches
the root, the client will need to generate a new root. In this
case, the height of the CMBT will be decreased by one. Due
to space limitations, we cannot provide the complete algorithm,
but it is easy to prove that the complexity of deletion is
O(logn).

5

TABLE I
COMPARISON OF EXISTING POR SCHEMES.

Features Different Schemes
[4] [2] [1] Our Scheme

Dynamic updates NO NO YES YES
Public verification NO YES YES YES

Worst comm. complexity O(1) O(1) O(n) O(logn)
Average comm. complexity O(1) O(1) O(logn) O(logn)

V. SIMULATION RESULTS

We first list the features of our scheme and make a compar-
ison with existing PoR schemes in Table I. Our experiment is
running on a system with Intel Core 2 2.53 GHz, 4 GB RAM,
and a 7200 RPM TOSHIBA 120 GB SATA driver. Algorithms
are implemented using C++.

We evaluate the performance of our scheme in terms of
communication overhead. Based on precious analysis, we know
that the communication cost of proofs of retrievability for a
file depends on the block size and the number of messages
(hashes) send to the client. As proved in [3], detecting a 1%
file corruption with 99% confidence needs query a constant
number of 460 blocks. Accordingly, if the block size is fixed,
the performance is determined by the communication cost of
sending these messages to prove the index of a block in the
tree. In our experiment, we implement the hash function using
SHA1 with output size 160 bits. As the average communication
cost of our scheme and the scheme in [1] are similar, we
compare the maximum communication cost of proving a block
in the CMBT and the MHT in Figure 3.

The client first divides the encoded file F ′ into 128 blocks
and uses these blocks to construct the MHT and the CMBT .
Then the client outsources the encoded file F ′, the MHT and
the CMBT to the server. Next, suppose the client keeps ap-
pending blocks at the tail of F ′. Figure 3 shows the comparison
of the maximum communication cost between the MHT and
the CMBT . The x axis represents the number of blocks that
the client appends to the encoded file after initialization. The
y axis represents the communication cost to prove a block
in the tree. From Figure 3, we learn that the worst case
communication cost of the MHT increase linearly with the
number of inserting blocks. We know that the worst case
communication cost of MHT is O(n).

VI. CONCLUSION

Cloud storage brings security concerns. One major concern
is about the data integrity. In this paper, we extend the static
PoR scheme to dynamic scenario. We propose a new authen-
tication data structure called Cloud Merkle B+ tree (CMBT).
Compared with the existing dynamic PoR scheme, our worst
case communication complexity is O(logn) instead of O(n).

ACKNOWLEDGMENT

This work was supported in part by the US National Science
Foundation under grant CNS-1115548 and a grant from Cisco
Research.

 0
 2000
 4000
 6000
 8000

 10000
 12000
 14000
 16000
 18000

 0 20 40 60 80 100M
ax

im
um

 c
om

m
un

ic
at

io
n

co
st

(b
it)

The number of insert blocks

MHT
CMBT

Fig. 3. Comparison of the maximum communication cost of the MHT and the
CMBT . The x-axis represents the number of blocks that the client appends
to the file after initialization. The y-axis represents the communication cost to
prove one block in the MHT and the CMBT .

REFERENCES

[1] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud computing,”
Computer Security–ESORICS 2009, pp. 355–370, 2009.

[2] H. Shacham and B. Waters, “Compact proofs of retrievability,” Advances
in Cryptology-ASIACRYPT 2008, pp. 90–107, 2008.

[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,
and D. Song, “Provable data possession at untrusted stores,” in Pro-
ceedings of the 14th ACM conference on Computer and communications
security. ACM, 2007, pp. 598–609.

[4] A. Juels and B.S. Kaliski Jr, “Pors: Proofs of retrievability for large
files,” in Proceedings of the 14th ACM conference on Computer and
communications security. ACM, 2007, pp. 584–597.

[5] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic
provable data possession,” in Proceedings of the 16th ACM conference
on Computer and communications security. ACM, 2009, pp. 213–222.

[6] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory
and implementation,” in Proceedings of the 2009 ACM workshop on
Cloud computing security. ACM, 2009, pp. 43–54.

[7] G. Ateniese, R. Di Pietro, L.V. Mancini, and G. Tsudik, “Scalable
and efficient provable data possession,” in Proceedings of the 4th
international conference on Security and privacy in communication
netowrks. ACM, 2008, p. 9.

[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil
pairing,” Advances in CryptologyłASIACRYPT 2001, pp. 514–532, 2001.

[9] R. Merkle, “A digital signature based on a conventional encryption
function,” in Advances in CryptologyłCRYPTO87. Springer, 2006, pp.
369–378.

[10] D. Williams and E.G. Sirer, “Optimal parameter selection for efficient
memory integrity verification using merkle hash trees,” in Network
Computing and Applications, 2004.(NCA 2004). Proceedings. Third
IEEE International Symposium on. IEEE, 2004, pp. 383–388.

[11] B. Gassend, G.E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches
and hash trees for efficient memory integrity verification,” in High-
Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.
The Ninth International Symposium on. IEEE, 2003, pp. 295–306.

[12] H. Kikuchi, K. Abe, and S. Nakanishi, “Online certification status
verification with a red-black hash tree,” IPSJ Digital Courier, vol. 2,
no. 0, pp. 513–523, 2006.

[13] M. Naor and K. Nissim, “Certificate revocation and certificate update,”
Selected Areas in Communications, IEEE Journal on, vol. 18, no. 4, pp.
561–570, 2000.

[14] E. Horowitz and S. Sahni, Fundamentals of data structures, Computer
science press, 1983.

6

