
A Dynamic Proof of Retrievability (PoR) Scheme

with O(logn) Complexity

Zhen Mo Yian Zhou Shigang Chen

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL 32611, USA

Abstract—Cloud storage has been gaining popularity because
its elasticity and pay-as-you-go manner. However, this new type of
storage model also brings security challenges. This paper studies
the problem of ensuring data integrity in cloud storage.

In the Proof of Retrievability (PoR) model, after outsourcing
the preprocessed data to the server, the client will delete its local
copies and only store a small amount of meta data. Later the
client will ask the server to provide a proof that its data can be
retrieved correctly. However, most of the prior PoR works apply
only to static data. The existing dynamic version of PoR scheme
has an efficiency problem.

In this paper, we extend the static PoR scheme to dynamic
scenario. That is, the client can perform update operations, e.g.,
insertion, deletion and modification. After each update, the client
can still detect the data losses even if the server tries to hide them.
We develop a new version of authenticated data structure based
on a B+ tree and a merkle hash tree. We call it Cloud Merkle B+
tree (CMBT). By combining the CMBT with the BLS signature,
we propose a dynamic version of PoR scheme. Compared with
the existing dynamic PoR scheme, our worst case communication
complexity is O(logn) instead of O(n).

I. INTRODUCTION

Cloud storage is a type of online storage model. Instead

of providing a product, the cloud storage business provides

data access and storage services in a pay-as-you-go manner.

Developers and users do not need to know about the physical

location and configuration of the system that delivers the

services. They can easily and quickly adjust the resources

to their needs. This elasticity of resources, without any pre-

investment, attracts more and more people join the cloud

storage.

Although envisioned as a promising service model, cloud s-

torage also brings security concerns. One of the major concerns

is about the integrity of the data. By outsourcing the data to

an off-site storage system and deleting the local copies, clients

can be relieved of the burden of storage. However, at the same

time, the clients lose the local control of their data. As the cloud

storage system is maintained by a third party who cannot be

totally trusted, it is extremely important for the clients to find

an effective and efficient method to check the integrity of their

data periodically.

In order to solve this problem, many schemes are proposed

[1], [2], [3], [4], [5], [6], [7]. Considering the different design

goals, these schemes fall into two categories: Proof of Retriev-

ability (PoR) [1], [2], [4], [6] and Provable Data Possession

(PDP) [3], [7]. A PoR scheme is proposed by Juels and Kaliski

in [4]. The design goal of PoR scheme is to provide the client

a proof with high probability that their data can be retrieved

from the server side. Ateniese et al. [3] propose a similar

construction called Provable Data Possession (PDP) which

demonstrates with the clients that the server stores the files

correctly. A PDP is weaker than a PoR because its assurance

is weaker than a PoR. It does not guarantee that the clients can

retrieve their data. So we mainly consider the PoR scheme.

Another important concern is about supporting dynamic

updates. In a cloud storage system, the clients should not only

be able to access the data, but also perform dynamic update

operations, e.g., modification, deletion and insertion. However,

most of the previous works [2], [4], [6], [3], [7] can only apply

to static data files. Though Wang et al. propose a dynamic

version of PoR model in [1], unfortunately, the performance

of their scheme is not tightly bounded.

In this paper, we propose a dynamic PoR scheme based

on a modified merkle hash tree and the Boneh-Lynn-Shacham

(BLS) signature construction [8]. Our contribution can be

summarized as follows: (1) We design a dynamic version of

PoR model for the cloud storage system. (2) We propose a

new data structure called Cloud Merkle B+ Tree (CMBT).

By combining the CMBT with the BLS construction, the

worst case performance is O(logn), while the worst case

performance of [1] is O(n).
The rest of the paper is organized as follows: In Section

II, we define the system model and security model. Then we

introduce preliminary works in Section III and present our

scheme in Section IV. Finally we analyze the simulation results

in Section V.

II. SYSTEM AND THREAT MODEL

A typical cloud storage system includes two parties: Cloud

Storage Servers (CSSes) and clients. The clients are limited in

storage but have a large amount of data to be stored. On the

contrary, the CSSes have a huge amount of storage space and

are providing storage services in a pay-as-you-go manner. The

CSSes are maintained by a cloud service provider (CSP), such

as Amazon or google. The clients will divide the data files into

blocks. After putting data files to the CSSes, the clients will

delete the local copies and only keep a small amount of meta

data. In addition, The storage service is not static. The clients

will perform block-level update operations, such as modify a

block, insert a block or delete a block.

As a third party, the CSP cannot be completely trusted. We

define the following semi-trust model: In normal cases, the

IEEE ICC 2012 - Communication and Information Systems Security Symposium

978-1-4577-2053-6/12/$31.00 ©2012 IEEE 912

CSP will perform operations correctly, and will not deliberately

delete or modify clients’ data. But because of management

errors, Byzantine failures and external intrusions, the CSP may

lose or corrupt the hosted data inadvertently. When these errors

happen, the CSP may try to save its reputation by hiding the

truth of data loss.

In this paper, we propose a new dynamic version of PoR

scheme. Our scheme can detect file corruptions with high

probability even if the CSP tries to hide them. Moreover, our

scheme is able to support dynamic updates while keeps the

same detection probability of file corruption.

To simplify our discussion, we logically treat the CSSes as

one entity, called the server and the clients as the other entity,

called the client.

III. RELATED WORK

Juels and Kaliski first formalize a scheme called Proofs of

Retrievability (PoRs) [4]. By randomly embedding “sentinel”

blocks into the outsourcing file and hiding these “sentinel”

blocks’ position by encryption, their scheme can detect static

data corruption effectively. However, their scheme cannot sup-

port any data update, and the number of queries a client can

perform is fixed.

Shacham et al. introduce an improved version of PoRs

scheme called Compact PoR [2] with rigorous security proofs.

Based on the BLS signature, they aggregate the proofs into a

small value and their scheme can support public verifications.

However, using their scheme in dynamic scenario is impractical

and insecure due to the following two reasons: First, its block

signatures contain the indices of blocks. If a client deletes (or

inserts) a block with index i, then any block with index j

larger than i will have to change its index from j to j − 1
(or j + 1). So the client will need to re-sign all of the blocks

whose indices have been changed, which makes this scheme

impractical for supporting dynamic updates. Second, using [2]

in dynamic scenario cannot prevent replay attacks.

Following the work of [2], Wang et al. [1] define a dynamic

version of PoR model based on the BLS signature and the

Merkle Hash Tree (MHT) [9]. They try to use a modified BLS

signature and the classic MHT construction to realize integrity

verification in cloud storage. In their scheme, in order to build

a MHT over a large piece of data, such as a file, the client first

divides the file into a series of data blocks mi (1 ≤ i ≤ n) and

computes the hash value for each block ni = H(mi). We call

ni the “block tag” of the block mi. Then the client constructs

a binary tree whose leaf nodes are the hashes of the “block

tags” and the nodes further up in the tree are the hashes of

their respective children. Finally, the client generates a root R

based on the construction of MHT and takes the signature of

the root sigsk(R) as meta data.

However, using the classic MHT construction will cause an

efficiency problem: After inserting or deleting some blocks, the

MHT will become unbalanced. Particularly, if the client keeps

appending blocks at the tail of the file, the height of the tree

will increase linearly. As a result, the worst case of integrity

check will be O(n) instead of O(logn) as described in [1],

where n is the total number of blocks.

IV. OUR SCHEME

A. Overview

Our scheme can be summarized as the following three

stages: (1) Preprocess stage: Before outsoucing the file to the

server, the client will preprocess the file and generate metadata.

Then the client will outsource the file to the server and only

keep the meta data. (2) Verification stage: The client will

periodically check the integrity of its data. It will query the

server randomly and ask the server to provide a proof. By

verifying the proof with meta data, the client can detect the

file corruption with high probability. (3) Update stage: The

client will send the server a request to update the file. After

each update, the server will prove to the client that the update

is correctly executed.

B. Model

Our scheme can be described by the following algorithms:

•KeyGen(1k) −→ (pk, sk) is an algorithm run by the client.

It takes a security parameter as input, and returns a public key

pk and a private key sk. The client stores the private key and

sends the public key to the server.

• Prepare(sk, F ′, Ftags) −→ (Φ, sigsk(v(R)), CMBT) is

executed by the client. As input, It takes an encoded file F ′

which is composed by a sequence of blocks mi, where 0 ≤
i ≤ n, the block tag set Ftags = {H(mi), 0 ≤ i ≤ n} and the

private key sk. It outputs a signature set Φ which is an ordered

collection of signatures {σi} on {mi}, where 0 ≤ i ≤ n. The

client also constructs a CMBT based on the block tags Ftags

and signs the value of root sigsk(v(R)) using the private key

sk.

• GenChallenge(n) −→ Q is an algorithm executed by the

client. The input is the total number of blocks and the output

is a query Q which contains a set of IDs I = {i1, i2, ..., ik}.
Q is sent to the server as a request to verify the integrity of

blocks whose index number i ∈ I .

• GenProof(Q,CMBT,F ′, Ftags,Φ) −→ P is run by the

server. It takes the query Q, the CMBT , the encoded file F ′,

the block tag set Ftags and the signature set Φ as input. It

outputs a proof P to let the client check the integrity of the

blocks in query Q.

• V erify(pk,Q, P, v(R)) −→ (TRUE,FALSE) is an

algorithm executed by the client. After receiving the proof P ,

the client will check the integrity of blocks in Q. It outputs

TRUE if the integrity of the blocks are verified as correct.

Otherwise, it returns FALSE.

• UpdateRequest() −→ Request is executed by the client. It

takes nothing as input and outputs an update request Request

which contains: an Order ∈ {Insert,Delete,Modify}, a

index number i. Also if the Order is Modify or Insert, the

request R should also contain: a new file block m∗ and its

signature σ∗.

• Update(F ′, Ftags,Φ, R) −→ (Pold, Pnew) is an algorithm

run by the server. After receiving the update request from the

913

Fig. 1. The cloud merkle B+ tree

client, It takes the encoded file F ′, the block tag set Ftags, the

signature set Φ and an update request R as input, outputs two

proofs Pold and Pnew.

• UpdateV erify(Pold, Pnew) −→ (TRUE,FALSE) is

executed by the client. With the inputs Pold and Pnew, the

client outputs TRUE if the server’s behaviors are honest in

the update process. Otherwise, it returns FALSE.

C. Preprocess

The client will first encode the file F to F ′ using an erasure

code. Then the client will run the algorithms KeyGen(1k)
to create a pair of keys, and use Prepare(sk, F, Ftags) to

generate a signature set Φ, a CMBT and the meta data

sigsk(v(R)). The signature and the CMBT are defined as

follows.

1) BLS signature: Suppose the encoded file F ′ is divided

into n blocks: m1,m2, ...,mn. For a bilinear map e : G×G→
GT , the private key and the public key are defined as x ∈ Zp

and v = gx ∈ G separately, where g is a generator of G. For

each block mi, where i ∈ [1, n], we define the signature on the

block mi as σi = [H(mi)u
mi]x. H(mi) is called the block

tag, and u is another generator of G. We denote the set of

signature as Φ = {σi}, where 1 ≤ i ≤ n.

2) CMBT: A merkle hash tree [9] has been widely used in

checking memory integrity [10], [11] and certificate revocation

[12], [13] because it is easy to realize and has O(logn)
complexity in both the worst case and the average case.

However, directly using the classic merkle tree in cloud storage

may cause an efficiency problem (see III). So we develop an

authenticated data structure based on a B+ tree and a merkle

hash tree. We call it Cloud Merkle B+ tree (CMBT). In

our construction, we choose a B+ tree of order three1 and

require that each data node can store three elements at most.

We treat the sequence of block tags H(m1), H(m2),..., H(mn)
as elements and insert them into a B+ tree sequentially, then

1The B+ tree[14] is different from the B tree in following three aspects: 1.
A B+ tree has two types of nodes - index nodes and data nodes. Index nodes
store keys while data nodes store elements. But a B tree has only one type
of node - data nodes 2. All data nodes in a B+ tree are linked together by a
doubly linked list, but data nodes in a B tree are not linked. 3. The capacity of
data nodes and index nodes can be different in a B+ tree, while the capacity
of nodes in a B tree should be the same. For example, a B+ tree of order n
means that the index nodes (except for the root node) can hold n − 1 keys
at most and hold �n/2− 1� keys at least. But each data node can contain c
elements at most and �n/2� elements at least. c and n can be different. The
root node can hold n children at most and two children at least.

we can get a B+ tree (see Figure 1), we will construct the

CMBT based on it.

For each node w in CMBT , we store six values:

• left(w), middle(w) and right(w): For an index node,

these three variables represent its left child, middle child and

right child. If this node has only two children, then right(w)
will be NIL. For a data node, these three variants represent the

elements it stores from left to right. If corresponding position

has no element, NIL will be set.

• r(w): Rank of the node. For an index node w, r(w) stores

the number of elements1 that belong to the subtree whose root

is w. For a data node w, r(w) stores the number of elements

that belong to w. In Figure 1, we show the rank value for each

node. For example, the rank of node d1 is 2 because from d1
we can visit 2 elements H(m1) and H(m2).
• t(w): We do not store keys in index node because we do

not need to search the CMBT . Instead, we store the type of

the node as t(w). The definition of t(w) shows as follows.

For a node w in the tree:

DEFINITION 1.

t(w) =

{
0 if w has 2 children or contains 2 elements

1 if w has 3 children or contains 2 elements

• v(w): The value of node. v(w) is defined as follows:

DEFINITION 2.

v(w) = h(v(left(w))||v(middle(w))||v(right(w))||t(w)||r(w))

where || means concatenation.

Also for each element e that contains a block m, we define

the value of the element as follows:

DEFINITION 3.

v(e) = h(H(m))

With above definitions, the client can construct a CMBT

and get the value of the root R. Then the client will sign

the root value v(R) using its private key: sigsk(v(R)) ←
(v(R))sk. Next the client will outsources the encoded file F ,

the block signature set Φ, the CMBT and the root signature

sigsk(v(R)) to the server.

D. Query

Suppose the encoded file F ′, CMBT etc have been out-

sourced to the server. The client only stores the meta data and

the number of blocks n. Suppose the client wants to check the

integrity of a series of random blocks whose index numbers

belong to the set I = {i1, i2, ...ik}. The client uses algorithm

GenChallenge(n) −→ Q to generate a query Q. For each index

number i ∈ I , the client chooses a random element vi ← Zp.

Then a query Q is defined as Q = {(i, vi)}i1≤i≤ik .

After receiving the query from the client, the server will

run algorithm GenProof(Q,CMBT,F, Ftags,Φ) −→ P to

generate a proof P . The server first computes

μ =

ik∑
i=i1

vimi ∈ Zp and σ =

ik∏
i=i1

σi
vi

914

Then the server sends the block tag set S = {H(mi) : i ∈ I}
to the client, and generates a sequence of messages for each

block tag H(mi) in S to prove its index number. Suppose

{w1, w2, w3, ..., wh, wh+1} denotes the path from the root node

to the element H(mi), where i ∈ [i1, ik], h is the height of

the CMBT and the node wj is the parent of wj+1. For each

node wj , j ∈ [1, h], the server will provide a message Mj .

With this message, the client can easily compute the value of

wj and eventually, the client can compute the value of the root

node w1.

Now let’s consider the structure of the message M . We use

two 4-tuple to represent the message Mj for the node wj(1 ≤
j ≤ h). We define nj+1 and n′

j+1 as two neighbors of the

node wj+1 and the location of n(j + 1) is always on the left

of n′
j+1. The 4-tuple is defined as follows.

Tnj+1
= {v(nj+1), r(nj+1), t(nj+1), p(nj+1)}

Tn′

j+1
= {v(n′

j+1), r(n
′
j+1), t(n

′
j+1), p(n

′
j+1)}

If wj+1 has only one sibling, then T (n′
j+1) = NULL. We use

p(nj+1) to represent the location relationship between nj+1

and wj+1.

p(nj+1) =

{
0 if nj+1 is on the left of wj+1

1 if nj+1 is on the right of wj+1

(1)

So the definition of message for a node wj is

DEFINITION 4.

Mj = {Tnj+1
, Tn′

j+1
}

We denote the message sequence γi = {M1,M2, ...,Mh}
for element H(mi). For all elements in set I , the message set

will be Γ = {γi1 , ..., γik}. So the definition of the proof P is

P = {μ, σ, S,Γ}.

E. Verification

After receiving the proof P from the server, the client will

run the algorithm V erify(pk,Q, P, v(R)) (see Algorithm 1)

to check the integrity of blocks whose indices belong to the

set I . In Algorithm 1, {w1, w2, w3, ..., wh, wh+1} is the node

sequence from the root to the element H(mi). To compute the

value of wj(1 ≤ j ≤ h), the client first determines how many

children the node wj contains. Then the client uses a function

GetV alue who takes the children’s values and their location

relationship p (see Equation 1) as inputs, and compute the

value of wj (see Definition 2). The computation procedure will

continue until reaching the root node. During the procedure,

the client can verify the index number idx of the block tag

H(mi).

F. Updates

Now we will show that our scheme can effectively and

efficiently support dynamic update operations which include:

modification, insertion and deletion. Suppose the client wants

to update the jth block, where 1 ≤ j ≤ n. The client will

first run algorithm UpdateRequest() −→ Request to generate

Algorithm 1 V erify(pk,Q, P, v(R)) −→ (TRUE,FALSE)

1: Verify e(σ, g)
?
= e(

∏ik
i=i1

H(mi)
vi · uμ, v)

2: for i from i1 to ik do

3: γi = {M1,M2, ...,Mh}, Mj = {Tnj+1
, Tn′

j+1
}

4: Tnj+1
= {v(nj+1), r(nj+1), t(nj+1), p(nj+1)}

5: Tn′

j+1
= {v(n′

j+1), r(n
′
j+1), t(n

′
j+1), p(n

′
j+1)}

6: idx = 1
7: for j from h down to 1 do

8: if Tn′

j+1
�= NULL then

9: r(wj) = r(wj+1) + r(nj+1) + r(n′
j+1)

10: t(wj) = 1
11: v(wj) = GetV alue(Tnj+1

, Tn′

j+1
)

12: if p(n′
j+1) = 0 then

13: idx = idx+ r(n′
j+1)

14: end if

15: else

16: r(wj) = r(wj+1) + r(nj+1)
17: t(wj) = 0
18: v(wj) = GetV alue(Tnj+1

)
19: end if

20: if p(nj+1) = 0 then

21: idx = idx+ r(nj+1)
22: end if

23: end for

24: if v(w1) = v(R) AND idx = i then

25: if i = ik then

26: return TRUE

27: end if

28: else

29: return FALSE

30: end if

31: end for

an update request and send the request to the server. Upon

receiving the modification request the server will update the

block and run the algorithm Update(F ′, Ftags,Φ, R) to gen-

erate two proofs Pold and Pnew. Based on the Pold and Pnew,

the client will use the algorithm UpdateV erify(Pold, Pnew)
to verify correctness of the update.

• Modification: Suppose a client wants to modify the jth

block from mj to m′
j , where 1 ≤ j ≤ n. The client

generates an update request Request = {Modify, j,m′
j , σ

′
j}

and sends the request to the server. The server will update

the block, reconstruct the CMBT and generate the proof

Pold = Query(i). Based on the Pold, the client can not only

check the integrity of the block mj (see Algorithm 1), but

also construct a partial CMBT . The client will get enough

information to update the CMBT from the partial CMBT .

The server will send the new root node to the client. After

verifying the correctness of the new root, the client will sign

the new root sigsk(v(R
′)) and send it back.

• Insertion: The procedure of insertion is similar to mod-

ification. The only difference is that when we insert a new

element into a data node which already contains three elements,

915

the data node will split into two nodes. The procedure will

keep going up until one index node has only two children or

we need to generate a new root and increase the height of

the tree by one. With the partial CMBT constructed from

the proof Pold = Query(i), the client will have enough

information to compute new root Rnew. Also, after verifying

the correctness of the new root R′, the client will sign the new

root sigsk(v(R
′)) and send it back.

• Deletion: The procedure of deletion is different from

insertion and modification because deleting an element from

a data node who has two elements will cause the data node

become deficient. So we need to do some “borrow” or merge

operations to keep the tree balanced (See [14] for more

details). However, with the partial CMBT constructed from

the proof Pold = Query(i), the client may not acquire enough

information to finish these operations and compute a new root

Rnew. Accordingly, server will need to send another proof

Pnew to help the client verify the correctness of the new root

R′. Due to space limitations, we cannot provide the complete

algorithm, but it is easy to prove that the complexity of deletion

is O(logn).

V. SIMULATION RESULTS

Our experiment is running on a system with Intel Core 2

2.53 GHz, 4 GB RAM, and a 7200 RPM TOSHIBA 120 GB

SATA driver. Algorithms are implemented using C++.

We evaluate the performance of our scheme in terms of

communication overhead. Based on precious analysis, we know

that the communication cost of proofs of retrievability for a

file depends on the block size and the number of messages

(hashes) send to the client. As proved in [3], detecting a 1%

file corruption with 99% confidence needs query a constant

number of 460 blocks. Accordingly, if the block size is fixed,

the performance is determined by the communication cost of

sending these messages to prove the index of a block in the

tree. In our experiment, we implement the hash function using

SHA1 with output size 160 bits. As the average communication

cost of our scheme and the scheme in [1] are similar, we

compare the maximum communication cost of proving a block

in the CMBT and the MHT in Figure 2.

The client first divides the encoded file F ′ into 128 blocks

and uses these blocks to construct the MHT and the CMBT .

Then the client outsources the encoded file F ′, the MHT and

the CMBT to the server. Next, suppose the client keeps ap-

pending blocks at the tail of F ′. Figure 2 shows the comparison

of the maximum communication cost between the MHT and

the CMBT . The x axis represents the number of blocks that

the client appends to the encoded file after initialization. The

y axis represents the communication cost to prove a block

in the tree. From Figure 2, we learn that the worst case

communication cost of the MHT increase linearly with the

number of inserting blocks. We know that the worst case

communication cost of MHT is O(n).

VI. CONCLUSION

Cloud storage brings security concerns. One major concern

is about the data integrity. In this paper, we extend the static

��
�����
�����
�����
�����
������
������
������
������
������

�� ��� ��� ��� ��� ����	

�
�
�

��
�

��
��

�
��
��
��
��
��
���

��������������������������

	��
�	 �

Fig. 2. Comparison of the maximum communication cost of the MHT and the
CMBT . The x-axis represents the number of blocks that the client appends
to the file after initialization. The y-axis represents the communication cost to
prove one block in the MHT and the CMBT .

PoR scheme to dynamic scenario. We propose a new authen-

tication data structure called Cloud Merkle B+ tree (CMBT).

Compared with the existing dynamic PoR scheme, our worst

case communication complexity is O(logn) instead of O(n).

ACKNOWLEDGMENT

This work was supported in part by the US National Science

Foundation under grant CNS-1115548.

REFERENCES

[1] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling public
verifiability and data dynamics for storage security in cloud computing,”
Computer Security–ESORICS 2009, pp. 355–370, 2009.

[2] H. Shacham and B. Waters, “Compact proofs of retrievability,” Advances

in Cryptology-ASIACRYPT 2008, pp. 90–107, 2008.
[3] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner, Z. Peterson,

and D. Song, “Provable data possession at untrusted stores,” in Pro-

ceedings of the 14th ACM conference on Computer and communications

security. ACM, 2007, pp. 598–609.
[4] A. Juels and B.S. Kaliski Jr, “Pors: Proofs of retrievability for large

files,” in Proceedings of the 14th ACM conference on Computer and

communications security. ACM, 2007, pp. 584–597.
[5] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia, “Dynamic

provable data possession,” in Proceedings of the 16th ACM conference

on Computer and communications security. ACM, 2009, pp. 213–222.
[6] K.D. Bowers, A. Juels, and A. Oprea, “Proofs of retrievability: Theory

and implementation,” in Proceedings of the 2009 ACM workshop on

Cloud computing security. ACM, 2009, pp. 43–54.
[7] G. Ateniese, R. Di Pietro, L.V. Mancini, and G. Tsudik, “Scalable

and efficient provable data possession,” in Proceedings of the 4th

international conference on Security and privacy in communication

netowrks. ACM, 2008, p. 9.
[8] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the weil

pairing,” Advances in CryptologyłASIACRYPT 2001, pp. 514–532, 2001.
[9] R. Merkle, “A digital signature based on a conventional encryption

function,” in Advances in CryptologyłCRYPTO87. Springer, 2006, pp.
369–378.

[10] D. Williams and E.G. Sirer, “Optimal parameter selection for efficient
memory integrity verification using merkle hash trees,” in Network

Computing and Applications, 2004.(NCA 2004). Proceedings. Third

IEEE International Symposium on. IEEE, 2004, pp. 383–388.
[11] B. Gassend, G.E. Suh, D. Clarke, M. Van Dijk, and S. Devadas, “Caches

and hash trees for efficient memory integrity verification,” in High-

Performance Computer Architecture, 2003. HPCA-9 2003. Proceedings.

The Ninth International Symposium on. IEEE, 2003, pp. 295–306.
[12] H. Kikuchi, K. Abe, and S. Nakanishi, “Online certification status

verification with a red-black hash tree,” IPSJ Digital Courier, vol. 2,
no. 0, pp. 513–523, 2006.

[13] M. Naor and K. Nissim, “Certificate revocation and certificate update,”
Selected Areas in Communications, IEEE Journal on, vol. 18, no. 4, pp.
561–570, 2000.

[14] E. Horowitz and S. Sahni, Fundamentals of data structures, Computer
science press, 1983.

916

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

