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Abstract

The possibility of using purely text stream (keyboard-
enterable) as carrier of malware is under-researched and
often underestimated. A text attack can happen at multiple
levels, from code-injection attacks at the top level to host-
compromising text-based machine code at the lowest level.
Since a large number of protocols are text-based, at times
the servers based on those protocols use ASCII filters to
allow text input only. However, simply applying ASCII fil-
ters to weed out the binary data is not enough from the se-
curity viewpoint since the assumption that malware are al-
ways binary is false. We show that although text is a subset
of binary, binary malware detectors cannot always detect
text malware. We analyze the MEL (Maximum Executable
Length)-based detection schemes, and make two contribu-
tions by this analysis. First, although the concept of MEL
has been used in various detection schemes earlier, we are
the first to provide its underlying mathematical foundation.
We show that the threshold value can be calculated from the
input character frequencies and that it can be tuned to con-
trol the detection sensitivity. Second, we demonstrate the
effectiveness of a MEL-based text malware detector by ex-
ploiting the specific properties of text streams.

1 Introduction

In the past decade, the Internet has witnessed the rapid
evolution of various malware (virus, worm, Trojans). While
a considerable amount of time and research has been de-
voted for detection of the classic (binary) malware, the pos-
sibility of using purely text stream (keyboard-enterable, Hex
0x20 through 0x7E) as carrier of malware has remained
under-researched and often underestimated. Rix [9] and
Eller [6] showed a few years ago that any binary code can
be turned into functionally equivalent text (or even alphanu-
meric) code. Having a malware that is completely text-based
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is very appealing to the malware authors since it can open the
channels that were earlier assumed to be malware-resistant
simply by virtue of accepting text-only input. Many proto-
cols (or parts thereof) are text-based, viz, the URL portion
of a HTTP request, or email traffic. To ensure text-only in-
put, these servers often employ an ASCII filter to discard
or mangle the binary input [6]. However, if the filter is the
only defense against any possible attack towards a vulnera-
bility, then these servers remain subject to be compromised,
as the assumption that all malware are binary is false. Worse,
sometimes even malware detectors deliberately bypass text
stream, e.g. SigFree usually does not process the text-only
input to avoid performance degradation [12]. Thus, the no-
tion of regarding the text data as benign and not subjecting it
to malware detection is dangerous, and text should undergo
the same scrutiny as binary.

Even when the text traffic is examined, today’s malware
detectors are not adequately suited for efficiently detect-
ing text-based malware due to the structural properties of
text. We consider two such schemes: 1) detection by dis-
assembling the input into instructions and then checking for
the validity and executability of instruction sequences (e.g.
APE [10]), and 2) detection by examining the frequency dis-
tribution and other statistical properties of the payload (e.g.
PAYL [11]). There are two potential problems with the for-
mer scheme. First, almost any text string translates into a
syntactically correct sequence of instructions, which means
checking for syntactic validity is of little value for detect-
ing text malware. Second, since most branch opcodes are
already text, the proportion of branch instructions for text
data is significantly higher than that for binary. Since each
branch instruction forks the current execution path into two
directions, having a lot of them exponentially increases the
total number of paths to be inspected by a detector doing
instruction disassembly. In other words, to ensure quick de-
tection of malware in text data, one must find novel ways to
prune the number of the paths to be inspected. Regarding the
other detection approach of examining the frequency distri-
bution and other statistical properties of the payload, there
have been instances where text malware has been shown
to have successfully evaded such detectors. For example,
Kolesnikov et al [7] showed the way to create an text mal-
ware that follows normal traffic pattern to the extent that it
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can evade even a robust payload-based detector like PAYL
[7]. Finally, we have performed experiments using a com-
mercial malware detector to scan various binary malware
and their text counterparts. Although the detector success-
fully caught the binary malware, no alarms were raised for
the text. Therefore, we conclude that the threat of text mal-
ware is real, and we can ignore them only at our own peril.

Although binary malware detectors are relatively ineffec-
tive against text malware, they do give us directions for pos-
sible detection strategies. The Abstract Payload Execution
(APE [10]) method was the first to introduce the concept of
MEL (Maximum Executable Length) for detecting worms.
MEL denotes the length of the longest error-free execution
path in terms of number of instructions executed. Because
of its inherent randomness, a benign stream of data is very
likely to cause an error during runtime and thus not likely to
have a long error-free execution path. In APE, the MEL of
the input stream is compared to a threshold that is obtained
experimentally from the test data. If the MEL is higher than
the threshold, an alarm is raised. However, while this MEL
concept is quite novel, it does not explain whether there is
a mathematical foundation behind the theory, i.e. whether it
is possible for a benign text stream to have an MEL higher
than a given threshold, and if so, with what probability.

In our previously work [8] (which was also MEL-
threshold-based), we had aggressively exploited the defi-
ciencies and constraints of the text malware to come up with
a detection strategy that is fast, reliable and accurate. In this
paper, we complement our prior work by providing the un-
derlying statistical foundation of the MEL theory that has
been used by both us and others for malware detection. We
show how the threshold can be calculated from the input
character frequencies (instead of from some experimental
data [10, 2] that may be biased), and how we can control
the detection sensitivity.

The rest of the paper is organized as follows. Section 2
gives a brief overview of our previous work on text malware
detection, which includes the concept of MEL, especially in
the context of text. Section 3 derives the underlying proba-
bilistic model for MEL. Section 4 considers the applicability
of MEL-based detection schemes for text and binary mal-
ware. Section 5 evaluates the results of our detection strat-
egy. Section 6 provides a comparison of our work with APE.
Section 7 concludes with the discussion of the limitations
and resilience to evasion of our scheme.

2 Related Work

Other than DAWN [8], we are not aware of any work
that specifically targets the text malware. SigFree does have
the capability to detect both text and binary worms, but it
usually bypasses the text-based data since processing it de-
grades its performance [12]. Below, we give a brief summary
of DAWN, which provides a context for understanding our
work.

2.1 Constructing a Typical Text Malware

Because text malware may contain only instructions that
are completely text-based, they are limited to the following
instructions under Intel architecture: register/memory/stack
manipulation opcodes (sub, xor, and, inc, imul, cmp, inc,
dec, push, pop, and popa), jump opcodes (jo through jng),
I/O operation opcodes (insb, insd, outsb and outsd), miscel-
laneous opcodes (aaa, daa, das, bound and arpl), and all the
Operand/Segment override prefixes (a16, o16, cs, ds, etc.). It
is evident that this list does not include many opcodes (e.g.,
those for making system calls) that are required for a potent
malware. However, using these text opcodes intelligently,
the required non-text opcodes can be dynamically generated
at runtime. In fact, it is possible to create any binary (non-
text) word using text data only, e.g., the binary character 0
can be generated by doing ’a’⊕’a’. Thus, during run-
time, a binary malware can be created by “decrypting” an
appropriately encoded text malware [9], and once created,
the binary malware will be given the control for execution.
In this paper, we refer to the process of encoding a binary
malware in a text-based malware as encryption, and the pro-
cess of decoding the text malware back into binary code as
decryption. Thus, a text malware must contain a decrypter, a
sequence of unencrypted text instructions that performs the
decryption.

2.2 The MEL Concept

The crux of the MEL concept is that error-raising instruc-
tions occur randomly among normal data, and if an instruc-
tion stream contains a very long error-free execution path,
then such a stream is not benign, since the probability of that
happening purely out of chance is very slim in normal data.
To formalize the concept, we use the following definitions:

• Valid (or invalid) instruction: an instruction that will
not (or will) raise an error during runtime and cause the
running process to abort.

• Maximum Executable Length (MEL): length of the
longest (in terms of number of instructions) sequence of
consecutively-executed valid instructions in an instruc-
tion stream.

The concept of MEL was introduced in APE [10] for de-
tecting the binary worms by finding the worm’s sled, which
would mostly consist of NOPs. A worm’s sled consists of
strictly valid instructions, as otherwise the process will abort
and the control will not be passed to the actual worm code
at the end of the sled. Therefore, a worm employing a sled
would have a very long sequence of valid instructions. Ex-
ploiting this feature, it was hypothesized that if the MEL of
an instruction sequence exceeded certain threshold, then the
instruction stream contains a worm. While our work gen-
erally follows the direction shown by APE, there are some
significant differences that we will show in Section 6.
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2.3 Text-based Malware has Larger MEL

Below are the two primary reasons why a text-based mal-
ware will have a high MEL.

Opcode Unavailability: In order to be potent, a malware
must perform certain actions, such as making system calls,
which require opcodes that are unavailable in text data.
Therefore, we see that text malware are constrained to gen-
erate these instructions dynamically. Since a malware usu-
ally has many such non-text instructions, dynamic genera-
tion of them entails long stretch of valid text instructions,
which means high MEL.

Difficulty in Encryption: There are two difficulties associ-
ated with encrypting binary in text (and decrypting text back
to binary). First, we observe that since the text domain is a
proper subset of the binary domain, we cannot have a one-
to-one correspondence between the two. Therefore, if we
are encrypting one byte of binary data into text, the size of
the encrypted output will be definitely more than one byte,
which means not only the size of the encrypted payload will
increase but also the decryption logic will be more complex,
thus resulting in a much larger decrypter. Second, in order
to have a small decrypter routine, one needs to use a jump
instruction with a negative displacement to “go back” to the
beginning of the decrypter so that the same routine can re-
peatedly executed for decrypting different encrypted bytes.
However, since all text bytes have 0 in their most significant
bit (MSB), one cannot have a negative displacement – which
means that all jumps in text instruction stream are in the for-
ward direction. This precludes the possibility of having a
small decrypter – for a n-word encrypted payload, one must
have O(n) decrypter blocks where each decrypter block will
decrypt one individual word. Thus, we posit that text de-
crypters are large in size, and accordingly a text malware
that employs encryption has a high MEL. While it is theo-
retically possible to overcome these difficulties (by generat-
ing the negative displacement dynamically or by using multi-
level encryption), that would most likely make the decrypter
more complicated and thus increase its size and MEL. We
will discuss the multilevel encryption issue in greater detail
in Section 7.

2.4 Benign Text has Smaller MEL

A high MEL implies the presence of a long valid (error-
free) instruction sequence. Therefore, if invalid (error-
raising) instructions are dispersed abundantly in an instruc-
tion stream, the chances of having a high MEL is minimal.
It transpires that the preceding is true for normal text stream
– such invalid instructions do occur frequently in the benign
text data due to the following reasons:

Prevalence of Privileged Instructions: The characters ‘l’,
‘m’, ‘n’ and ‘o’, which occur frequently in text [1], corre-
spond to privileged I/O instructions that cannot be invoked

from any user-level application without generating an error.
Benign text data may have these instructions, whereas mal-
ware will never have them in its execution path.

Illegal Memory Access: Text instruction streams are very
prone to segmentation fault due to attempts to access out-
of-bound memory. Since text characters cannot have 1 in
their Most Significant Bit, register-register instructions are
ruled out in text. Therefore, to manipulate a register, one
operand must come from memory for text instructions of two
operands. While accessing the memory, a violation can hap-
pen in the following ways: 1) uninitialized register (which
may contain an arbitrary memory address), 2) wrong Seg-
ment Selector (by causing it to access wrong memory seg-
ment) and 3) explicit memory address (which could poten-
tially create problems since nowadays it is a common prac-
tice to randomize the starting addresses of programs and
static libraries [4]). In a random (benign) text stream, such
memory-accessing-error events are frequent.

2.5 Detection Strategy for Text Malware

Based on the discussion above, it is evident that unlike be-
nign text, a text malware will have a high MEL. Therefore,
a threshold on MEL can be used to determine whether a text
stream is malicious or benign. For example, DAWN [8] dis-
assembles the text input and then pseudo-executes all pos-
sible execution paths. If the MEL exceeds the threshold,
an alarm is raised. It should be pointed out that the con-
tribution of DAWN was not limited to this rather straightfor-
ward approach of checking against an MEL threshold dur-
ing pseudo-execution (which has appeared in previous works
[10, 2] for classical binary worms), but rather the discov-
ery of new text-specific techniques for identifying invalid in-
structions in order to prune the number of possible execution
paths to be explored, and the demonstration of how adverse
the detection results can be if we do not use the techniques.
In this paper, we complement DAWN by establishing analyt-
ically the fundamental reasons for why the detection strategy
of setting a MEL threshold will work.

3 Probabilistic Analysis of MEL

In this section, we answer this question: given a sequence
of n instructions with each instruction having a probability p
of generating an error, what is the distribution of the longest
error-free execution path (MEL)? We elaborate below why
deriving the distribution of MEL is important.

We use the detection strategy that, if an incoming in-
struction stream contains a contiguously valid instruction se-
quence longer than a certain threshold τ , then it contains a
malware with a certain false-positive probability α (which
is the chance for a benign stream to have a contiguously
valid instruction stream of length more than τ purely by ac-
cident). It is intuitive to see that the larger the value of τ
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is, the smaller the value of α will be. Unfortunately, if we
aim at driving α close to 0 in order to avoid false alarms
altogether, τ will be very large, which may lead to false neg-
atives (the case that real malware is not detected). Therefore,
it is important to characterize the tradeoff between false posi-
tive and false negative by deriving the mathematical relation-
ship between α and τ . Such a formula will allow the user to
select a specific combination of the two values in order to
achieve certain desirable performance. While it is possible
to estimate the relationship between α and τ experimentally
through a training data set, such data can be biased, not rep-
resenting the general case. In this section we take a proba-
bilistic approach that correlates τ with α using the character
frequency distribution of text input.

3.1 Description of the Model for MEL

In our probabilistic analysis, we use Bernoulli trials to
model this problem. We start with the assumption that the
instructions in a normal input stream occur randomly and
independently (this assumption is verified in Section 3.3).
Let Iv denote a valid instruction, Iinv an invalid instruc-
tion, and p the probability for an arbitrary instruction disas-
sembled from a normal stream to be invalid. Consequently,
the probability for an instruction to be valid is (1−p). Let
n be the number of instructions in an input stream and N
be the number of invalid instructions in the stream. It is
easy to see that there are N+1 contiguously valid instruc-
tion sequences, each containing zero or more Ivs and ter-
minating with an Iinv . The instruction sequence after the
last Iinv does not have the terminating Iinv . For example,
with n = 17 and N = 5, the following instruction stream,
IvIvIinv IvIvIvIvIinv IvIvIvIinv IvIvIinv Iinv Iv , con-
tains 6 such sequences (instructions in the same sequence
are under the same bar), where the longest valid instruction
sequence is IvIvIvIv Iinv (MEL=5). Now, if we use the
term Xi to denote the length of each of these N+1 valid
instruction sequences, then the MEL is given by Xmax =
max{X1, X2, ..., XN+1}. Each Xi follows Geometric dis-
tribution with parameter p. Although

∑N+1
0 Xi = n, the

Xis can be assumed to be independent (effect of this approx-
imation will be discussed in Section 3.3). Below we derive
Prob[Xmax ≤ x], ∀x ∈ [0..n], which is the cumulative den-
sity function of Xmax (or the MEL).

First, we derive the conditional probability when the
number of invalid instructions is fixed at N = k, for a spe-
cific number k.

Prob[Xmax ≤ x | N = k]
= Prob [max(X1, X2, X3, ...., Xk+1) ≤ x]
= Prob [(X1 ≤ x) and (X2 ≤ x) ...and (Xk+1 ≤ x) ]
= Prob (X1 ≤ x) × ... × Prob (Xk+1 ≤ x)
= [1 − (1 − p)x] × [1 − (1 − p)x]... × [1 − (1 − p)x]

= [1 − (1 − p)x]k+1

We stress that the probability calculated above is conditional
on a specific value of N . The actual value of N may vary
from 0 to n. Since N denotes the number of invalid instruc-
tions occurring among n instructions (with each of the n
instructions having a probability p of being invalid), it fol-
lows the Binomial distribution with parameters (n, p). Thus,
Prob[Xmax ≤ x] over all possible N values is

Prob[Xmax ≤ x]

=
n∑

k=0

Prob [N = k] × Prob[Xmax ≤ x | N = k]

=
n∑

k=0

(n
N )pk(1 − p)n−k × [1 − (1 − p)x]k+1

= (1 − (1 − p)x)[1 − p(1 − p)x]n

The Probability Mass Function (PMF) for MEL is
Prob[Xmax = x] = Prob[Xmax ≤ x] − Prob[Xmax ≤
x − 1] = (1 − (1 − p)x)[1 − p(1 − p)x]n − (1 − (1 −
p)x−1)[1 − p(1 − p)x−1]n.

3.2 Automatic Derivation of Threshold τ

We now derive the formal relation between τ and α.
The resulting formula allows us to automatically derive the
threshold value τ under the constraint that the false-positive
probability is bounded by a given value of α.

False positive happens when Xmax is greater than the
MEL threshold τ . Thus, the false-positive probability must
be α = Prob[Xmax > τ ] = 1 − Prob[Xmax ≤ τ ] =
1 − (1 − (1 − p)τ )[1 − p(1 − p)τ ]n.

We can approximate it as α = 1− [1− p(1− p)τ ]n since
(1 − (1 − p)τ ) ≈ 1. How to determine the values of n and
p will be discussed in Section 5.2. The value of α is a user
requirement. Given α, n and p, we can calculate the cor-

responding MEL threshold as τ = log(1−(1−α)
1
n )−log p

log(1−p) . To
verify that the above approximation has insignificant impact
on the value of τ , we compare the values of τ obtained using
the formula with or without the approximation. For exam-
ple, when α = 1%, n = 1540 and p = 0.227 (the parameters
used in our experiments), τ = 40.61 with the approximation
and 40.62 without (difference of 0.02%). Other reasonable
parameter settings also show that the approximation induces
only small error in the computation.

Based on the above analysis, if we use the derived τ as
threshold, the false-positive probability will be bounded by
α. This is very important, since it gives us the flexibility to
set the detection sensitivity of an MEL-based detector.

3.3 Verification of the MEL Model

In our model, we assume that valid and invalid instruc-
tions occur independently in the benign text. If we can show
that the validity of an instruction is independent of the valid-
ity of the instruction prior to that, then by induction it can be
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Figure 1. Juxtaposition of the PMFs for the MEL from the probabilistic model and from the Monte-
Carlo simulation by varying n and p. A near-perfect match can be observed in almost all the cases.

shown that occurrence of any valid or invalid instruction in
an instruction stream is an independent event. To prove that,
we conduct the Pearson’s χ2 test with the null hypothesis
H0 : in a pair of contiguous instructions < I1, I2 >, the va-
lidity of I2 is independent of the validity of I1. To verify this,
we construct below the 2 × 2 contingency table of frequen-
cies as follows. First we disassemble the benign text data
used for our testing. Then, considering all possible contigu-
ous pairs of instructions, we count the total number of cases
for each of the 4 possible validity combinations and tabu-
late the results under the “observed” column. The rightmost
columns under “expected” indicate the expected numbers as
per Pearson’s χ2 test. As we observe, the values are very
close; and the corresponding p-value (0.1) is not statistically
significant to reject H0.

Observed Expected
Valid I2 Invalid I2 Valid I2 Invalid I2

Valid I1 8960 2797 8922 2835
Invalid I1 2797 938 2835 900

The other assumption in our model is that we do not en-
force the condition that

∑N+1
0 Xi = n and rather assume

Xis occur independently. Is it evident that as n increases, the
effect of this constraint becomes less pronounced. To verify
this, we run Monte-Carlo simulation for the PMF(Xmax) for
different values of n and p. There, we toss a coin (with prob-
ability of head p) n times and calculate the MEL by taking
the maximum distances between two heads that are sepa-
rated by only tails and no heads in between. As heads are
equivalent of invalid instructions, the maximum inter-head
distance represents the MEL. The same experiment is run
for thousands of rounds and averaged to obtain the distribu-
tion of MEL. Finally, we juxtapose the output PMF for the
MEL from the Monte-Carlo simulation with the PMF gener-
ated by our probabilistic calculation in Figure 1. We observe
a near-perfect match in all cases (especially with larger n),
which vindicates our probabilistic model.

We also get one very important intuition from Figure 1.
We see that if p decreases, it will require a higher threshold
τ to keep the same false positive rate of α. However, higher

threshold will mean that a lot of malware will also not get
detected. Thus, to have a low value of false negative (in
addition to a fixed low value of false positive α), we must
find ways to increase p. This is why finding more ways to
invalidate instructions in text streams is important, which we
achieved in our prior work [8].

4 Applying Automatic Calculation of MEL
Threshold in Malware Detection

In the previous section, we derived the distribution of
MEL for a given input size n and invalid instruction prob-
ability p. From the shape of the distribution, it is evident
that if we choose an MEL threshold of τ near the tail of
the PMF curve, the probability of a random stream having
an MEL higher than τ will be low, and we can calculate
the error probability of that event happening accidentally as
α = 1 − (1 − (1 − p)τ )[1 − p(1 − p)τ ]n. In this section,
we put this theory into practice with an applicable detection
scheme.

We stress that the MEL scheme is not for detecting every
kind of malware. In fact, it applies to only those kinds of
malware that have the property that the MEL of malicious
payload is significantly higher than the MEL of the benign.
We have already observed in Section 2.3 that it holds true
for text traffic. We investigate the possibility of using MEL-
based detection scheme on binary and text as follows.

4.1 Using MEL to Detect Binary Malware

Here, we show that the MEL method, though used for
detecting binary worms previously, cannot be used any more.

In Section 2, we have showed that for text streams, the
malicious payloads have much higher MEL than benign be-
cause of encryption difficulties. However, we note that the
same is not true for binary, because there it is fairly easy to
come up with a very short decrypter, which will result in a
low MEL. Therefore, though it may appear that using MEL
method is not suited for detecting binary malware, surpris-
ingly the MEL method has already been applied in APE [10]
and Stride [2] to detect a special kind of binary malware,
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viz. the binary worm. The reason it worked there is because
those detection schemes exploited a special property of the
binary worms, viz. the fact that binary worms were accom-
panied by a sled. Those schemes were directed not towards
the actual payload (which could be encrypted and thus have
a small MEL) but towards the worm’s sled (a long sequence
of unencrypted valid instructions, and thus having a high
MEL). Unfortunately, according a recent survey [5], NOP
sleds are almost never used nowadays, probably because the
stack addresses today can vary by millions of bytes, and hav-
ing a sled that long is improbable. Nowadays, most of the
worms rather use the “register spring” method that involves
no sled [5]. Thus, MEL-based methods (including APE or
Stride) cannot catch binary worms any more, which means
that we can no longer test our theory on binary malware.

4.2 Using MEL to Detect Text Malware

Other than DAWN [8], we are aware of only one de-
tector (SigFree [12]) that can detect text malware. SigFree
works by counting the number of useful instructions rather
than just valid instructions, which means it is possible that
instructions which do not generate any error but does not
contribute actively to the flow of data will not be counted.
This approach is slightly different than MEL, where all valid
instructions are counted. Moreover, SigFree usually keeps
the capability of detecting text malware turned off to boost
its binary malware detection efficiency [12]. This makes
DAWN [8] our candidate of choice to test our probabilistic
MEL theory. Instead of using any user-set MEL threshold
as in [10], we determine the threshold in DAWN automati-
cally based on the the input size (n) and probability of in-
valid instructions (p) for any user-set false positive error rate

α (using the formula τ = log(1−(1−α)
1
n )−log p

log(1−p) ). We briefly
describe the testing details of our detection scheme below.

5 Evaluation

We evaluate the effectiveness of our MEL theory in the
following steps: (i) Creating the test data, (ii) Determin-
ing the appropriate threshold from the created test data us-
ing the MEL theory, (iii) Running the detection algorithm
(DAWN [8]) with the threshold determined in the previous
step, and (iv) Observing the false positive and false negative
rates. The tests were run on an Intel(R) Pentium-IV 2.40
GHz CPU with 1 GB of RAM in a Linux machine.

5.1 Creation of the Test Data

For creating the text malware, the frameworks provided
by Rix [9] and Eller [6] were used to convert multiple binary
buffer overflow programs (from [3]) into their text counter-
parts and more than one hundred text worms were created
in that way. The effectiveness of the text worms were tested

by actually running the vulnerable program and then by ob-
serving the spawning of the shell. To check whether a text
malware detector is at all needed, McAfee was run on both
the binary and text shellcodes and it raised alarms for the
binary cases only. For creating the benign dataset, nearly
0.5 MB of real web traffic from our departmental network
were collected using Ethereal. After stripping off the head-
ers, 100 cases, each containing nearly 4K text characters,
were selected to serve as the benign data.

5.2 Determining MEL Threshold τ

Since we can express the threshold τ as a function of the
false-positive probability α with parameters p (probability of
an invalid instruction) and n (total number of instructions),
we need to first calculate the values of these parameters (p
and n) for our test data. For the calculations, we use only
the following two entities: 1) the input size C (in number of
characters), and 2) the character frequency table (indicating
the probability of occurrence for each character), which can
either be pre-set (from experience) or can be obtained by a
linear sweep of the input character stream in case no pre-
set data exists (like our test condition). We do not need to
disassemble any data for determining p or n.

Determining n: We know that the total number of in-
structions n = C

Avg Instr size (bytes) . The average length of an
instruction is given by E[length of instruction] = E[length
of prefix chain] + E[length of actual instruction]. By actual
instruction, we denote the rest of the instruction after the pre-
fix chain, starting with the instruction opcode and including
ModR/M, Immediate, Displacement, SIB etc. Now, if z de-
notes the probability that a character is one of the instruction-
prefix characters (z = 0.16 in our case), then E[length of
prefix chain] =

∑∞
i=0 i × Prob[length(prefix chain) = i] =

z
(1−z) = 0.19. Similarly, E[length of actual instruction] =∑

i length[instr(i)] × Prob[instr(i)], where instr(i) represents
an actual text instruction. In our case, E[length of actual
instruction] was found to be 2.4. Thus, E[length of instruc-
tion] turns out to be 0.19 + 2.4 ≈ 2.6 bytes per instruction.
Since C = 4K in our case, n = C

E[instruction size] = 4000
2.6 ≈

1540.

Determining p: We obtain p by adding the probability
of I/O instructions and wrong-Segment-override memory-
accessing instructions (which are 18.5% and 4.2% accord-
ing to the frequency distribution of our test data). We disre-
gard the probability of illegal memory access due to unpop-
ulated memory-addressing register, as it requires evaluation
of prior instructions and hence it cannot be determined stan-
dalone whether it will cause an abort or not. We also take
the conservative approach of not using the possible error due
to explicit memory address, as the register spring technique
exposes the usage of static addresses in Windows [5]. Thus,
p turns out to be 0.185 + 0.042 = 0.227 in our case.

Determining the threshold τ : We set the false positive
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rate at α = 1%. For this α, we calculate the corresponding

threshold τ = log(1−(1−0.01)
1

1540 )−log 0.227
log(1−0.227) = 40 for our cal-

culated experimental parameters n = 1540 and p = 0.227.

5.3 Experimental Results

In our experiments, the MEL threshold of 40 catches all
the malicious cases and not a single benign case gets mis-
classified as malicious, thus yielding zero false positive and
zero false negative rates. To interpret the result even fur-
ther, we take the MEL from each benign as well as mali-
cious input data, and construct the overall MEL frequency
charts (equivalent of PMF of MEL). We compare the fre-
quency distribution of the MEL for benign and malicious
test data in Figure 3. For the benign data, the average MEL
is near 20, and max MEL is 40 (same as τ ), which matches
our expectations very well. On the other hand, for the mali-
cious data, the MEL is always above 120, thereby marking a
clear differentiator. Also, if we connect the frequency points
for benign, we observe that it forms into a shape somewhat
similar to the PMF curves in Figure 1, which shows that our
model is indeed mimicking the actual behavior. Also, we ob-
serve from Figure 2 that the gap between the false positive
boundary (p value of 0.227 corresponding to MEL of 40)
and false negative boundary (p value of 0.073 correspond-
ing to MEL of 120) is quite large, which means even if the
estimated p changed by a small margin, we would still have
been able to distinguish the malware from the benign data.
Also, the average instruction length from our actual experi-
ment (2.65) was found to be very close to our expected value
(2.6) assuming character and instruction independence.

6 Contrasting Our Work with APE

While our work generally follows the direction shown by
APE [10] that introduced the concept of MEL, there are a
number of significant differences:

• APE did not provide any mathematical foundation of the
underlying model, which we do in this paper. As a result,
any MEL thresholds in APE is obtained experimentally,

while in our case the threshold is calculated automatically
by the model – there is no “parameter tuning”.

• APE runs on random samples of data, while we examine
the full content.

• Unlike our malware detection strategy, APE is not a mal-
ware detector but a worm detector. It worked for worms
because previously worms used to have a sled, a feature
that is almost obsoleted now [5]. As a result, APE’s ef-
fectiveness is severely dwindled today.

• Although text malware do have large MELs, we found
that APE, in its current form, is not effective for detecting
them either. This is because APE, which was designed for
binary worms, did not exploit the text-specific properties.
The definition of invalid instruction there is narrower than
ours; APE considered an instruction invalid only when it
is either incorrect or has a memory operand accessing an
illegal address. This is a special case of our definition;
we introduce new ways to invalidate more instructions in
text (like I/O instructions). Moreover, the APE paper [10]
did not present specific methods to determine which in-
structions are valid and which are invalid. In our previous
work [8], we implemented an APE-like algorithm that did
not exploit the text-specific constraints discovered by us,
and compared its detection sensitivity and runtime with
DAWN’s. The results of the comparison showed clearly
that APE is ineffective for text.

7 Limitations and Conclusion

In this section we discuss some of the limitations of our
detection strategy. We reiterate the basic principle of our de-
tection method: 1) A text malware must self-mutate to gen-
erate potent binary opcodes, 2) this mutation requires a lot of
memory-writing instructions, 3) due to difficulties in encryp-
tion (including unavailability of loops in text and lack of one-
to-one correspondence between text and binary domains) the
size of a decrypter is relatively big for text malware, 4) due
to randomness property, benign text data does not have such
a long error-free executable instruction sequence, and 5) the
length of the maximal valid instruction sequence can thus be
used to differentiate between benign and malicious text data.

180182



We have already mentioned that generating loops dynami-
cally makes the decrypter complicated and thus longer. We
discuss in detail a possible argument against the other en-
cryption difficulty (lack of one-to-one correspondence) be-
low.

We have argued that the absence of one-to-one correspon-
dence between text and binary makes the task of decryption
more complex and thus causes the decrypter to be large with
high MEL. However, one may overcome this obstacle by us-
ing multilevel encryption (Russian doll architecture) in the
following manner. First, convert the binary malware into
text, and then encrypt this text malware in such a way that
the output is yet again text. We observe that in the second
step, we are doing encryption within the same text domain,
which signals the possibility of having a one-to-one corre-
spondence. On the surface, this approach appears to have
merit since 1) the final encrypted text data will show very lit-
tle trend of a text malware, and 2) because of the one-to-one
correspondence, one may be able to use simple decryption
schemes, which means a short decrypter. While it is impossi-
ble to consider all possible encryption methods, we put forth
our rebuttal to this argument by demonstrating the case of
using xor, which is usually a favorite choice for encryption.
First of all, we observe that there is no single decryption key
(a text byte) with the property that xor-ing it with any other
text byte will still yield text data. This is because the text
data (0x20–0x7E) occupies a somewhat odd slot in the orig-
inal ASCII table, and xor-ing two characters from text data
often yields a result that is not text. As shown in Figure 4,
if we divide the 95-char text domain into three nearly equal-
sized parts (viz. 0x20–0x3F, 0x40–0x5F, and 0x60–0x7E),
and if we xor any two bytes from the same part, then the
output will belong to the non-text domain 0x00-0x1F. This
means that, in order to use xor directly, we cannot use a
constant key for all of the text. Consequently, the decryp-
tion logic will have to be more complex too, leading to a
not-so-small decrypter.

We emphasize that

0x20 -

0x40 -

0x60 -

+
+

++ +

+
Non-Text

Non-Text

Text

Text Text

0x3F 0x7E

0x5F

Figure 4. Result of
XOR-ing 2 text charac-
ters

while we offer a novel
way to differentiate
between benign and
malicious text traffic,
this means that we have
merely made the task of
an attacker significantly
harder. As per our
limited experiment, the
difference between the
maximum length of
the valid instruction

sequence between benign and malicious traffic is currently
significantly large. To the best of our knowledge, no text
malware employing encryption to this date has been able to
come up with a decrypter smaller than our current threshold.
However, as security is a cat-and-mouse game, in future we

will invariably see such malware, and we must strive to find
more exploits to counter that.

We would like to reiterate that while our approach is sim-
ilar to some other existing MEL-based schemes [10, 12, 2],
a fundamental difference exists. In our detection scheme the
MEL threshold is obtained purely from the statistical prop-
erties of text traffic, while for the rest it is obtained experi-
mentally from the MEL of the benign data.

To conclude, we have analyzed the Maximum Executable
Length method and laid mathematical foundation to this the-
ory. We have shown that such theory can be used to detect
malware in the text domain but no longer in the binary do-
main. We have incorporated our MEL model into a text mal-
ware detector that is easily deployable, signature-free, re-
quires no parameter tuning, has user-configurable detection
sensitivity, and is extremely robust.
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