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Abstract— As the Internet moves into the era of big network
data, it presents both opportunities and technical challenges for
traffic measurement functions, such as flow cardinality estima-
tion, which is to estimate the number of distinct elements in
each flow. Cardinality estimation has important applications in
intrusion detection, resource management, billing and capacity
planning, as well as big data analytics. Due to the practical
need of processing network data in high volume and high
speed, past research has strived to reduce the memory overhead
for cardinality estimation on a large number of flows. One
important thread of research in this area is based on sketches.
The representative work includes the FM sketches [1], the
LogLog sketches [2], and the HyperLogLog sketches [3]. Each
sketch requires multiple bits and many sketches are needed for
each flow, which results in significant memory overhead. This
paper proposes a new method of virtual maximum likelihood
sketches to reduce memory consumption. First, we design virtual
sketches that use no more than two bits per sketch on average.
Second, we design virtual sketch vectors that consider all flows
together. Based on these new constructs, we design a flow
cardinality solution with an online operation module and an
offline estimation module. We also consider the problem of
differentiated estimation that gives flows of high priorities
better precision in their cardinality estimations. We implement
the new solution and perform experiments to evaluate its
performance based on real traffic traces.

I. INTRODUCTION

As the Internet moves into the era of big network data,
it presents both opportunities and technical challenges for
data flow measurement at both the core and the edge of the
networks. This paper focuses on a particular measurement
function, counting the number of distinct elements in each
flow, which is traditionally referred to as flow cardinality
or flow spread. Flows and elements can be flexibly defined
depending on application context. A few examples are given
below.

• For scan detection, we can define each flow as all pack-
ets from the same source address and its elements as the
destination addresses in the headers of the packets. The
flow from a scanner has a large cardinality because it
sends packets to many different destination addresses.

• For the gateway of a network to automatically identify
its internal servers (possibly for resource alignment), it
may regard all inbound packets to each internal address
as a flow and the source addresses in the headers of the
packets as elements. The flow to a server tends to have
a larger cardinality than flows to other hosts because
more clients communicate with the server. Moreover,
as the gateway measures the cardinality of each flow
periodically, it can detect potential DDoS attacks to a
server if it finds the cardinality of the flow to the server
jumps far beyond the normal value.

• In other applications, the flows do not have to be net-
work traffic. For example, an online retailer may want to
count the number of different customers that purchase
one product after purchasing another one. These two
products form a purchase association. We logically
interpret all customers making the two purchases as
a flow. Identifying purchase associations with large
cardinalities help the retailer make effective followup
suggestions to customers after they make their first
purchases.

However, exact count for each flow will cause large
memory and computation overhead. Because we count the
number of distinct elements, in order to remove duplicates,
the data structures may have to keep the elements that
have been seen [4], which is costly. Note that counting
the number of elements in each flow without removing
duplicates is a related but different problem [5], [6], [7].
Fortunately, it is often not necessary for applications such
as those listed above. As an example, for scan detection,
suppose the cardinalities of the flows from normal sources
are in tens or fewer. If the cardinality of the flow from a
scanner is in thousands, even with some estimation error,
we can still separate it from the normal ones based on the
estimated cardinality. Various methods have been proposed
for estimating the cardinalities of flows [8], [9], [10], [11],
[12]. One important thread of research in this area is based on
sketches. The representative work includes the FM sketches
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[1], the LogLog sketches [2], and the HyperLogLog sketches
[3], which have been implemented in real systems. In a
typical implementation, a LogLog or HyperLogLog sketch
uses 5 bits, and an FM sketch uses more. Multiple sketches
(in hundreds) are needed for each flow to ensure estimation
accuracy.

There are practical needs for reducing per-flow memory
overhead in cardinality estimation. If the cardinality esti-
mation function is implemented on a network processor
chip, because the on-chip memory is typically small and
the number of flows in modern networks can be very
large, we will have to minimize per-flow overhead in order
to accommodate more flows. In the previous application
example of purchase associations, if there are hundreds
of thousands of different products, the number of possible
purchase associations (flows) can in tens of billions. For such
a large number of flows, memory overhead may become a
problem.

This paper proposes a new method, called virtual max-
imum likelihood sketches, to reduce memory consumption
by cardinality estimation on a large number of flows. It
embodies two ideas. The first idea is called virtual sketches,
which use no more than two bits per sketch on average,
while retaining the functional equivalence to an FM sketch.
The second idea is called virtual sketch vectors, which
combine the sketches of all flows into a mixed common
pool. Together, these two ideas can drastically reduce the
overall memory overhead. Based on virtual sketches and
virtual vectors, we design a cardinality estimation solution
with an online operation module and an offline estimation
module. For a system where some flows are more important
than others, we investigate the problem of differentiating
estimation accuracy, depending on the priorities of the flows.
We implement the new solution and perform experiments
based on real traffic traces. The results demonstrate that
the new solution can work reasonably well in very tight
space and has the ability of differentiating flows of different
priorities.

The rest of the paper is organized as follows: Section II
reviews the FM sketches and its followups. Section III de-
scribes the construction of virtual sketches and virtual sketch
vectors, which serve as the basis for our new cardinality
estimator. Section IV presents the online operation module
and the offline estimation module for per-flow cardinality
estimation. Section V introduces the idea of differentiated
estimation accuracy with a solution by allowing multiple
virtual sketch vectors per flow. Section VI presents the
experimental results for evaluation of the proposed solution
based on real traffic traces. Section VII draws the conclusion.

II. FM SKETCHES, LOGLOG, AND HYPERLOGLOG

This work is motivated from the famous FM sketches and
probabilistic counting with stochastic averaging [1], which
are designed to estimate the number of distinct elements in
a multiset (or a flow in the context of this paper). For each
flow, the data structures consist of s FM sketches, denoted

as S[j], 0 ≤ j < s, each of which is a bitmap of l bits,
denoted as S[j][i], 0 ≤ i < l.

To record an element of the flow, we first perform a
uniformly distributed hash function on the element to select
one of the sketches. Without loss of generality, we denote
the selected sketch as S[j]. We then perform a geometrically
distributed hash function on the element such that the prob-
ability for the output to be i is 2−(i+1), 0 ≤ i < l. Let v be
the output. We set the bit S[j][v] to one. Duplicate elements
will set the same bit and thus automatically removed since
they have no impact on the values of the sketches.

After recording all elements of the flow, we can estimate
the flow cardinality from the sketches as follows: Let k
be the true cardinality of the flow, k̂ be the estimated
cardinality, and f(S[j]) be the number of leading ones in
sketch S([j]). For example, if S[j] is 1111010...0, then
f(S[j]) = 4. A functional relation can be developed between
k and the expected number of leading zeros in each sketch.
Replacing the expected value with the measured average of∑s−1

j=0 f(S[j])

s , the following estimation formula is derived in
[1]:

k̂ =
s2

∑s−1
j=0

f(S[j])

s

θ
, (1)

where θ = 0.77 when k is sufficiently large. To ensure
estimation accuracy, hundreds of sketches are often needed.

Instead of using the number of leading ones, the LogLog
and HyperLogLog sketches [2], [3] develop their estimation
formulas based on the highest index of any bit that is set to
one in each sketch. Only log2 l bits per sketch is needed to
keep track of this index value. However, even though each
sketch is smaller, hundreds of them are still needed to ensure
accuracy.

This paper reduces per-flow memory usage in two ways.
First, we develop virtual sketches, each of which uses no
more than 2 bits on average. Second, we develop virtual
sketch vectors, which are logically-separated but physically-
shared data structures for a large number of different flows.
Together, they can drive the memory usage down to the realm
of one bit per flow.

III. VIRTUAL SKETCHES

A. Virtual Sketches

The available physical memory B is divided into l bit
arrays, denoted as B[i], 0 ≤ i < l, with the size of B[i+ 1]
being half of the size of B[i]. Let m be the number of bits
in B[0]. The number of bits in B[i] is m

2i . The total number
of bits in all bit arrays is

∑l−1
i=0 m2−i < 2m.

The jth bit in B[i] is denoted as B[i][j], 0 ≤ j < m
2i . With

each bit B[0][j], we construct a virtual sketch V [j] of l bits,
denoted as V [j][i], 0 ≤ i < l, by taking one bit from every
other array:

V [j][i] = B[i][j mod
m

2i
]. (2)

Because there are fewer bits in other arrays, their bits must
be reused in multiple sketches. Figure 1 shows an example
with l = 3 and m = 8. For instance, V [0] consists of three
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Fig. 1. An illustrative example of constructing virtual sketches from the
bit arrays with l = 3 and m = 8. The first bit in each bit array is shown
in bold text. To construct virtual sketches, the bits in the arrays except for
B[0] must be reused. The figure shows that the bits in B[2] are each used
four times in the virtual sketches, and the bits in B[1] are each used twice.

bits, B[0][0], B[1][0] and B[2][0], while V [6] consists of three
bits, B[0][6], B[1][2] and B[2][0]. They share B[2][0].

In total, we construct m virtual sketches from fewer than
2m bits, using space fewer than 2 bits per sketch, more
efficient than the existing sketches [1], [2], [3]. The m virtual
sketches form a sketch pool, denoted as V .

B. Virtual Sketch Vector

For an arbitrary flow f , we select a number s of virtual
sketches pseudo-randomly from the pool V to form a virtual
sketch vector Vf for the flow, where s is a system parameter.
For convenience, the sketches in the vector are also denoted
as Vf [j], 0 ≤ j < s, which will be used to record the
elements in flow f .

There are different ways of selecting sketches from V to
form Vf . One possible approach is described as follows: Let
R be an array of s different constants that are randomly
chosen. To select Vf [j], we perform XOR on f and R[j],
and hash the result for an index to a sketch in V , where H
is a hash function and f is the flow label. If the hash function
requires a specific length of input and f has a different
length, we can pad f or divide f into segments and XOR
the segments such that the resulting length is appropriate.
For simplicity, the formulas in the paper assume that the
hash function can take input in the length of f . Hence,

V [H(f ⊕R[j])] → Vf [j], 0 ≤ j < s, (3)

where ⊕ is the XOR operator and → means “is selected
for.” An example of constructing virtual sketch vectors for
two flows is given in Figure 2.

In (3), V [H(f⊕R[j])] should be V [H(f⊕R[j]) mod m].
We omit “mod m” to simplify the notation. We will use
Vf [j][i] for the ith bit of Vf [j], 0 ≤ i < l.

In theory, we can construct an arbitrary number of virtual
sketch vectors from the same pool V to support an arbitrary
number of flows. The vectors for different flows will share

Fig. 2. An illustrative example of constructing virtual sketch vectors from
the common pool V with s = 3. Consider two flows, f and f ′. Three
sketches are randomly drawn from V to form Vf . The same happens for
Vf ′ . The virtual sketch V [2] is used in both vectors.

sketches in V . Sharing causes noise. As the elements of
flow f are recorded by the sketches in vector Vf , because
those sketches are also used by the vectors of other flows,
it introduces noise into other vectors. The more the number
of flows is, the more the sharing of sketches will be, and
the greater the noise will be. We will use the maximum
likelihood method to remove the noise in each vector caused
by other flows through sketch sharing.

IV. COUNTING DISTINCT ELEMENTS IN NETWORK
FLOWS

A. Online Operation

Consider a device processing an incoming stream of
data from a large number of flows. The device may be
a router processing the arrival packets which belong to
different flows. A measurement function implemented on the
router can provide estimations of flow cardinalities during
each measurement period. The device may also be a server
processing sale records and estimate the number of occur-
rences for each purchase association. See the introduction
for application examples.

When processing the incoming data stream, the device
extracts a sequence of flow/element pairs. We introduce a
recording probability β, i.e., each flow/element pair has a
probability of β to be recorded. To implement the recording
probability, each flow/element pair is first sampled with a
probability of β

1−2−l ; its reason will become clear shortly.
Consider an arbitrary flow/element pair which is sampled.
Let f be the flow label and e be the element (which belongs
to f ). To record the element, the device does the following.

First, it pseudo-randomly selects a sketch from Vf . More
specifically, it performs a hash H(f⊕e) in the range of [0, s)
and selects Vf [H(f ⊕ e)]. If f and e have different lengths,
we may pad e or divide e into segments and perform XOR
on the segments such that its length is equal to that of f .

Second, the device chooses a bit from the selected sketch.
To do so, it performs another hash H ′(f ⊕ e). Let z be the
number of leading zeros in H ′(f ⊕ e). If z ≥ l, e is not
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recorded. If z < l, the bit Vf [H(f ⊕ e)][z] is chosen and set
to one for recording e. That is,

Vf [H(f ⊕ e)][z] := 1, (4)

where := is the assignment operator. By (3), it becomes

V [H(f ⊕R[H(f ⊕ e)])][z] := 1. (5)

By (2), it becomes

B[z][H(f ⊕R[H(f ⊕ e)]) mod
m

2i
] := 1. (6)

Clearly, multiple occurrences of the same flow/element pair
will cause the same bit to be set, Therefore, duplicate
elements in a flow are filtered out automatically. Only distinct
elements may be recorded by different bits. It is also possible
that two distinct elements set the same bit. Such collision is
considered in our later development of estimation formula.

We stress that V and Vf are logical concepts that will
help us derive a formula for estimating the flow cardinalities.
They are not physically constructed during the phase of
online operation. The only physical data structures that the
device maintain are B[i], 0 ≤ i < l. The only operation per
flow/element pair is sampling and then possibly assignment
in (6). In the assignment, m

2i can be pre-computed. If m is
chosen to be a power of 2, the modulo can be accomplished
by a right-shift operation. The two hashes, H(f ⊕ e) and
H ′(f ⊕ e), can be combined into one: Suppose the hash
output of H(f⊕e) has 32 bits, s = 256, and l = 8. The first
eight bits of H(f⊕e) will be sufficient for selecting a sketch
from Vf . The remaining 24 bits can substitute H ′(f ⊕e) for
selecting a bit from the sketch; in fact, only 7 bits are needed
since l = 8. In summary, the computation of (6) requires two
hashes and one memory access, plus some simple operations
such as XOR and shift.

The probability for z = i, ∀i ≥ 0, is 2−(i+1). The
probability for z ≥ l is 2−l. Hence, the probability for e
to be recorded is the sampling probability β

1−2−l multiplied
by (1− 2−l), which gives β.

The probability for e to set the ith bit of a particular sketch,
denoted as pi, is

pi =
β

1− 2−l
× 1

s
× 2−(i+1), (7)

where 0 ≤ i < l. The reason is that e has a probability of
β

1−2−l to be sampled, a probability of 1
s to select the sketch,

and finally a probability of 2−(i+1) to select the ith bit. The
value of pi decreases exponentially with respect to i.

B. Offline Estimation based on Maximum Likelihood Method

After processing an incoming data stream, the online
device offloads the bit arrays to a server for long-term storage
and offline query. It will then reset its arrays for the next data
stream.

The server can estimate the number ni of flow/element
pairs recorded in Bi, ∀i ∈ [0, l). This may be done through
probabilistic counting [13]:

ni ≈ −m

2i
lnVi, (8)

where Vi is the fraction of bits in Bi that are zeros.
Given a flow label f under query, the server estimates its

cardinality based on the stored bit arrays Bi. In this offline
operation, the server first constructs the virtual sketch vector
Vf from the bit arrays. Combining (2) and (3), for 0 ≤ j < s,
0 ≤ i < l, we have

Vf [j][i] = B[i][H(f ⊕R[j]) mod
m

2i
]. (9)

Let k be the true cardinality of flow f . Consider an
arbitrary bit Vf [j][i]. We derive the probability for the bit
to be zero, which happens when (1) none of the k elements
from f causes the bit to be set as one, and (2) none of the
elements from other flows causes the bit to be set. Each
element of f has a probability pi in (7) to set Vf [j][i] as
one. The probability for none of the k elements from f to
set it as one is (1− pi)

k.
Vf [j][i] is a bit in B[i]. From (8), there are approximately

ni elements from all flows that set bits in B[i]. Among them,
the number from flow f is approximately

k × β

1− 2−l
× 2−(i+1) =

kβ2−(i+1)

1− 2−l

because each element has a probability of β
1−2−l to be

sampled and, regardless of which sketch is selected, it has a
probability of 2−(i+1) to set the ith bit in the sketch (which
is a bit in B[i]). Hence, the number of elements from flows
other than f , denoted as n′

i, is approximately

n′
i ≈ ni −

kβ2−(i+1)

1− 2−l
. (10)

For an arbitrary element from another flow, the chance for
Vf [j] to happen to be a sketch in the vector of that flow and
be selected for recording the element is s

m × 1
s = 1

m . Hence,
the probability for none of the n′

i elements from other flows
to set Vf [j][i] is (1− 1

m )n
′
i . Summarizing the above analysis,

we have the following formula for the probability of Vf [j][i]
being zero:

ϕi = (1− pi)
k(1− 1

m
)n

′
i . (11)

Let ui = s −
∑s

j=0 Vf [j][i], which is the number of zeros
at the ith bits of all sketches in Vf . The likelihood function
of observing {ui | 0 ≤ i < l} with respect to k is

L(k) =

l−1∏
i=0

(
s

ui

)
× ϕui

i (1− ϕi)
s−ui . (12)

We find an estimated cardinality k̂ for flow f that maximizes
L(k). That is,

k̂ = max
0≤k≤K

{L(k)}, (13)

where K is the maximum flow size of interest. We may
solve (13) numerically through exhaustive search, which
is however computationally costly. In our experiments, we
adopt a bi-section search method, producing the same results
as the exhaustive search: Denote the search range as [r1, r2].
Initially set r1 = 0 and r2 = K. Let r3 = ⌊ r1+r2

2 ⌋. Compute
L(r3) and L(r3 +1). If L(r3) is greater than L(r3 +1), set
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r2 = r3; if L(r3 + 1) is greater, set r1 = r3. Repeat the
above procedure until r2 − r1 ≤ 1. Finally, set k̂ to be the
one among r1 and r2 that produces a larger value of the
likelihood function.

V. DIFFERENTIATED ESTIMATION ACCURACY

Consider an online monitoring application where a gate-
way keeps track of the external scanning activities by mea-
suring how many distinct destination addresses that each
external source has contacted during each measurement
period. All packets from the same source address constitute
a flow, and the elements are destination addresses in the
packet headers. The gateway may have access to a list
of potentially malicious external hosts based on the past
results from firewalls and other intrusion detection systems.
Naturally, it is desirable to improve the accuracy in flow
cardinality estimation for these flows over the background
of other flows from addresses not in the list.

We introduce the problem of cardinality estimation with
differentiated accuracy. Let F = {F0, F1, ..., Fg−1} be the
set of flows to be measured, which is divided into g subsets.
Assume most flows belong to the base subset F0. Their
estimation accuracy serves as a baseline. Other subsets,
Fv , 0 < v < g, have increasingly higher requirements
on estimation accuracy. Each Fv is assigned an integer
priority number av such that a0 = 1 and av > av−1. The
differentiated accuracy requirement is that the variance of the
cardinality estimation k̂ for a flow f in Fv should be only
1
av

of the variance if the same flow had belonged to the base
subset F0.

To meet the differentiated accuracy requirement, we pro-
pose to measure the cardinality of flow f independently for
av times. That is, we assign av virtual sketch vectors to f ,
and every element from f is probabilistically recorded for av
times, each time by a different vector. Each vector will give
an estimation with a baseline accuracy comparable to similar
flows in F0, which have a single vector per flow. When we
average the av estimations for flow f , the variance of the
average is 1

av
of the variance for each individual estimation.

More details are given below.
We assume that the device performing online operation

is able to classify the incoming sequence of flow/element
pairs into the correct subsets such that each flow/element
pair, f and e, is associated with a priority number a. The
classification is beyond the scope of this paper. As an
example, network traffic may be classified by pre-set ACLs
or address lists.

If a > 1, we logically assign multiple virtual vectors to
flow f , denoted as V v

f , 0 ≤ v < a, which are constructed as
follows:

V [H(f ⊕R[v × a+ j])] → V v
f [j], 0 ≤ v < a, 0 ≤ j < s,

(14)
where R is an array of s×ag−1 different constants. To record
e, one bit from each V v

f will be chosen and set to one. To
do so, we need another array R′ of ag−1 different constants.
The two hash functions for selecting a bit in V v

f are H(f ⊕

e⊕R′[v]) and H ′(f⊕e⊕R′[v]). Following a process similar
to that in Section IV-A, to record e, we can show that the
device should set the following bits:

B[za][H(f⊕R[H(f⊕e⊕R′[v])]) mod
m

2i
] := 1, 0 ≤ v < a,

(15)
where za is the number of leading zeros in H ′(f⊕e⊕R′[v]).

During offline estimation, given a flow label f and its
priority number a, we reconstruct the sketch vectors V v

f ,
0 ≤ v < a, from (14), compute an estimate k̂v from each
V v
f , and return the average estimate:

k̂ =

∑a−1
v=0 k̂v
a

. (16)

VI. EXPERIMENTS

A. Experiment Setup

We evaluate the proposed virtual maximum likelihood
sketches (VMLS) through experiments based on real traffic
traces. We obtained inbound packet header traces that were
collected through Cisco’s NetFlow from the main gateway
at University of Florida for five days. The source address in
the packet header is used as flow label, and the measurement
period is one day. Hence, each flow consists of all packets
from the same source address during a day. The destination
address in the packet header is used as element. For each
flow, its cardinality is the number of distinct destination
addresses that the source has sent packets to. One application
for such per-flow measurement is scan detection as explained
in the introduction.

TABLE I
TRAFFIC TRACE

flows flow/element pairs avg cardinality
Day 1 3,558,510 10,048,129 2.82
Day 2 6,468,158 11,886,945 1.84
Day 3 5,189,371 11,858,928 2.29
Day 4 3,582,938 9,978,131 2.78
Day 5 4,007,256 10,702,677 2.67

Some statistics of the five-day traces are shown in Table I.
We use one day’s trace as an example: It has 5,189,371
distinct source IP addresses, meaning that there are 5,189,371
flows. It has 11,858,928 distinct source/destination pairs
(flow/element pairs). Hence, the average cardinality per flow
is 2.29.

We implement the online operation module and the offline
estimation module of the proposed VMLS. The online oper-
ation uses a default memory space of one bit per flow, i.e.,
the total number of bits in all bit arrays B[i], 0 ≤ i < l, is
equal to the number of flows in the trace. The existing FM,
LogLog, hyperLogLog sketches cannot work under such a
tight memory space.

Unless specified otherwise, the parameters of VMLS are
set as follows: l = 4, s = 250, and the sampling probability
is 50%. Increasing l to a larger value will extend the
estimation range without adding much space overhead due to
the exponentially decreasing nature of additional bit arrays.
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Fig. 3. Estimation accuracy of virtual maximum likelihood sketches with
a single priority in memory of 1 bit per flow
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Fig. 4. Relative standard error of the estimations with a single priority in
memory of 1 bit per flow

However, our traces do not have many large flows, and l = 4
is sufficient for the experiments.

B. Estimation Accuracy

The first experiment evaluates the estimation accuracy of
VMLS with a single priority group, i.e., g = 1. For each
one-day trace, we first apply the online operation module to
record the elements of the flows. We then use the offline
estimation module to compute an estimated cardinality for
each flow. We then plot the five-day results in Figure 3.
Each point in the figure represents a flow. Its x coordinate
is the flow’s true cardinality, k. Its y coordinate is the flow’s
estimated cardinality, k̂. The closer a point is to the equality
line y = x, the better the estimation accuracy will be. From
the figure, we can see that the points cluster around the
equality line, indicating reasonably good estimation accuracy
even under a tight space of one bit per flow.

Figure 4 shows the relative standard error of the estima-
tions. Because there are too few flows for some cardinality
values, we compute the relative standard error by dividing
the horizontal axis into measurement bins. In each bin, we
compute the difference between the true cardinality and the
estimated value for each flow, divide it by the true cardinality,

square the result, add these squares for all flows, divide it by
the number of flows minus one, and then take the squareroot.
The figure shows that the relative standard error is large for
small flows, but relatively small for large flows. It is below
10% for flows whose cardinalities are beyond 2,000. Even for
small flows, although the relative standard error is large, the
absolute error is still limited, which is evident from Figure 3,
making it easy to separate large flows from small ones.

C. Differentiated Estimation Accuracy

The second experiment evaluates the differentiated esti-
mation accuracy of VMLS with two priority groups, where
g = 2, a0 = 1 and a1 = 4. 10% of all flows are randomly
selected for the higher priority, and the remaining flows
belong to the base priority. Figure 5 shows the estimation
results of high-priority flows, and Figure 6 shows the results
of base-priority flows. It can be seen that the estimation
accuracy of the former is much better than that of the latter;
the points representing high-priority flows are much closer
to the equality line.

A more direct comparison is given in Figure 7, which
shows that the standard errors for high-priority flows are
about half of the errors for the base-priority flows when
the flow cardinalities are beyond 500. This conforms to the
accuracy requirement specified by a1 = 4: the variance of
high-priority flows is 1

4 of the variance of base-priority flows.
Hence, the standard deviation (or error) of the former should
be half of the latter.

D. Varied Memory Availability

The third experiment evaluates the performance of VMLS
with two priority groups under different memory availability.
Figure 8-10 shows the results when the memory of the
online operation module is 0.5 bit per flow. Comparing with
Figure 5-7, the estimation errors are considerably larger,
indicating that the practical value of VMLS will begin to
diminish when the available memory is too small for the
online module.

Figure 8-10 shows the results when the memory of the
online operation module is 3 bits per flow. Comparing with
Figure 5-7, the estimation errors are measurably better. For
example, for flows of cardinalities around 2,000, the relative
standard error of the base priority is 9.6% under memory of
1 bit per flow, and it is lowered to 6.3% under memory of
3 bits per flow. This result indicates that better estimation
accuracy can be achieved through memory increase for the
online module.

VII. CONCLUSION AND FUTURE WORK

This paper proposes a new solution of virtual maximum
likelihood sketches for cardinality estimation. It has four
technical contributions: virtual sketches, virtual sketch vec-
tors, a maximum likelihood method for cardinality estimation
based on per-flow virtual sketch vectors, and a method to
achieve differentiated estimation accuracy among multiple
subsets of flows with different priorities. The experimental
results based on real traffic traces demonstrate that the new
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Fig. 5. Estimation accuracy of higher priority flows with g1 = 4 in memory
of 1 bit per flow
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Fig. 6. Estimation accuracy of base priority flows with g0 = 1 in memory
of 1 bit per flow
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Fig. 7. Relative standard error of the estimations with two priorities in
memory of 1 bit per flow
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Fig. 8. Estimation accuracy of higher priority flows with g1 = 4 in memory
of 0.5 bit per flow
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Fig. 9. Estimation accuracy of base priority flows with g0 = 1 in memory
of 0.5 bit per flow
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Fig. 10. Relative standard error of the estimations with two priorities in
memory of 0.5 bits per flow
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Fig. 11. Estimation accuracy of higher priority flows with g1 = 4 in
memory of 3 bits per flow
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Fig. 12. Estimation accuracy of base priority flows with g0 = 1 in memory
of 3 bits per flow
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Fig. 13. Relative standard error of the estimations with two priorities in
memory of 3 bits per flow

solution produces cardinality estimations with reasonable
accuracy in very tight memory space.

Our future work is to formally analyze the performance
of virtual maximum likelihood sketches, including the bias
and the standard error of estimated cardinalities. We will
study the impact of the system parameters, including s, β
and l, on the performance, as well as how to set the optimal
parameters. We will also find ways to reduce the relative
standard errors of flows with small cardinalities.
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