
Two-Party Fine-Grained Assured Deletion of Outsourced Data in Cloud Systems

Zhen Mo Yan Qiao Shigang Chen

Department of Computer Science, University of Florida, Gainesville, FL 32611, USA

Abstract—With clients losing direct control of their data, this
paper investigates an important problem of cloud systems: When
clients delete data, how can they be sure that the deleted data
will never resurface in the future if the clients do not perform the
actual data removal themselves? How to guarantee inaccessibility
of deleted data when the data is not in their possession? Using a
novel key modulation function, we design a solution for two-party
fine-grained assured deletion. The solution does not rely on any
third-party server. Each client only keeps one or a small number
of keys, regardless of how big its file system is. The client is able
to delete any individual data item in any file without causing
significant overhead, and the deletion is permanent — no one
can recover already-deleted data, not even after gaining control
of both the client device and the cloud server. We validate our
design through experimental evaluation.

I. INTRODUCTION

Cloud storage systems have gained firm traction in the

marketplace, but they also bring concern from the fact that

users lost physical control of their outsourced data, while they

cannot fully trust the cloud service providers, as the servers

may be compromised, the providers may be forced to hand data

over to law enforcement, their employees who have access to

the data may sell it under the table to marketers or corporate

competitors, to give a few examples. To address such concern,

much research work has been done to ensure the integrity of

the outsourced data [1], [2], [3], [4]. One of their goals is to

verify the accessibility of the data on the cloud servers. This

paper investigates a complementary problem that is important

but has received much less attention: When users delete data in

the cloud, how can they be sure that the deleted data will never

resurface in the future if the actual data removal is preformed

by someone else? How to ensure the inaccessibility of their data

when the data is not in their possession? One straightforward

solution is to encrypt data before outsourcing. The client keeps

the encryption key, while the server keeps the encrypted data.

To make sure that data cannot be recovered in the future, the

client only needs to securely delete the key. But this simple

approach has serious problems when the outsourced file system

is large:

• If the client uses one key to encrypt all files, whenever

it deletes anything from any file, it will have to re-encrypt

everything else with a new key because otherwise the whole file

system would become inaccessible after the old key is deleted.

• If the client uses a different key for each file, there will be

numerous keys for the client to manage, which may become a

serious burden particularly for light-weight client devices such

as tablets. More importantly, the client has to change the key

of a file even when it deletes just one data item, e.g., a retired

employee record from a large roster, an erroneous entry of

a sensor data file, a sensitive transaction in a secret financial

book, an email from a mail backup file, or one record from

a large database file. To make one data item inaccessible, the

client has to retrieve the entire encrypted file from the server,

decrypt it, remove one item, permanently delete the old key,

and choose a new key to re-encrypt the entire file.

• To avoid the above overhead, one way is to assign a

different key to each data item in each file, but the number of

keys may become astronomical. Especially when the data-item

size is comparable to the key size, as the volume of keys rivals

the volume of data itself, the benefit of outsourcing diminishes.

The prior art relies on two approaches to relieve the key

management burden from the client. The first approach is to

shift key management burden to third-party servers (also called

ephemerizers for timed deletion) [5], [6], [7]. Assured deletion

relies on the security of third-party servers. However, if we

cannot fully trust the cloud service providers, shouldn’t we

place the same benefit of doubt on the third-party servers? For

example, if a Federal agency has a court order to force the

cloud and the third party to surrender the data and keys of

a company under investigation, no matter how hard the client

tries to delete its data, it will be useless. (In comparison, our

solution will ensure the effectiveness of deletion up to the

moment of the client’s device being seized.) Moreover, the

third-party servers cause issues of performance degradation and

availability because their key service is needed for all data

operations.

The second approach is to reduce the number of keys by

using each key to protect multiple files which should be deleted

at the same future time [5], [6], which belong to the same class

and are expected to be deleted together [6], or which share the

same access policy [7]. This approach cannot support efficient

fine-grained deletion on individual data items of each file in

general-purpose file systems, because any such deletion will

require an old key to be replaced by a new key and all files

under that old key to be re-encrypted.

Now if we adapt the prior work [5], [6], [7] for a two-party

solution by merging the function of the third party to the client

and support fine-grained deletion by letting the client keep one

key for each data item, then the problem of too many keys

comes back. The objective of this paper is to design a new

solution for two-party fine-grained assured deletion. It does

not rely on any third-party server, yet the client only keeps

one or a small number of keys, regardless of how big the file

system is. The client should be able to delete each individual

data item without causing any other data to be re-encrypted,

and the deletion is permanent — no one can recover already-

deleted data, not even after gaining control of both the client

device and the cloud server.

We take two steps to design our solution. In the first step, we

let the client keep one master key for every file. We develop a

novel key modulation function that allows the client to delete

2014 IEEE 34th International Conference on Distributed Computing Systems

1063-6927/14 $31.00 © 2014 IEEE

DOI 10.1109/ICDCS.2014.39

308

each individual data item without having to re-encrypt the rest

of the file even though the master key has been changed. In

the second step, we outsource the master keys of all files to

the cloud so that the client only needs to keep one or a small

number of higher-level control keys.

The rest of the paper is organized as follows: Section II

defines the problem and the threat model. Section III motivates

for our idea of key modulation. Section IV describes our new

solution for two-party fine-grained assured deletion. Section V

explains how to outsource the master keys of files to the

cloud. Section VI presents the experimental results. Section

VII discusses the prior art. Section VIII draws the conclusion.

II. PRELIMINARIES

A. System Model

A cloud system consists of two parties: (1) Clients are

individual users or companies. They have a large amount of

data to be stored, but do not want to maintain their own storage

systems. By outsourcing their data to the cloud and deleting

the local copies, they are freed from the burden of storage

management. (2) Cloud servers have a huge amount of storage

space and computing power. They offer resources to clients on

a pay-as-you-go manner.

After putting data on cloud servers, the clients lost direct

control of their data. They may retrieve their data or change

the data by sending requests to the servers. Upon receiving

the requests, the servers will perform operations of deletion,

insertion, modification, and data access.

B. Problem Statement

We investigate the problem of assured data deletion, which

guarantees that the data deleted from a cloud system will be

permanently inaccessible. Our goal is to protect the forward

privacy of deleted data. Moreover, we want to implement fine-

grained deletion which allows us to safely and efficiently delete

small data items in large files without having to re-encrypt the

files. Finally, we require a two-party solution that does not

involve any third party in the operations between clients and

servers.

C. Threat Model and Security Definition

Consider a data item that is deleted from the cloud by a

client at time T . We adopt the worst-case threat model that

gives attackers the following capabilities: (1) they may have full

control of the server at all time, and (2) they may compromise

the client’s device after time T .

The first attacker capability reflects the possibility that the

server may be compromised before T . Hence, the attackers

have access to everything on the server, and they are able

to control the actions of the server in response to the client

requests.

The second attacker capability reflects the possibility that the

client’s device may be compromised after T . In this case, the

attackers have access to everything stored on the client side,

including any key materials that the client has. (If the attackers

manage to compromise the client’s device before T , they will

know the data, which has not been deleted yet.)

For the security definition, a solution for deleting data in a

cloud system is secure if all data that have been deleted before

time T will be provably unrecoverable in polynomial time even

when the adversary is able to gain full control of servers before

T and full control of clients after T , assuming the existence of

a collision-resistant hash function such that it is polynomially

infeasible to find two hash inputs that produce the same output

or find a hash input to produce a specific output.

D. Scope of This Work

The scope of this work is solely about assured deletion. We

view the integrity issues in data storage and data access as

complementary problems that have been solved in [1], [2], [3],

[4], which can provide proof of data possession in the cloud

and allow the client to correctly access each data item. The

above schemes are originally designed for outsourcing data in

plaintext. It is trivial to make them work on encrypted data.

In addition, we are not concerned with other types of security

problems that the attackers may inflict. For example, if an

attacker compromises the cloud server and does not perform

the required operations, our solution can still protect the privacy

of successfully-deleted data, but it does not promise to guard

against other types of damage on accessibility and integrity

of client data that have not been deleted. In fact, once an

attacker has full control of the server, other than damaging

data accessibility by not following the required operations, it

may simply erase client data to make it inaccessible. Solutions

to such problems are beyond the scope of this paper.

Our design is suited for users that have large amounts of

outsourced data and yet look for light-weight client solution

(that may possibly be operated from mobile devices). For users

with limited data, there are simpler solutions such as ones

discussed below.

III. MOTIVATION

We first consider a single file, and delay multi-file multi-user

discussion to Section V. Below we analyze two simple two-

party solutions to give the motivation for our new approach of

key modulation. We use {m}k as the notation for encrypting

m with key k.

A. Master-key Solution

Consider an arbitrary client file of n data items, denoted as

{m1, m2, ..., mn}. The client selects a master key K. From

the master key, it derives a different data key ki = PRF (K, i)
for each item mi, where PRF is a pseudo random function.

The client encrypts each data item with its corresponding key,

{miH(mi)}ki
, i ∈ [1, n], where H is a collision-resistant hash

function. Given two different inputs, the hash outputs will

be different with practically-assured high probability. H(mi)
serves the purpose of integrity protection. After encryption,

the client stores the master key and sends all ciphertext to the

cloud.

The advantage of the above master-key solution is that the

client only needs to store one key. However, if the client

wants to delete a data item mj , it must delete the master

key K in order to delete kj . If K is not deleted and it

is revealed at a later time (possibly due to external attack

309

Figure 1. Key modulation

that compromises the client’s computer), kj can be recovered

through PRF (K, j). But the problem is that, if the master

key is changed, the keys for all other data items are changed,

too. Hence for each deletion, after choosing a new master

key K ′, the client has to re-generate all remaining data keys

PRF (K ′, i) and re-encrypt all remaining data items, with

O(n) communication/computation overhead.

B. Individual-key Solution

To address the above problem, the client may adopt a

different solution. It generates a sequence of n independent

keys, denoted as {k1, k2, ..., kn}, where ki is used to encrypt

mi, 1 ≤ i ≤ n. The client sends all encrypted data to the cloud

while keeping the keys by itself.

If the client wants to delete a data item mj , it finds

the corresponding key kj , deletes it permanently from local

storage, and sends the server a request to delete cj . Since

kj is known only by the client, deleting kj will make cj
undecryptable, regardless of whether the client removes cj
timely or not.

The advantage of the individual-key solution is that its

communication/computation overhead for deletion is O(1), but

its weakness is that the client may have to keep too many keys,

particularly when the size of each data item is comparable to

the key size — in this case, the total volume of keys rivals the

data itself, which would defeat the purpose of outsourcing.

C. Our Approach of Key Modulation

Can we design a new approach to avoid the problems of

the above solutions, while obtaining the benefits of both:

small client storage overhead and small deletion overhead? To

achieve the former, we let the client only keep a master key K.

On the one hand, all data keys must be derived from this master

key, and when any data key k is deleted, the master key K must

be deleted in order to make sure that k is not recoverable in the

future. On the other hand, even as the master key is changed to

a new value K ′, we want other data keys to stay the same, such

that the client does not have to re-encrypt all other data items

after one item is deleted. This requirement necessarily means

that the data keys are not determined solely by the master key

in the way that the previous solution of PRF (K, i) does.

Our idea is called key modulation, as illustrated in Figure 1.

The data keys are derived from the master key K and a

set M of values called modulators. More specifically, each

data key k is determined by K and a unique subset Mk of

modulators through a one-way function k = F (K,Mk). The

master key is stored at the client, while the modulators are

stored in the cloud, unencrypted. To delete k, the client will

permanently delete K and choose a new master key K ′. In

addition, it will adjust the values of O(log n) modulators in

M − Mk such that all other data keys k′ stay the same, i.e.,

k′ = F (K ′,M ′

k′) = F (K,Mk′), where Mk′ is the subset of

modulators for k′ before deletion and M ′

k′ is the same subset

after deletion (with one modulator having a new value).

For the deleted key k, since we do not change any modulator

in Mk, F (K,Mk) �= F (K ′,Mk). Therefore, even if the new

master key K ′ is compromised in the future, the deleted key

k = F (K,Mk) is not recoverable after K is permanently

deleted.

The challenge is to design a key modulation function F

such that after one data key is deleted and the master key

is changed, we can modify O(log n) modulators to keep the

remaining (n− 1) data keys unchanged.

IV. KEY MODULATION FUNCTION

The design of our key modulation function has three

components: (1) the formula of the function F (K,Mk), (2)

how to select the modulators Mk for each data key k, and

(3) which modulators to change and how to change for

each deletion. This section will present the design of these

components.

A. Modulated Hash Chain

We formulate the function F (K,Mk) as a modulated hash

chain. The classical hash chain has the following format [8]:

H(...H(H(H(K)))...).

We treat Mk as an ordered list of modulators, denoted as

〈x1, x2, ..., xl〉. A modulated hash chain is defined as follows:

F (K,Mk) = H(...H(H(K ⊗ x1)⊗ x2)...⊗ xl), (1)

where ⊗ is the XOR operator and H is a one-way, collision-

resistant hash function that produces pseudo-random output.

Let ∅ be an empty list and M
(i)
k , 0 ≤ i ≤ l, be a prefix of Mk,

containing the first i modulators in Mk. An equivalent recursive

definition of the modulated hash chain is given below:

F (K, ∅) = K;

F (K,M
(i)
k) = H(F (K,M

(i−1)
k)⊗ xi), ∀ 1 ≤ i ≤ l.

(2)

After a single modulator in Mk is changed from xi to x′

i,

we denote the resulting list as Mk|xi → x′

i.

Lemma 1: The output of a modulated hash chain F (K,Mk)
will stay the same after the master key is changed from K to

K ′ and the value of a single modulator xi, 1 ≤ i ≤ l, is

changed to

x′

i = xi ⊗ F (K,M
(i−1)
k)⊗ F (K ′,M

(i−1)
k). (3)

That is,

F (K,Mk) = F (K ′,Mk|xi → x′

i). (4)

The proof is straightforward and can be found in the

appendix.

310

B. Modulation Tree

We organize all modulators in a tree structure, based on

which we will determine a subset Mk for each data key k.

The hierarchical tree structure allows us to share modulators

among the data keys in such a way that we only need to modify

O(log n) modulators in order to keep (n− 1) keys unchanged

after deleting a data key.

Before outsourcing a file F of n data items to the cloud,

the client randomly picks a master key K and then builds

a modulation tree, which is a complete binary tree with

each internal node having two children and each leaf node

representing a data key. The client assigns each leaf node a

randomly-selected leaf modulator, and assigns each link in the

tree a link modulator, as illustrated in Figure 2. No modulator

is assigned to any internal node.

Each leaf node encodes a data key. For convenience, we

refer to the leaf that encodes key k as “node k”. Let P (k)
be the path from the root to node k. The client turns the link

modulators along the path and the leaf modulator at the end

of the path into an ordered list Mk, and computes a data key

k = F (K,Mk) by applying the modulated hash chain. Note

that the path P (k) is essentially a graphical representation of

the modulator list Mk, as illustrated in Figure 2 by the bold

lines.

Each data key k is used to encrypt a data item m in F . The

ciphertext is {m||r,H(m||r)}k, where r is a globally unique

number that is appended to m to make it unique. To generate r,

the client maintains a global counter whose value is increased

whenever the client inserts a new block to any file. In the

rest of the paper, we will simply treat m||r as m, knowing

that there are no identical data blocks after the appendix of r.

The ciphertext may be stored at the leaf node, and a double

linked list can be used to keep an order amongst the encrypted

data items. It may also be stored in a separate data structure,

and pointers are used to map between the leaf nodes and the

corresponding ciphertexts.

The client keeps the master key and sends the modulation

tree as well as all ciphertexts to the cloud. One requirement is

that all modulators in the tree should have different values. As

the modulators are randomly selected by the client, if the size

of modulators is large enough (such as 160 bits), the chance

of collision will be exceedingly small. However, if the client

ever selects a duplicate modulator during deletion/insertion,

as the tree is now in the cloud, the server should inform the

client to re-perform the operation with a different modulator.

If the server does not do so, there will be no harm to assured

deletion because the client will refuse to operate on duplicate

modulators from the server (see the proof of Theorem 2).

C. Modulator Adjustment Algorithm for Deletion

We describe a modulator adjustment algorithm that modifies

O(log n) modulators to keep all data keys except for the deleted

one unchanged after the client changes the master key. We also

prove the security of this algorithm that ensures the deleted date

key is unrecoverable even if the new master key is revealed in

the future.

Figure 2. A modulation tree, where each leaf node is assigned a leaf modulator
such as x5, and each link is assigned a link modulator such as x1 through x4.
The path P (k) from the root to the leaf node k is drawn in bold lines; it is a
graphical representation of Mk = 〈x1, x2, x3, x4, x5〉. The nodes in the cut
C are shaded. Mc = 〈x6〉 is a prefix of Mk′ for any leaf k′ in the sub-tree
rooted at c.

Suppose the client wants to delete a data item m,1 which

is identified by a record ID that is carried by m, the byte

offset in the file,2 or other means of indexing. The client sends

the cloud server a request, including the ciphertext of m and

indexing information (such as a record ID). The server finds

the encrypted item in its storage and the corresponding leaf

node k in the modulation tree. It constructs a sub-tree of size

O(log n), denoted as MT (k), consisting of nodes on the path

from the root to leaf k and the siblings of these nodes. The set

of siblings, denoted as C, serves as a (n−1)-cut that separates

all (n − 1) leaf nodes other than node k from the root, as

illustrated by Figure 2, where MT (k) consists of nodes with

cross inside and C consists of shaded nodes. The client expects

all modulators in MT (k) to have different values. Otherwise,

it will not accept MT (k) for further operation.

The server sends MT (k) to the client, including only

the modulators. The client extracts Mk from the path P (k),
computes k = F (K,Mk), and uses k to decrypt the ciphertext

into {mH(m)}. Only if the decryption is successful, i.e.,

the hash of m matches H(m) from the ciphertext, the client

accepts MT (k).
The client updates the master key from K to K ′, but it will

not change any link modulators in MT (k). Let P (c) to be

path from the root to a node c ∈ C, and Mc be the list of

link modulators along P (c). Note that Mc is a prefix of Mk′

for any data key k′ encoded by a leaf node within the sub-tree

rooted at c. See the circled sub-tree in Figure 2 for an example.

The client computes

δ(c) = F (K,Mc)⊗ F (K ′,Mc). (5)

The client sends {δ(c) | c ∈ C} back to the sever. For each

node c in the cut C, if it is an internal node, the sever adjusts

the modulators on its child links, (c, d) and (c, d′), as follows:

xc,d := xc,d ⊗ δ(c)

xc,d′ := xc,d′ ⊗ δ(c),
(6)

1Recall that we view the integrity issues in data storage and data access as
complementary problems that have been solved in [1], [2], [3], [4], which can
provide proof of data possession in the cloud and allow the client to correctly
access each data item.

2The server divides the byte offset by the item size to identify which data
item should be deleted. If variable item sizes are allowed, the size of each data
item is stored with the ciphertext, such that the cloud server may sequentially
scan the encrypted items and accumulate the sizes until the specified offset is
reached.

311

where “:=” is the assignment operator, xc,d is the link

modulator on (c, d), and xc,d′ is the link modulator on (c, d′).
If c is a leaf (i.e., the sibling of k), the server adjusts the leaf

modulator:

xc := xc ⊗ δ(c), (7)

where xc is the leaf modulator of node c.

We have the following theorems. Theorem 1 ensures the

correctness of our solution in not re-encrypting other data items

after the master key is changed. Theorem 2 ensures the security

of our solution in making the outsourced data unrecoverable

after deletion. Their proof can be found in the appendix.

Theorem 1: For an arbitrary leaf node k, after the master

key is changed and the modulator adjustment algorithm is

performed on MT (k), all data keys remain unchanged except

for the key k.

Theorem 2: Suppose the key modulation function F uses a

collision-resistant hashing function H . That is, it is polynomi-

ally infeasible to find two hashing inputs that produce the same

output or find a hash input to produce a specific output. For an

arbitrary leaf node k, after the master key is changed and the

modulator adjustment algorithm is performed on MT (k), the

data key k becomes unrecoverable in polynomial time even if

the new master key is revealed in the future.

We want to point out that the proof of Theorem 2 shows

that the server cannot temper with modulators to circumvent

the deletion. See the appendix for details.

The size of MT (k) sent from the server to the client is

O(log n). The size of {δ(c) | c ∈ C} sent from the client

to the server is also O(log n). Hence, the communication

complexity of the modulator adjustment algorithm is O(log n).
The computation overhead is dominated by the computation of

{δ(c) | c ∈ C}, which can be done in O(log n) time: Because

F (K,M
(i)
k) = H(F (K,M

(i−1)
k) ⊗ xi), we can recursively

compute F (K,M
(i)
k), 0 ≤ i ≤ l, in O(log n) time, where l is

the size of Mk, which is O(log n). Similarly, we can recursively

compute F (K ′,M
(i)
k), 0 ≤ i ≤ l, in O(log n) time. Any node

c in the cut C is the sibling of a node on P (k). That means Mc

has a prefix of M
(j)
k for some j ∈ [0, l), plus one extra link

modulator x∗. Hence, F (K,Mc) can be computed in O(1) time

from H(F (K,M
(j)
k)⊗ x∗). Similarly, F (K ′,Mc) can also be

computed in O(1) time. The size of C is O(log n). Overall, it

will take O(log n) time to compute {δ(c) | c ∈ C}, including

the time spent on F (K,M
(i)
k) and F (K ′,M

(i)
k), 0 ≤ i ≤ l.

D. Balancing Algorithm

In order to keep the worst-case performance at O(log n), we

want to restore the modulation tree back to a complete binary

tree after deletion. Let t be the last leaf node at the last level

of the modulation tree. See Figure 3. After we delete node k,

we will move t to the location of node k.

The server sends the client the path P (t) from the root to

node t, together with the sibling s of t. The client extracts Ms

from P (s), which is the same path as P (t) except for the last

link. Let p be the parent of s and t. The client extracts Mp

from P (p), which is the sub-path of P (s) without the last link.

The balancing algorithm has two steps:

Figure 3. Balancing the tree after k is deleted. The server sends the nodes
with cross inside to the client.

• Step 1: remove node t from the tree: The client computes a

new leaf modulator for node s as follows:

x′

s = F (K ′,Mp)⊗H(F (K,Mp)⊗ xp,s)⊗ xs, (8)

where xs is the original modulator for node s, and xp,s is the

link modulator on (p, s). The client sends x′

s to the server,

which removes node t from the tree, replaces parent p with

node s, and assigns x′

s as the new leaf modulator for node s.

Below we prove that the data key encoded by node s will stay

unchanged. The new key is computed from the modulators in

Mp and x′

s. Let “+” be the operator that concatenates two lists.

F (K ′,Mp + 〈x′

s〉)

= H(F (K ′,Mp)⊗ x′

s) by (2)

= H(F (K ′,Mp)⊗ F (K ′,Mp)⊗H(F (K,Mp)⊗ xp,s)⊗ xs)

= H(H(F (K,Mp)⊗ xp,s)⊗ xs)

= H(F (K,Mp + 〈xp,s〉)⊗ xs) by (2)

= F (K,Mp + 〈xp,s , xs〉) by (2)

= F (K,Ms),

where Ms is the original modulator list for s before removal

of t.

• Step 2: insert node t to the place of node k: This step is

performed only if node t is not node k. Let p′ be the parent of

node k in MT (k), and Mp′ be the list of modulators extracted

from P (p′). The client randomly selects a link modulator for

(p′, t). The client computes a new leaf modulator for node t

as follows:

x′

t = F (K,Mp + 〈xp,t〉)⊗ F (K ′,Mp′ + 〈xp′,t〉)⊗ xt, (9)

where xp,t is the link modulator on (p, t) when t is at its

original location. The client will send xp′,t and x′

t to the server.

Below we prove that the data key encoded by t remains the

same after it is moved to the new location.

F (K ′,Mp′ + 〈xp′,t , x′

t〉)

= H(F (K ′,Mp′ + 〈xp′,t〉)⊗ x′

t) by (2)

= H(F (K ′,Mp′ + 〈xp′,t〉)⊗ F (K,Mp + 〈xp,t〉)⊗

F (K ′,Mp′ + 〈xp′,t〉)⊗ xt)

= H(F (K,Mp + 〈xp,t〉)⊗ xt)

= F (K,Mp + 〈xp,t , xt〉) by (2),

where Mp + 〈xp,t, xt〉 is the list modulator for node t at its

original location.

312

Figure 4. Balancing a new key e to the tree. The shape of the original tree
does not have the dotted links and dotted nodes. The dotted links are created
after the insertion.

The communication complexity of the balancing algorithm

is O(log n), including P (t) of size O(log n) from the server

to the client and O(1) modulators from the client to the server.

Eq. (8) and (9) require O(log n) hashes. Hence, the time

complexity is also O(log n).

E. Access, Modification, and Insertion

Although the goal of this paper is to support assured deletion,

a practical system should also allow access, modification and

insertion of outsourced data. For the purpose of completeness,

we discuss these issues below.

To access a data item, the client makes a request to the server

with appropriate indexing information such as a record ID or

byte offset. The server identifies the encrypted item and the

corresponding leaf node k in the modulation tree.3 From the

path P (k), the server extracts a modulator list Mk. It sends

the ciphertext and Mk to the client, which computes a data

key k = F (K,Mk), and uses the key to decrypt the ciphertext

into mH(m). The client computes the hash of m and compares

with H(m) from the ciphertext. They will match only if the

key is correct.

To modify a data item, the client first fetches the item from

the server using the access procedure above. It modifies the

item, re-encrypts it using the same data key, and sends the

ciphertext back to the server.

To insert a data item m′, the client makes a request to the

server for inserting a new leaf in the modulation tree. Let t′ be

the location in the tree where the insertion happens. For a full

binary tree, the server sets t′ to be the first leaf node at the last

level; if there are leaves at the last two levels, the server sets t′

to be the first leaf at the second-to-last level. See Figure 4. The

server sends the client the path P (t′) from the root to node t′.

Let M−

t′ be Mt′ without the last modulator xt′ .

The client replaces node t′ with a new internal node p, and

sets t′ and a new leaf e as the children of p. It assigns random

modulators to leaf e and links (p, t′) and (p, e). It reassigns a

new leaf modulator to node t′ as follows:

x′

t′ = F (K,M−

t′)⊗ F (K,M−

t′ + 〈xp,t′〉)⊗ xt′ .

Following the same method as used in (IV-D), it can be

shown that the data key encoded by node t′ is unchanged with

the new leaf modulator (after the insertion of p). Next, the

client computes the data key encoded by the new leaf e, i.e.,

3Again we assume the correct return of requested item is enforced by another
branch of research [1], [2], [3], [4], which ensures integrity in data storage and
access.

F (K,M−

t′ + 〈xp,e , xe〉). It then uses the key to encrypt m′.

The client sends the following information to the server: the

encrypted new item, the modulators for (p, t′), (p, e), t′, and e,

as well as the location (such as byte offset) in the file where the

ciphertext should go. The server updates the modulation tree,

stores the ciphertext, and keeps the mapping between node e

and the ciphertext.

The communication/time complexity is O(log n) for access,

modification, and insertion.

V. MANAGING MASTER KEYS FOR LARGE FILE SYSTEMS

Even though only one master key is needed for each file,

the number of files in a large file system can be enormous,

which means the number of master keys to be maintained by

the client may still represent a problem. One solution is to

outsource both data keys and master keys to the cloud through

two levels of modulation trees. Each file has a master key and

a modulation tree. If we treat all master keys as the data items

of a meta file, we can introduce a so-called meta modulation

tree and use a higher-level control key as the master key of the

meta file. To access a file, the client will first use the control

key to access the meta modulation tree in order to retrieve the

master key for the file, and then use the master key to access

the modulation tree of that file. Deleting a master key from the

meta modulation tree will make the entire file unrecoverable.

Deleting a data item of a file involves two steps: first deleting

the data key from the modulation tree of the file, and then

modifying the master key of the file in the meta modulation

tree. Instead of storing just a single control key, the client may

also divide the master keys of all files into groups based on

the directory structure or file types, and use a separate control

key and a corresponding meta modulation tree for each group.

If a client has many users sharing the same file system, the

master keys (or control keys) may be stored in a shared local

secure storage for users to access. Alternatively, the client may

designate a local proxy server to manage these keys. When a

user wants to operate on data, its request is redirected to the

proxy, which will act on the user’s behalf to access or update

the data before forwarding the data to the user.

VI. EXPERIMENTAL RESULTS

We use experiments to evaluate the practicality of our

solution and compare it with other solutions in terms

of client storage overhead, communication overhead, and

computation overhead. The communication overhead consists

of all information that the client receives and sends for an

operation, but the overhead does not include the data item

itself if the operation is to access (fetch) a data item. The

computation overhead measures the time that the client spends

on a certain operation; note that most computation is done at

the client side in our solution (as well as in other solutions).

The end-to-end access delay is not measured because it is not

unique to our approach but a consequence of using remote

cloud storage.

A. Implementation

We implement cloud storage servers on Amazon EC2. Each

server instance has the following parameters: 2 virtual cores,

313

each with 2 Compute Units; 7.5 GB RAM; 850 GB instance

storage; Microsoft Windows Server 2008 R2 Base 64-bit. Note

that although Amazon S3 provides cloud storage services,

developers cannot directly run programs on Amazon S3. We

use an ordinary desktop computer in our lab for the client, with

the following configuration: Intel Core i7-3770 3.40 GHz, 8 GB

RAM, 1 TB driver, and Windows 8 Professional 64-bit.

We use Secure Hash Algorithm-1 (SHA-1) [9] in the

modulated hash chain. SHA-1 produces a 160-bit message

digest. Each modulator is also 160-bit long. We choose

Advanced Encryption Standard (AES) [10] to encrypt each

data item. AES has a key size of 128, 192, or 256 bits. In our

implementation, we use 128-bit keys, taken from the output of

the key modulation function.

Table I
COMPLEXITY COMPARISON, INCLUDING CLIENT STORAGE COMPLEXITY,

COMMUNICATION COMPLEXITY FOR DELETION, AND COMPUTATION

COMPLEXITY FOR DELETION, WHERE THE LATTER TWO ARE COMBINED IN

THE SAME ROW BECAUSE THEY HAVE THE SAME BIG-O VALUES.

�
�

�
�
�

�
�
�

�
��

complexities
solutions

master-key individual-key our work

client storage O(1) O(n) O(1)
communication/computation O(n) O(1) O(logn)

Table II
EXPERIMENTAL COMPARISON, INCLUDING CLIENT STORAGE OVERHEAD,

COMMUNICATION OVERHEAD FOR DELETION, AND COMPUTATION

OVERHEAD FOR DELETION.

�
�

�
�
�

�
�
�
�

overhead
solutions

master-key individual-key our work

client storage 16 Bytes 1.53 MB 16 Bytes

communication overhead 391 MB 0 1.61 KB

computation overhead 5.5 minutes almost 0 0.24 ms

B. Performance Comparison

We compare our two-party solution with the master-key

solution and the individual-key solution (Section III), which

do not require a third party, either. The difference between our

solution and those requiring third parties [5], [5], [7] is more

fundamental than performance alone, as we have discussed

their security problem under the threat model of this paper

in the introduction. Moreover, they use one key to protect

multiple files, and therefore do not support efficient fine-

grained deletion. If they are used to delete individual data

items, their performance will be similar to the master-key

solution, assuming each of their keys protects one file.

1) Complexity Comparison: Table I gives the complexity

comparison for one file of n data items. The master-

key solution has O(1) client storage complexity but O(n)
communication/computation complexities. The individual-key

solution has O(1) communication/computation complexities

but O(n) client storage complexity. In comparison, our

approach has both low client storage complexity of O(1) and

low communication/computation complexities of O(log n).

If we consider a file system of m files. The client storage

complexity of the master-key solution will be O(m), but that

of our solution will still be O(1).

2) Experimental Comparison: We further compare the dele-

tion overhead of the three solutions through real experiment.

The results are shown in Table II. Suppose the size of each data

item is 4KB (typical sector size of newer hard disks) and the

total number of data item is 105. The master-key solution and

our solution only need to store a master key of 16 bytes. But

the individual-key solution has to store 105 keys of 1.53MB

in total; note that 1.53MB is the storage overhead for one file

(in order to support fine-grained deletion), and the file system

may have numerous files.

The master-key solution has a communication overhead of

391MB and a computation overhead of 5.5 minutes in order

to retrieve and re-encrypt the entire file. In comparison, our

solution has a communication overhead of 1.61KB and a

computation overhead of just 0.24 ms.

C. Communication Overhead

Next, we validate the practicality of our modulation tree

by measuring the scalability of our solution in communication

overhead from small file size (10 data items) to large size (107

items). The results are presented in Figure 5, where the x-axis

shows the total number of data items in logarithmic scale, and

the y-axis shows the average communication overhead in KB.

To measure the communication overhead of deletion or access,

we perform the operation on each data item once and take the

average overhead. Insertion into the modulation tree always

happens at the same location in the tree, and averaging is not

necessary.

��

����

��

����

��

����

��

��
�

��
�

��
�

��
	

��
�

��

��
�

�

��
��
��
��
�
�
��
�

��
�
��
�
��
�
�
�

��������� ����!������"���#

$�������������"���
����##��������"���
%�#�����������"���

Figure 5. Communication overhead for deleting, inserting, or accessing a
data item. It includes all information that the client sends or receives for an
operation.

The communication overhead for deletion is modest even for

very large files of 107 items, and the overhead for access or

insertion is much lower. Clearly, all measured communication

overheads increase logarithmically with respect to the number

of data items, demonstrating good scalability.

D. Computation Overhead

We further validate the practicality of our modulation tree

by measuring the scalability of our solution in computation

overhead from small file size (10 data items) to large size

(107 items). The results are presented in Figure 6, where the

x-axis shows the number of data items in logarithmic scale,

and the y-axis shows the average client computational time

in ms. The computation overhead for deletion is small, under

0.3ms for very large files of 107 items. The overhead for access

314

and insertion is again much smaller. All measured computation

overheads increase logarithmically with respect to the number

of data items.

��

�����

����

�����

����

�����

����

�����

���	

���	�

����

��
�

��
�

��
�

��
	

��
�

��

��
�

�

��
��
��
��
�
&
��
�

��
�
��
�
��
�
#�

��������� ����!������"���#

$�������������"���
����##��������"���
%�#�����������"���

Figure 6. Client computation overhead for deleting, accessing, or inserting a
data item.

E. Whole File Access Overhead

It is a common operation for a client to fetch a whole

file from a remote file system. With our solution, the client

will take the extra steps of fetching the entire modulation

tree and computing all data keys from the tree, which causes

communication/computation overhead. Fetching the file itself

and decrypting the file are normal, necessary expenses that

have to be taken in any encrypted cloud-based file system, and

therefore do not count as overhead due to the design of our

solution.

We define the communication overhead ratio as the

communication overhead divided by the size of the file, and

the computation overhead ratio as the time of computing

all data keys from the modulation tree divided by the time

of decrypting the file. The size of each data item is 4KB.

The experimental results are shown in Table III. Both the

communication overhead ratio and the computation overhead

ratio are largely insensitive to the file size. The former is less

than 1%, and the latter is less than 0.3%.

Table III
WHOLE FILE ACCESS OVERHEAD

no. of data items comm. ratio comp. ratio

10 0.0093 0.0004

102 0.0097 0.0024

103 0.0098 0.0025

104 0.0098 0.0025

105 0.0098 0.0027

106 0.0098 0.0027

107 0.0098 0.0027

VII. RELATED WORK

Most related is Tang’s policy-based system named FADE

[7], which is designed for assured file deletion in a cloud

storage system. Their approach is to associate each policy with

a control key maintained by a third party, and use the control

key to protect the data keys that encrypt files assigned with

that policy. Deleting a control key will make all files with the

corresponding policy inaccessible. The key service from the

third party is needed by all data operations. If the third party

is compromised, deletion will no longer be secure. Rahumed

et al. design a system called FadeVersion [11], which combines

policy-based deletion with version control.

Perlman proposes the first solution for timed deletion, where

all messages to be expired at the same future time will be

protected by the same key stored at a third party called the

Ephemerizer [5]. The goal is to ensure the privacy of past

messages transferred between two parties, such as emails or

SMS. As these messages may be cached on the servers, one

may want the assurance that they will be inaccessible after

an expiration time. Together with followup work [12], [5],

[13], [14], [15], they form the so-called Ephemerizer family

of solutions. All Ephemerizer solutions require third parties to

provide the key service for all data operations.

Instead of relying on centralized third parties to manage the

keys, Geambasu et al. design a decentralized approach called

Vanish [16], where the sender first encrypts its message and

then distributes key shares [17] to nodes through a distributed

hash table (DHT) [18]. The DHT evolves dynamically with new

nodes joining and old nodes departing from a P2P network, and

the message will become inaccessible if enough key shares are

removed. The sender encapsulates the ciphertext of the message

and necessary information for locating key shares into a Vanish

Data Object (V DO) and sends the V DO to the receiver for

data access. Vanish is vulnerable to Sybil attacks [19]. Zeng

et al. propose SafeVanish [20] and Castelluccia et al. design

EphPub [21] to fix the security problems of Vanish.

Vanish and its followups were originally designed to ensure

the privacy of past messages transferred between two parties.

Some of its properties make it unsuitable for a cloud system:

First, it protects data that only need to be available for hours or

days, such as emails, SMSs, trash bin files, etc. Data in a cloud

system may stay for months, years, or permanently. Second,

Vanish assumes users know approximately the lifetime of their

data, but that may not be the case in a cloud system. Third,

Vanish is designed for data whose privacy is more important

than accessibility. That is, users may not be able to access their

data before the specified timeout in Vanish, which will not be

generally acceptable to users of a cloud system.

Also related is the work on secure local deletion such as

[22]. The proposed solution shares superficial similarity with

key revocation in broadcast encryption such as [23], where

a revoked user cannot decrypt future messages but is not

prevented from decrypting past messages.

VIII. CONCLUSION

This paper presents a two-party fine-grained solution for

protecting the privacy of deleted data that has previously been

outsourced by clients to the cloud. The main challenge is how

to avoid burdening clients with a large number of keys, yet

allowing them to perform deletion on any data item in any

file without causing significant overhead. Our solution is based

on a novel key modulation function which is derived from

modulated hash chains and a modulation tree. We prove its

correctness and security, and implement it on the Amazon

EC2 system. The evaluation results show that it carries small

overhead for remote deletion, insertion and file access. The

proposed solution, to the best of our knowledge, is the first

315

two-party scheme that protects the confidentiality of the “dead”

(deleted) data in a cloud system.

IX. ACKNOWLEDGEMENTS

This work was supported in part by Cisco Systems, the US

National Science Foundation under grant CNS-1115548, and

the National Natural Science Foundation of China under grant

61170277.

REFERENCES

[1] H. Shacham and B. Waters, “Compact Proofs of Retrievability,”
Proc. of ASIACRYPT, 2008.

[2] C. Erway, A. Küpçü, C. Papamanthou, and R. Tamassia,
“Dynamic Provable Data Possession,” Proc. of CCS, 2009.

[3] Q. Wang, C. Wang, J. Li, K. Ren, and W. Lou, “Enabling Public
Verifiability and Data Dynamics for Storage Security in Cloud
Computing,” Proc. of ESORICS, 2009.

[4] G. Ateniese, R. Burns, R. Curtmola, J. Herring, L. Kissner,
Z. Peterson, and D. Song, “Provable Data Possession at
Untrusted Stores,” Proc. of CCS, 2007.

[5] R. Perlman, “File System Design with Assured Delete,” Proc.
of SISW, 2005.

[6] ——, “The Ephemerizer: Making Data Disappear,” Information
System Security, 2005.

[7] Y. Tang, P. Lee, J. Lui, and R. Perlman, “FADE: Secure
Overlay Cloud Storage with File Assured Deletion,” Proc. of
SecureComm, 2010.

[8] L. Lamport, “Password Authentication with Insecure Communi-
cation,” Communications of the ACM, 1981.

[9] J. Burrows, “Secure Hash Standard,” Tech. Rep., 1995.

[10] J. Daemen and V. Rijmen, “The Design of Rijndael: AES–the
Advanced Encryption Standard,” Springer-Verlag, ISBN 3-540-
42580-2, New York, 2002.

[11] A. Rahumed, H. Chen, Y. Tang, P. Lee, and J. Lui, “A Secure
Cloud Backup System with Assured Deletion and Version
Control,” Proc. of ICPPW, 2011.

[12] B. Crispo, M. Dashti, S. Nair, and A. Tanenbaum, “A Hybrid
PKI-IBC Based Ephemerizer System,” Proc. of EuroPKI, 2009.

[13] C. Arora and M. Turuani, “Validating Integrity for the Ephemer-
izers Protocol with CL-Atse,” Formal to Practical Security,
2009.

[14] Q. Tang, “From Ephemerizer to Timed-Ephemerizer: Achieve
Assured Lifecycle Enforcement for Sensitive Data,” Technical
Report TR-CTIT-10-01, 2010.

[15] C. Arora and M. Turuani, “Adding Integrity to the Ephemerizer’s
Protocol,” Proc. of AVoCS, 2006.

[16] R. Geambasu, T. Kohno, A. Levy, and H. Levy, “Vanish:
Increasing Data Privacy with Self-destructing Data,” Proc. of
USENIX, 2009.

[17] A. Shamir, “How to share a secret,” Communications of the
ACM, 1979.

[18] I. Stoica, R. Morris, D. Karger, M. Kaashoek, and H. Balakrish-
nan, “Chord: A scalable Peer-to-peer Lookup Service for Internet
Applications,” Proc. of SIGCOMM, 2001.

[19] S. Wolchok, O. Hofmann, N. Heninger, E. Felten, J. Halderman,
C. Rossbach, B. Waters, and E. Witchel, “Defeating Vanish with
Low-cost Sybil Attacks against Large DHTs,” Proc. of NDSS,
2010.

[20] L. Zeng, Z. Shi, S. Xu, and D. Feng, “SafeVanish: An Improved
Data Self-Destruction for Protecting Data Privacy,” Proc. of
CloudCom, 2010.

[21] C. Castelluccia, E. D. Cristofaro, A. Francillon, and M. Kaafar,
“EphPub: Toward Robust Ephemeral Publishing,” Proc. of ICNP,
2011.

[22] J. Reardon, S. Capkun, and D. Basin, “Efficient Secure Deletion
for Flash Memory,” Proc. of USENIX Security Symposium, 2012.

[23] A. Fiat and M. Naor, “Broadcast Encryption,” Proc. of CRYPTO,
1993.

APPENDIX. PROOFS

Proof of LEMMA 1: Let S
(l−i)
k , 0 ≤ i ≤ l, be a suffix of

Mk, containing the last l − i modulators in Mk. In (1), if we

treat H(K ⊗ x1) as the new key, it becomes

F (K,Mk) = F (H(K ⊗ x1), S
(l−1)
k). (10)

Next we prove by induction that

F (K,Mk) = F (F (K,M
(i)
k), S

(l−i)
k), 0 ≤ i ≤ l. (11)

(11) holds when i = 0 because M
(0)
k = ∅, S

(l)
k = Mk, and

F (K, ∅) = K by definition (2). The inductive assumption is

that (11) holds for a certain value i. We prove the case of i+1
as follows:

F (F (K,M
(i+1)
k), S

(l−i−1)
k)

= F (H(F (K,M
(i)
k)⊗ xi+1), S

(l−i−1)
k) by (2)

= F (F (K,M
(i)
k), S

(l−i)
k) by (10)

= F (K,Mk) by inductive assumption

Now according to (11), we have

F (K,Mk) = F (F (K,M
(i)
k), Sl−i

k),

F (K ′,Mk|xi → x′

i) = F (F (K ′,M
(i)
k |xi → x′

i), S
l−i
k).

Hence, in order to prove (4), it suffices to prove

F (K,M
(i)
k) = F (K ′,M

(i)
k |xi → x′

i).

By (2), we have F (K,M
(i)
k) = H(F (K,M

(i−1)
k)⊗ xi), and

F (K ′,M
(i)
k |xi → x′

i)

= H(F (K ′,M
(i−1)
k)⊗ x′

i)

= H(F (K ′,M
(i−1)
k)⊗ xi ⊗ F (K,M

(i−1)
k)⊗ F (K ′,M

(i−1)
k))

= H(F (K,M
(i−1)
k)⊗ xi) = F (K,M

(i)
k).

This completes the proof. �

Proof of THEOREM 1: Consider an arbitrary leaf node k′

(other than k). The path P (k′) from the root to node k′ must

316

pass a node c in the cut C. Node c divides P (k′) into a sub-

path from the root to c and a sub-path from c to leaf k′, which

correspond to a prefix Mc of the modulator list Mk′ and a

suffix, respectively. Hence, Mc = M
(i−1)
k′ for a certain value

of i, where 1 < i ≤ l and l is the number of modulators in Mk′ .

The suffix, denoted as S
(l−i+1)
k′ , contains the last (l − i + 1)

modulators in Mk′ , including the leaf modulator of node k′.

Hence, Eq. (5) can rewritten as

δ(c) = F (K,M
(i−1)
k′)⊗ F (K ′,M

(i−1)
k′). (12)

When the server receives δ(c), it performs either (6), which

updates the modulator on the child link belonging to P (k′), or

(7), which updates the leaf modulator if c is a leaf node. In

either case, the updated modulator belongs to Mk′ , and it is

right after the prefix M
(i−1)
k′ . Hence, it is also denoted as xi.

Based on (6), (7) and (12), the new value of this modulator is

x′

i = xi ⊗ F (K,M
(i−1)
k′)⊗ F (K ′,M

(i−1)
k′).

No other modulator in Mk′ has been changed. By Lemma 1,

we have

F (K,Mk′) = F (K ′,Mk′ |xi → x′

i).

The data key k′ remains unchanged. �

Proof of THEOREM 2: There are two cases: i) the server

sends correct MT (k) to the client, and ii) the server sends in-

correct MT (k). According to the threat model in Section II-C,

we assume that an attacker may have compromised the server

before deletion, allowing it to send incorrect information to the

client, and that the attacker may also compromise the server

after deletion, allowing it to learn the new master key T ′ (but

not the old one T). Let l be the size of Mk.

Case i): The modulator adjustment algorithm does not

change any modulator in MT (k). Since the path P (k) from

the root to node k is entirely in MT (k), the algorithm does not

change any modulator in Mk, which is extracted from P (k).
We prove F (K,Mk) �= F (K ′,Mk) w.h.p by contradiction.

Suppose F (K,Mk) = F (K ′,Mk). By (2) we have

H(F (K,M
(l−1)
k)⊗ xl) = H(F (K ′,M

(l−1)
k)⊗ xl),

which means F (K,M
(l−1)
k) = F (K ′,M

(l−1)
k) w.h.p; other-

wise, we would have found two different hash inputs that

produce the same output. Recursively applying the same token,

we have F (K,M
(1)
k) = F (K ′,M

(1)
k), which is H(K ⊗

x1) = H(K ′ ⊗ x1). We have found two different inputs,

K ⊗ x1 and K ′ ⊗ x1, producing the same hash output,

contradicting with the theorem assumption. Therefore, it must

be true that F (K,Mk) �= F (K ′,Mk) w.h.p. Note that even

if F (K,Mk) = F (K ′,Mk) occurs in practice (whatever low

probability it is), the client can simply pick a different K ′ such

that F (K,Mk) �= F (K ′,Mk).
Because F (K,Mk) �= F (K ′,Mk), knowing K ′ will not

help an attacker figure out k = F (K,Mk) after K is

permanently deleted and thus unknown. This is because if the

attacker had a polynomial way to hash K ′ and some modulators

into key k, it would break the assumption that it is polynomially

infeasible to find a hash input for a specific output.

Figure 7. MT ∗(k) consists of nodes with cross inside. It contains P (k)
shown by bold lines and C shown by shaded nodes.

Case ii): Suppose an attacker controls the sever to send

incorrect MT (k). To begin with, the server can send MT (k′)
for a different leaf node k′, and try to trick the client into

deleting k′, while keeping other keys (including k) unchanged

under a new master key K ′. After K ′ is revealed, the

attacker would be able to recover k. However, according to

the modulator adjustment algorithm, after the client receives

MT (k′), it computes the data key k′ = F (K,Mk′), which

will not be able to correctly decrypt the ciphertext {mH(m)}k.

Consequently, the client will reject MT (k′). Let MT ∗(k)
be what the client actually receives. To avoid being rejected,

MT ∗(k) must contain the correct path P (k) from the root to

the leaf, carrying correct Mk to produce the correct key k in

order to correctly decrypt {mH(m)}k.

Since MT ∗(k) consists of P (k) and the cut C, if P (k)
must be correct, it will leave C the only place that the server

can manipulate. As illustrated in Figure 7, the server can

replace the modulators on the path P (k̂) to a different leaf

node k̂ with those of Mk. By doing so, the key encoded by

node k̂ becomes the same as the key by node k. After k is

deleted, if the key encoded by node k̂ is kept unchanged,

the deleted key is recoverable. In general, no matter how the

server changes the modulators outside of P (k), as long as

F (K,Mk) = F (K,M
k̂
), we must have Mk = M

k̂
because

otherwise we would have two different sets of hash inputs that

produce the same output.

Suppose path P (k̂) intersects with path P (k) at node p. See

Figure 7. Let a be the child node of p on path P (k), and c

be the child node on path P (k̂). Node c is a sibling of node

a, and thus it belongs to the cut C. It follows that both link

(p, a) and link (p, c) belong to MT ∗(k). Because Mk = M
k̂
,

the modulators on these two links must be the same, which

violates the requirement that all modulators should be different,

and hence the client will reject MT ∗(k).
Combining the above two cases, if the server sends correct

MT (k), the deleted key k will be unrecoverable; if the server

sends incorrect MT (k) to make k recoverable, the client will

reject the received MT ∗(k), which prevents the modulator

adjustment algorithm from being executed. Hence, the theorem

is proved. �

317

