
Exact Modeling of Propagation for
Permutation-Scanning Worms

Parbati Kumar Manna Shigang Chen Sanjay Ranka
Department of Computer & Information Science & Engineering, University of Florida

{pkmanna, sgchen, ranka}@cise.ufl.edu

Abstract—Modeling worm propagation has been an important
research subject in the Internet-worm research community. An
accurate analytical propagation model allows us to study the
spreading speed and traffic pattern of a worm under an arbitrary
set of worm/network parameters, which is often computationally
too intensive for simulations. More importantly, it gives us
an insight into the impact of each worm/network parameter
on the propagation of the worm and the effectiveness of a
potential defense mechanism that is designed to control some of
those parameters. Traditionally, most modeling work in the area
concentrates on the relatively simple random-scanning worms.
However, worm technologies have advanced rapidly in recent
years. By enabling close coordination among all infected hosts,
the permutation-scanning worms minimize the duplication of
effort when scanning the whole Internet address space. They
propagate much faster, and more importantly, can be much
more stealthy than the random-scanning worms. Modeling these
worms, however, remains a challenge to date. This paper proposes
a mathematical model that precisely characterizes the propaga-
tion patterns of the permutation-scanning worms. The analytical
framework captures the interactions among all infected hosts by
a series of inter-dependent differential equations, which together
present the overall behavior of the worm. We use simulations to
verify the numerical results from the model, and demonstrate
how the model can be used to study the impact of various
worm/network parameters on the propagation.

I. INTRODUCTION

Computer worms interest the security analysts immensely
due to their ability to infect millions of computers in a very
short period of time [1]. In recent years, both sophistication
and damage potential of worms have increased tremendously.
In order to counter the threat [2], [3], [4], we need to look into
both their content (for signatures) and propagation pattern (for
Internet-scale behavior). The propagation characteristics of a
worm shows what kind of network traffic would be generated
by that worm and how fast must the response time be to
counter it. Therefore, in order to understand (and possibly
counter) the damage potential of worms, it is very important
to characterize their overall propagation properties.

Although modeling worm propagation has been an active
research area [5], [6], [7], [8], [9], one might question the
practical importance of such work if it is possible to obtain

We would like to thank the anonymous reviewers for their suggestions that
helped improve the paper. This work is supported in part by the National
Science Foundation under Grant ITR 0325459 and NSF Grant number
0312038 (under a subcontract from FIU) and Cisco University Research
Award (to Shigang Chen in 2007). Any opinions, findings, and conclusions or
recommendations expressed in this material are those of the authors and do
not necessarily reflect the views of the National Science Foundation or Cisco.

fairly good approximation of the worm’s propagation char-
acteristics by running a simulator for a sufficient number of
times and taking the average. However, there are reasons why
simulations may not always be able to produce the intended
results. First, it often takes a long time to simulate a single run
of worm propagation for one set of worm/network parameters
(16 hours in our case on a Intel Xeon 2.80GHz processor for
400M hosts that are estimated to be in today’s IPv4 space).
To learn the average behavior, many such runs need to be
performed, and the whole simulation process has to be redone
for any parameter change, e.g. for a different population size
of vulnerable hosts or a different scanning speed of infected
hosts. Second, the simulation overhead can be prohibitively
high in some cases. Suppose we want to simulate a worm
that exploits a commonly used Windows service on today’s
Internet. It means that the vulnerable population size could be
in the order of several hundred millions as Windows machines
dominate the Internet. If there are 300M such computers,
they will entail 300M records in the simulation, one for each
vulnerable host. Even if each record is one integer (keeping
its address alone), it will require a memory of 1.2 GB. Now,
if we want to study the effect of migration from IPv4 to IPv6
on worms, a full-scale simulation of scanning the address
space of size 2128 will be computationally infeasible for a
modest PC. In comparison, numerical computation based on
a mathematical model takes little time to produce the detailed
propagation curves. Third, simulation results themselves do
not always give the mathematical insight that a formal model
does. One may guess upon the impact of various parameters
on worm propagation based on extensive simulations (which
may take enormous time), but such guesses can never be as
accurate and comprehensive as an analytical model, which tells
exactly why and by how much a parameter change will affect
the outcome.

Traditionally, most modeling work [7], [8] concentrates on
the relatively simple random-scanning worms, which scan the
Internet either randomly or with bias towards local addresses
in order to reach all the vulnerable hosts. This strategy
leaves a large footprint on the Internet (which reveals the
worm’s presence), and different infected hosts may end up
scanning the same address repeatedly. In recent years, worm
technologies have advanced rapidly to address these problems.
By enabling close coordination among all infected hosts, the
permutation-scanning worms (introduced in the seminal paper
[8] by Staniford et al.) minimize the duplication of effort when

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

978-1-4244-2026-1/08/$25.00 © 2008 IEEE 2369

scanning the Internet through a divide-and-conquer approach.
There, each active infected host is responsible for scanning a
subset of all addresses, and this subset may vary over time.
Such a cooperation strategy empowers the worm with the
ability to propagate either much faster, or alternatively, much
stealthier (if the infected hosts scan at lower rates). Warhol
worms, which are similar to permutation-scanning worms with
larger hitlists, have been shown to be able to infect the whole
of the Internet in a matter of minutes [8]. However, modeling
these potent worms has remained a challenge to date.

In this paper, we propose a mathematical model that
precisely characterizes the propagation patterns of the
permutation-scanning worms. The analytical framework cap-
tures the interactions among all the infected hosts by a series of
inter-dependent differential equations, which together present
the overall behavior of the worm. We use simulations to verify
the numerical results from the model, and show how the model
can be used to assess the impact of various worm/network
parameters on the propagation.

The rest of this paper is organized as follows. Section II
describes the permutation-scanning worms. Section III intro-
duces several important concepts underlying our mathematical
model. Sections IV and V present the exact propagation
models for the basic permutation-scanning worm and its
general extension, respectively. Section VI shows the effects of
different worm/network parameters on the worm propagation.
Section VII draws the conclusion.

II. ANATOMY OF A PERMUTATION-SCANNING WORM

In this section, we explain how the permutation-scanning
worms work. We first describe the divide-and-conquer nature
of the permutation-scanning worms. We then discuss the
reason for address permutation and the stealth potential of
such worms, and conclude with the use of hitlists.

A. Divide-and-Conquer

To reduce the duplication of effort, the infected hosts may
collaborate in dividing the IPv4 address ring into disjoint sec-
tions, each of which will be scanned by one host. Each initially
infected host begins from its own location on the address ring
and sequentially scans the addresses clockwise along the ring.
Whenever it infects a host, it continues scanning the addresses
after that host, while the newly infected host chooses a random
location on the ring and starts to sequentially scan addresses
clockwise after that location. When an active host h1 hits an
already infected host h2, it knows that addresses after h2 must
have been scanned earlier by another active host that infected
h2, or by h2 itself in case h2 was one of the originally infected
hosts to start with. In either case, h1 jumps to a randomly
location on the ring and starts to scan addresses clockwise
after that location. An active host retires (stops scanning) after
hitting a certain number of already-infected hosts.

An alternative to the above random-jump approach is to
assign each infected host a section of the address ring for
scanning. As a host sequentially scans its section, when it
infects another host, it assigns half of its remaining unscanned

address section to the latter and adjusts its own section bound-
ary accordingly. When a host reaches the end of its section,
it retires. The problem with this approach is that it is not
fault-tolerant. If one infected host is blocked out or somehow
crashes, its remaining section will not be scanned. Random
jumps (as mentioned above) help solving this problem. This
paper will focus on random-jump worms only.

B. Permutation

While the above divide-and-conquer method maintains a
much smaller network footprint by minimizing duplication of
scanning, it has a serious weakness. Since the IP addresses
scanned by an infected host are contiguous, it is susceptible
to be identified by address-scan detectors or other IDSs that
look for worms performing local subnet scanning. To counter
this, Staniford et al [8] showed that a worm can permute the IP
address space into a virtual one (called the permutation ring)
through encryption with a key. The divide-and-conquer method
is then applied on this permutation ring. While each infected
host still goes through contiguous addresses on the permuta-
tion ring, it actually scans the IP addresses that the permuted
addresses are decrypted to, which cannot be easily picked
up by address-scan detectors because those IP addresses are
pseudo-random and distributed all over the Internet.

C. Stealth

Fast propagation and stealth are two conflicting goals that
the worm designers strive to balance. To spread fast, infected
hosts should scan at high rates, which however makes them
easier to be detected [3], [4], [1]. To be stealthy, they have
to act as normal as possible, scanning the Internet at a
controlled low rate, which is a worm parameter that can be
set before release. A stealthy worm can be more harmful. A
fast worm generates headline news, such as Slammer [1] that
caused widespread network congestion across Asia, Europe
and Americas. Such a worm is more likely to be detected
quickly and attract defense resources to react fast for its
elimination. A stealthy worm propagates slower but may stay
undetected for a long time, potentially doing more harm.

D. Hitlist

The initial part of worm propagation is most time-
consuming, as only a few infected hosts perform scanning in
a vast address space. Once the number of infected reaches a
critical mass, the rate of new infections goes up drastically.
To improve the initial scanning speed of a stealthy worm, one
can use a hitlist as proposed in [8], which is a pre-compiled
list of target addresses that are very likely to be vulnerable,
e.g., a list of hosts with port 80 open for a worm targeting at a
certain type of web servers. During the hitlist-infection phase,
the very first infected host starts scanning the IP addresses in
the hitlist, and whenever it can infect one, it gives away half of
the remaining hitlist to the newly infected host so that together
they can infect all the hosts in the original hitlist quicker. This
process repeats, and as a result, if v out of the S addresses
in the hitlist turn out to be actually vulnerable hosts, all those

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2370

X (not)
X (not),
but covers
no area

Y (Ineffective)
(part of X,

Vulnerable
 hosts

 Y

X merges to another X, retires

merges
 wtith X,
 retires

X

New
 (no tail)

 Newly
 infected host
 jumps to a
random location

Uninfected

Infected

time
tail

but no tail)

tail

tail

tail

unchanged

tail for the
merged
scanzoneX (not)

tail

retires

tail

X (not)

X (not),
now covers
some area

covered
area

X = Effective
 = Nascent
Y = Ineffective

Fig. 1. Depiction of scanzones for a 0-jump worm at two time points. Scanzones of active hosts are depicted as arcs on the permutation ring. Uninfected
and infected vulnerable hosts are depicted as white and dark dots on the permutation ring, respectively.

 Nascent ()
(no tail, covers no area)
 0 infection

 Non-nascent (x but non-)
(has tail, may or may not cover any area)

Infected (i)

Active (a)

 Ineffecctive (y)
(can hit only old infections)

 Effecctive (x)
 (can hit both old/new infections)

Uninfected (u)

Retired (s)

Vulnerable Host

 1 infection
(covers no area)

 >1 infections
(covers some area)

Fig. 2. The classification of the vulnerable hosts for a permutation-
scanning worm

i: infected
(transitory)

 u: vulnerable
but not infected

s: retired

 x: infected
and effective y: infected

but ineffective
: nascent

ineffective
effective

oldold

a: active

gets
 hit

new

Fig. 3. State Diagram of a 0-jump worm. Here, “new” or “old”
indicates the event of a new or old infection. Similarly, “ineffective” or
“effective” indicates whether the newly spawned host, after the random
jump, lands in an area that is already “covered” or not.

hosts will get infected in O(S
vr log2 v) time, where r is the

scanning rate. Even for a modestly big hitlist, this time is
miniscule compared to the time it will take to infect the rest
of the vulnerable hosts outside the hitlist. To illustrate with
an example, suppose there are about 1M vulnerable hosts in
IPv4 and a worm starts with a hitlist of S = 10K hosts, with
approximately v = 5K of them actually being vulnerable. If
the scanning rate r is 1000 scans/sec, then the time taken to
infect the initial 5K hosts in the hitlist would be approximately
0.025 second, which can arguably be ignored compared to the
time the worm will take to infect the rest of the vulnerable
hosts in the Internet. Thus, to keep the model simple, if the
hitlist contains v vulnerable hosts, we assume that all v of
them are infected at the beginning (time t=0).

III. SCANZONE AND SCANNING EFFICIENCY

In this section, we introduce the concept of scanzone, and
then show how we can analyze an infected host’s efficiency
(ability to potentially generate new infection) from its scan-
zone. We conclude with a formal classification of the infected
hosts based on their efficiency.

A. Terminology

We begin by defining the basic terminology used in this
paper. We classify infected hosts into two categories: (1) active
infected hosts, which are actively scanning for vulnerable
hosts, and (2) retired infected hosts, which have stopped
scanning. When the context makes it clear, we omit “infected”
from the above terms. The rest of the terms are defined as
follows:

Jump:When an infected host chooses a random location
on the permutation ring to begin its sequential scan
along the ring, we say that the host jumps.

Old Infection: When an active host hits a vulnerable host
h that was infected previously, we denote the event
(as well as host h) as an old infection.

New Infection: When an active host hits a vulnerable host
h that was not previously infected, we denote the
event (as well as host h) as a new infection.

k-Jump Worm: A permutation-scanning worm is called a
k-jump worm if an active host, upon hitting an old
infection, jumps to a new location on the permutation

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2371

ring to resume scanning, but it will retire when
hitting its (k+1)th old infection. When a vulnerable
host not in the hitlist becomes a new infection, it
jumps to a random location on the ring to begin
its scan. Subsequently this host can make k other
jumps after hitting old infections on the ring. For a
vulnerable host in the hitlist, it begins scanning from
its own location and then it can make k jumps.

0-Jump Worm: A permutation-scanning worm is called a
0-jump worm if an active host retires upon hitting its
very first old infection. It is a special case of k-jump
worm with k=0. A vulnerable host not in the hitlist
can make one jump when it becomes a new infection
itself, but subsequently when it hits an old infection,
it will retire immediately.

B. Scanzone of an Active Infected Host

As an active infected host h scans the addresses along
the permutation ring, it leaves behind a contiguous section
of scanned addresses. This contiguous section, called the
scanzone of host h, contains the addresses that h has scanned
since its last jump or time 0 if h has not jumped yet; it may
contain more addresses if scanzone merge happens, which will
be discussed shortly. Together the scanzones of all active hosts
cover all addresses scanned so far. The address of each infected
host belongs to a scanzone because it is a scanned address.
The front end of a scanzone is the address that is currently
being scanned by h; the back end refers to the address at the
other end of the scanzone. Evidently all vulnerable hosts in a
scanzone must have been infected. Among all infected hosts
in a scanzone, the one that is closest to the back end is called
the tail of the scanzone, and the one that is closest to the
front end is called the head of the scanzone. The portion of
a scanzone between the tail and the head is referred to as the
covered area (portrayed as in Figure 1) of the scanzone.
A scanzone may not have a tail (or head) if the active infected
host has not hit any vulnerable host since its last jump, and
it will have zero covered area if it does not have at least two
infected hosts in it.

As h scans more and more addresses, the front end advances
to expand the scanzone. But when h hits an old infection hold

(which must belong to the scanzone of some active infected
host h1), h surrenders its scanzone by merging it to h1’s
scanzone. Then h jumps to a random location to create its
new scanzone afresh, or retires if hold is the (k+1)th old
infection that it hits. Therefore, the back end of a scanzone
may also change if the front end of another scanzone catches
up its tail and causes a merge. Merges create larger scanzones.
Eventually, all scanzones will be merged into one when all
active hosts retire. We recall that only active hosts have
scanzones (uninfected or retired hosts do not). We must stress
that an infected host does not need to know its scanzone; it is
an abstract concept used in our mathematical modeling only.
The scanzones are shown as arcs on the permutation ring in
Figure 1, which also illustrates other concepts to be defined
in this section.

C. Classification of Vulnerable Hosts

In our model, we define classes u, i, a, s, x, y, α for
vulnerable hosts that are uninfected, infected, active, retired,
effective, ineffective, and nascent, respectively, and we de-
liberately make the above class notations the same as the
corresponding variables in our later propagation model for the
sizes of these classes.

We classify the active hosts into subcategories by judging
each active host’s effectiveness of scanning, which is the ability
of generating new infections before hitting an old one (note
that every active host will eventually hit an old infection). The
classification of active infected hosts is given below (Figure 2
showing the complete classification tree):

• Ineffective (class y): An active infected host is consid-
ered ineffective if it is impossible for the host to generate
any new infection in future before hitting an old one.
An active host that jumps into a covered area to begin
its scanning is evidently ineffective since its first hit will
always be an old infection.

• Effective (class x): An active infected host is considered
effective if it can potentially generate a new infection in
future before it hits an old one. When an infected host
jumps to a point outside of all covered areas and starts
scanning from that point on, it can potentially generate
new infections. Thus, it is called effective, and is branded
as class x. This class is further subdivided as follows:

– Nascent (class α): Those effective hosts that are
yet to infect any vulnerable host in their current
scanzone (thus have no tail) are termed as nascent
(class α). An active host becomes nascent after it
takes a jump and lands outside covered area, since
after the jump it starts with a fresh scanzone.

– Non-Nascent Effective (non-α class x): Once a
nascent host hits a new infection, it becomes a non-
nascent effective host; and the host it just infected
becomes the tail of its scanzone. Also, each of
the initially infected hosts starts as a non-nascent
effective host because its scanzone has a tail from
the very beginning (the active host itself).

We observe that every infected host in the address space
belongs to the scanzone of a non-nascent effective host. This
statement is true at the beginning as each of the initially
infected hosts belongs to its own scanzone. Later, when a
non-nascent effective host h1 infects some host hnew, hnew

becomes part of h1’s scanzone. When h1 retires by hitting hold

(tail of another non-nascent effective host h2’s scanzone), h1’s
scanzone merges with h2’s scanzone and the infections in h1’s
scanzone now become part of h2’s scanzone. Continuing this
way, every infected host remains part of the scanzone of a non-
nascent effective host until the last active host retires. It must
be noted that we did not need to consider the retirement or
transitions of nascent or ineffective hosts since their scanzones
do not contain any infected hosts.

Figure 3 gives the class transition diagram for a 0-jump
worm. A vulnerable host becomes infected when it is scanned

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2372

by another infected host. When it jumps, it may be either
effective or ineffective (if it jumps to a covered area). An
effective host begins as a nascent one and becomes non-
nascent once it infects another host. An active host retires upon
hitting an old infection. Figure 1 also provides illustration for
transitions among different classes.

In the following two sections, we will first model the 0-jump
worms and then model the general k-jump worms.

IV. MODELING THE PROPAGATION OF 0-JUMP WORMS

In this section, we derive a series of differential equations
that together form the propagation model of 0-jump worms.
We extend it for k-jump worms in the next section.

A. Important Quantities in Modeling

The propagation model of a worm reflects the fractions
of vulnerable hosts that are infected, active and retired over
time. A scan message that does not hit any vulnerable host
does not change these numbers. Thus, it is evident that the
modeling needs to be based on the event of a scan message
hitting a vulnerable host only. When that event happens, all the
aforesaid numbers change; we derive the model by analyzing
the precise amounts by which they change. To model a 0-
jump worm mathematically, we must be able to compute the
following quantities:
Q1: Between time t and t+dt (for an infinitesimally small

dt), how many vulnerable hosts is an active host ex-
pected to hit by its scan messages?

Q2: When an effective host hits a vulnerable host h, what
is the probability that h is an old infection, and what is
the probability that h is a new infection? Note that an
ineffective host never hits a new infection.

Q3: After a newly infected host jumps, what is the proba-
bility for it to be ineffective and what is the probability
for it to be effective?

B. Determing the Quantities Using Probabilistic Approach

Let N be the size of the address space, V the total number
of the vulnerable hosts, r the scanning rate and v the number
of the vulnerable hosts in the hitlist of a permutation worm.

We use u(t), i(t), a(t), s(t), x(t), y(t) and α(t) to denote
the fractions of vulnerable host population that are uninfected,
infected, active, retired, effective, ineffective and nascent at
time t, respectively. From Figure 2, it is easy to see that u(t)+
i(t) = 1, i(t) = a(t) + s(t), and a(t) = x(t) + y(t).

Answer for Q1: Let fhit be the number of vulnerable hosts
that an active host is expected to hit during a period of dt
after time t. Since vulnerable hosts are uniformly distributed
in the permuted address space due to randomization of the
permutation process, every address on the permutation ring
has a probability of V

N to be a vulnerable host. An active
host scans r× dt addresses during dt period. Hence, we have
fhit = r × dt× V

N . Note that the vulnerable hosts that are hit
may include both new and old infections.

Answer for Q2: When an effective host hits a vulnerable
host, let fnew(t) (fold(t)) denote the probability for the

vulnerable host to be a new (old) infection. We observe that
an effective host can hit only two types of vulnerable hosts:
1) those that are uninfected, and 2) infected ones that are
the tails of scanzones for non-α effective hosts. Recall that
scanzones of nascent or ineffective hosts do not have tails.
At time t, there are V (1 − i(t)) uninfected vulnerable hosts
(possible new infections) and V (x(t) − α(t)) tails (possible
old infections). Hence, the chance for hitting a new infection is
fnew(t) = V (1−i(t))

V (1−i(t))+V (x(t)−α(t)) = (1−i(t))
(1−i(t))+(x(t)−α(t)) , and

fold(t) = 1 − fnew = (x(t)−α(t))
(1−i(t))+(x(t)−α(t)) .

Answer for Q3: After a newly infected host jumps to a ran-
dom location to begin its scanning, let fineff(t) (feff(t))
be the probability for the host to be ineffective (effective). As
a host becomes ineffective when it jumps into a covered area,
fineff (t) must be equal to the fraction of the permutation ring
that all covered areas together represent. Because vulnerable
hosts are distributed randomly on the ring, it must also be
equal to the fraction of vulnerable hosts that are located in the
covered areas, excluding tails because, if we use the number
of vulnerable hosts in a covered area to represent its length
(in a statistical sense), we cannot count both head and tail
that delimits the two ends of the area. All infected hosts,
V i(t) of them, are located in the covered areas, and there
are V (x(t) − α(t)) tails (single-infection scanzones can be
thought of each having a covered area of length 0) Therefore,
fineff (t) = V i(t)−V (x(t)−α(t))

V , and feff (t) = 1 − fineff (t).

C. Propagation Model

We now derive how i(t), a(t), s(t), x(t), y(t) and α(t)
change over time t. Below we compute the amounts, di(t),
da(t), ds(t), dx(t), dy(t) and dα(t), by which they change
respectively over an infinitesimally small dt after time t.
This will give us a set of differential equations that together
characterize the propagation of 0-jump worms.

• di(t): It is the number of new infections over dt. Only
effective (class x) hosts can hit new infections. The
number of vulnerable hosts hit by effective hosts over dt
is x(t) fhit, and each of them has a probability of fnew(t)
to be a new infection. Hence di(t) = x(t) fhit fnew(t) .

• dx(t): Each of the x(t)fhitfnew(t)V new infections
has a probability of feff (t) to be effective. This adds
x(t)fhitfnew(t)V feff (t) new effective hosts after dt. On
the other hand, effective hosts hit x(t) fhit fold(t)V
old infections during dt, each causing an effective host
(that hits the old infection) to retire. Combining the
above two numbers and representing the gross change
in fraction, we have dx(t) = x(t) fhit fnew(t) feff (t)−
x(t) fhit fold(t).

• dα(t): Each nascent host (which is effective by defin-
tion) is no longer nascent once it hits any vulnerable host.
Each of its r × dt scan messages has a V

N probabil-
ity of hitting a vulnerable host. Hence, the probability
for a nascent host to become non-nascent over dt is
r×dt× V

N = fhit because, as dt approaches to zero, the

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2373

joint probabilities for two or more hits is negligible. This
reduces the number of nascent hosts by α(t)V fhit. On the
other hand, since all new effective hosts created during dt
start as nascent, we have x(t)V fhit fnew(t) feff (t) new
nascent hosts. Combining these two numbers and repre-
senting the gross change in fraction, we have dα(t) =
x(t) fhit fnew(t) feff (t) − α(t) fhit.

• dy(t): Recall that whenever a host jumps into a covered
area, it becomes ineffective. For a 0-jump worm, only
the newly infected hosts make a jump and thus only
they may increase y(t). There are x(t)V fhitfnew(t) new
infections, and each has a probability of fineff (t) to
become ineffective. On the other hand, when an existing
ineffective host hits a vulnerable host, it retires since inef-
fective hosts can hit old infections only. Combining these
two factors and representing the gross change in fraction,
we have dy(t) = x(t)fhitfnew(t)fineff (t) − y(t)fhit.

• ds(t): Whenever an effective host hits an old infection,
or an ineffective host hits any vulnerable host (which
must be an old infection), it retires. Within time dt, there
are x(t)V fhitfold(t) + y(t)V fhit newly retired hosts,
and thus ds(t) = x(t)fhitfold(t) + y(t)fhit.

Combining, we get the following equations:

fhit = r × dt × V

N

fold(t) =
x(t) − α(t)

1 − i(t) + x(t) − α(t)

fnew(t) =
1 − i(t)

1 − i(t) + x(t) − α(t)
= 1 − fold(t)

fineff (t) = i(t) − (x(t) − α(t))
feff (t) = 1 − i(t) + x(t) − α(t) = 1 − fineff (t)

di(t) = x(t) fhit fnew(t)
dx(t) = x(t) fhit fnew(t) feff (t) − x(t) fhit fold(t)
dα(t) = x(t) fhit fnew(t) feff (t) − α(t) fhit

dy(t) = x(t) fhit fnew(t) fineff (t) − y(t) fhit

ds(t) = x(t) fhit fold(t) + y(t)fhit

da(t) = dx(t) + dy(t)

Finally, we add the incremental figures like i(t+dt) = i(t)+
di(t), x(t+dt) = x(t)+dx(t) etc. The boundary conditions for
the set of equations above are: i(0) = a(0) = x(0) = φ = v

V ,
and α(0) = s(0) = y(0) = 0, where φ is the number of
vulnerable hosts in the hitlist (v) as a fraction of V .

D. Verification of Our Model

To generate the propagation graphs (G1) from our model,
we solve the differential equations numerically for i(t) (in-
fected), a(t)(active) and s(t)(retired) for increasing values of
t using the boundary conditions defined earlier. To verify
this result, this output needs to be matched with the actual
propagation curves (G2) of a permutation-scanning worm.
Due to unavailability of a full-scale real-life propagation data,

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n

Time tick

Infection Patterns for a 0-Jump Worm (Simulated Vs. Model)

Infected

Retired

Active

Simulation Infected
Simulation Active
Simulation Retired

Model Infected
Model Active
Model Retired

Fig. 4. Juxtaposition of propagation patterns of a 0-jump worm in simulation
vs. according to the analytical model. We use N = 223, V = 213, v = 100
and scan rate r = 1 scan per time tick. The curves from the model and the
curves from the simulation appear to be nearly indistinguishable.

we code a worm simulator that mimics the behavior of a
permutation-scanning worm on a permutation ring to generate
G2. Our simulator implements full network connectivity with
all scan packets taking equal time to reach their target host.
We run this simulator on an Intel P4 2.4 GHz processor over
one thousand rounds and take the average. For every round, a
different seed is used to initialize the pseudo-random number
generator responsible for calculating the target address while
taking a random jump. We verify our model by comparing G1

and G2 for different sets the worm/network parameters (N , V ,
v and r) and observe near-complete overlaps in all cases. The
comparison results for one such set is shown in Figure 4.

V. EXTENDING THE MODEL TO k-JUMP WORMS

In this section, we demonstrate the flexibility of our analyt-
ical model by extending it to the k-jump worm. Modeling the
propagation for a k-jump worm is important as it leads to a
better understanding of the Warhol worm, which can infect the
whole of Internet in a matter of minutes [8]. Warhol worms
are similar to a permutation-scanning k-jump worm with a big
hitlist and possibly with a larger value of k.

A. Difference Between 0-Jump Worm and k-Jump Worm

We begin with noting a subtle distinction in the nomencla-
ture for k-jump worm compared to its 0-jump predecessor. In
the 0-jump model, at time t none of the a(t) active hosts have
hit any old infection. However, for a k-jump worm, at time t
any active host (class x, α and y) could have hit anywhere
between 0 to k old infections. Therefore, while the terms
x(t), α(t) and y(t) continue to denote the total fraction of
vulnerable hosts that are effective (class x), nascent (class
α) and ineffective (class y) at time t for a k-jump worm,
each of those classes is further subdivided into k+1 subclasses
depending on how many old infections they have already hit
(between 0 and k). For example, class x is subdivided into
classes x0, x1, x2 . . . xk−1, xk such that x(t) =

∑k
j=0 xj(t),

and similar notations are used for class α and y. For the ease of
reference, the active hosts having already hit j old infections

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2374

i: infected
(transitory)

 u: vulnerable
but not infected

s: retired

y1

y00

1

2

x0

x1

x2 2

Effective Ineffective

Active

gets
 hit

old

old

old

old

old old

old

old

ineff

ineff

ineff

ineff

eff

eff

eff

eff

y

layer 0

layer 1

layer 2

new

new

new

Fig. 5. State Diagram of a k-jump worm with k=2. The layer number
indicates the number of old infections hit by that host till that time. Once the
host hits its k+1th (in this case 3rd) old infection, it retires immediately.

are referred to as j-layer hosts. For example, the total number
of nascent hosts that have hit 2 old infections till time t
are denoted by α2(t). We observe that for calculating the
probabilistic figures fold(t), fnew(t), feff (t) and fineff (t),
this subdivision is immaterial since the only thing that matters
for their calculation is how many infected, effective and
nascent hosts are there in total at time t. So, the equations
for deriving those figures remain unchanged.

B. Interaction among Scanning Hosts at Different Layers

The state diagram of the k-jump worm (for k=2) is depicted
in Figure 5. The transitions between different classes in
different layers are explained by the following observations:

• An active infected host never changes its layer by hitting a
new infection. This is because the layer of a host indicates
how many old infections the active host has hit till that
time, and hitting a new infection does not change that.
However, when it hits an old infection, it takes a jump,
moves to the next layer and becomes either nascent or
ineffective depending on whether it jumps into a covered
area or not. However, if it was already at the k-layer,
then it retires after hitting its (k+1)th old infection.

• Active hosts from any layer can hit a new infection.
Therefore, for calculating change in x0(t), α0(t) and
y0(t), we must consider the new infections caused by
effective worms from all the k+1 layers.

• For any layer other than the 0-layer, the incremental
changes are caused by active hosts from the previous
and the current layer only. The number of hosts in a
layer increases when hosts in the previous layer hit old
infections and move up to the current layer. Similarly, it
decreases when hosts in current layer hit old infections
and transition into the next layer. Therefore, all the
computations for j-layer hosts (where j ≥ 1) involve
figures from layer j and layer j−1 only.

C. The Final Model of Propagation

Here we lay down the equations that model the propagation
pattern for the k–jump worm. For the purpose of brevity, all
the symbols used are function of time t; except fhit, V and
N , which are independent of time. For example, fnew denotes
fnew(t), dαj denotes dαj(t) and so on. We do not rewrite
the equations for fold(t), fnew(t), feff (t) and fineff (t) since
they are the same as in the model for 0-jump worm.
∀j = 0 . . . k, we have

dxj =

if j = 0, xfhit fnew feff − xj fhit fold ;
if j > 0, xj−1fhit fold feff − xj fhit fold

+ yj−1 fhit feff ;

dαj =

if j = 0, xfhit fnew feff − αj fhit ;
if j > 0, xj−1fhit fold feff − αj fhit

+ yj−1 fhit feff ;

dyj =

if j = 0, xfhit fnew fineff − yj fhit ;
if j > 0, xj−1fhit fold fineff − yj fhit

+ yj−1fhit fineff ;

Finally, we define the other incremental figures:
dx =

∑k
j=0 dxj(t); dy =

∑k
j=0 dyj(t); dα =

∑k
j=0 dαj(t);

di = x fhit fnew; da = dx + dy; ds = xkfhit fold + ykfhit;
We do not mention the rest of the equations like xj(t+dt)

= xj(t) + dxj(t), s(t + dt) = s(t) + ds(t) etc. to maintain
conciseness. The boundary conditions at time t = 0 are:

i(0) = a(0) = x(0) = x0(0) = φ = v
V . All the other counts

(s, x1 . . . xk, α, α0 . . . αk, y, y0 . . . yk etc.) are zero at t=0.

D. Verification of the Correctness of the Model

We compare the result of the numerical model with actual
worm simulation for different values of k in Figure 6 using
the same experimental setup as described in Section IV-D. In
all the cases, the model and the simulation overlap to yield
nearly identical propagation graphs.

VI. USAGE OF THE ANALYTICAL MODEL

In this section, we first describe the benefits of having an
analytical model compared to running a simulator. Then, we
analyze our model to see what kind of effects does each
worm/network parameter (network size, vulnerable population
size etc.) have on the propagation curves.

A. Analytical Modeling or Simulation?

Proper simulation of the Internet is very difficult due to
its scale, heterogeneity and dynamics [10]. Even for a rather
simplified version of the Internet, without an analytical model
one would need to take the average of multiple runs of
a simulator in order to get acceptably reliable propagation
curves. And since each run could potentially take a long
time for big values of N and V , the whole process could
take an enormous amount of time. In our experimental setup,
it took 16 hours on a Intel Xeon 2.8 GHz processor with
4GB of RAM to run a single run of a simulation of 400M
vulnerable hosts (as in Internet today) on IPv4 for one set of
worm/network parameters. In order to run the same simulation
for IPv6 (N = 2128), it is easy to see that the runtime would be

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2375

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n

Time tick

Infection Patterns for a 1-Jump Worm

Infected

Retired

Active

Simulation Infected
Simulation Active
Simulation Retired

Model Infected
Model Active
Model Retired

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n

Time tick

Infection Patterns for a 2-Jump Worm

Infected

Retired

Active

Simulation Infected
Simulation Active
Simulation Retired

Model Infected
Model Active
Model Retired

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n

Time tick

Infection Patterns for a 4-Jump Worm

Infected

Retired

Active Simulation Infected
Simulation Active
Simulation Retired

Model Infected
Model Active
Model Retired

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000 20000 25000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n

Time tick

Infection Patterns for a 8-Jump Worm

Infected

Retired

Active

Sim. Infected
Sim. Active
Sim. Retired

Model Infected
Model Active
Model Retired

Fig. 6. Juxtaposition of the propagation patterns of different k-jump worms (for k = 1, 2, 4 and 8) obtained via simulation vs. obtained by the analytical
model for address space size N = 223, vulnerable host population size V = 213, scanning rate r = 1 scan per time tick and the hitlist containing v = 100
vulnerable hosts. In all the cases, the propagation patterns overlap completely.

astronomical. On the other hand, a single run of the numerical
simulation of the analytical model, which takes just seconds
to run, gives us the correct results. Moreover, the effect of
increasing the worm/network parameters (like N and V) on
runtime is insignificant for a numerical solver compared to the
effect it has on an actual worm simulator. While arguments
can be made for doing a scaled-down simulation and then
simply scaling up the results, such simulations are often not
fully accurate and suffer from stochastic fluctuations and other
problems [5]. Moreover, such simulations cannot predict with
confidence what precise effect each worm/network parameter
will have on the overall outcome, and for what reason. On
the other hand, an analytical model can tell exactly why and
by how much would a parameter affect the outcome, to the
extent of predicting whether a scaled-down simulation would
preserve the propagation characteristics or not.

B. Effects of Worm/Network Parameters on Propagation

Here we analyze the exact effect of each worm/network
parameters on the propagation.

• Effect of Address Space Size (N): The only term that is
directly affected by N is fhit = r×dt× V

N . Since all the
incremental terms (like dx(t)) are direct multiples of fhit,
the growth rates of all the curves (infected, active and
retired) are inversely proportional to N . Therefore, if the
size of the network is increased p times while keeping all

other parameters constant, time to reach every milestone
in the original graph will also increase p-fold exactly.
This is why transition to IPv6 is important.

• Effect of Vulnerable Host Population Size (V): The
only terms that are affected by V are fhit = r×dt× V

N ,
and φ= v

V (in the boundary condition). Thus, a p-fold
increase of V results in a p-fold reduction in propagation
time, as long as the hitlist is also increased p-fold. If the
hitlist size remains the same, then an increased V implies
decreased φ, which means lower rate of infection initially.
However, the increased probability of getting a hit (V

N)
more than compensates the initial deficit. Thus, a bigger
vulnerable population means faster infection.

• Effect of Hitlist Size (v): The effect of changing v has
already been discussed in conjunction with V . However,
the effect of changing v for a fixed N and V is more
important as it is completely under the control of the
worm-author. As shown by our analytical model, a higher
v causes the origin in the propagation graph to shift
to the right, which implies faster infection. Moreover, a
larger hitlist can shorten the initial slow-infection period
significantly. In our experiments with a 0-jump worm
using 1% of V as the hitlist, it takes the same amount of
time to reach from 50% infection level to 67% as from
1% to 2%. Thus, one can achieve a considerable gain in

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2376

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n
In

fe
ct

ed

Time tick

Comparison of Infection curves for different k-jump worms

k=8 k=0

0-jump worm
1-jump worm
2-jump worm
4-jump worm
8-jump worm

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 2000 4000 6000 8000 10000 12000 14000

%
 V

ul
ne

ra
bl

e
H

os
t P

op
ul

at
io

n
A

ct
iv

e

Time tick

Comparison of Total Scanning Volumes for different k-jump worms

k=0

k=1 k=2
k=4

k=8

Fig. 7. Comparison of infection speed and total scanning volume for various k-jump worms for N=223, V =213, v=100, and scanning rate r=1 scan per
time tick. The scanning volume is defined as the area under the active curve. The infection speed increases with k, but for increasingly higher value of k, the
rate of increase diminishes. On the other hand, the scanning volume increases significantly with increasing k.

the infection time just by increasing the hitlist size.
• Effect of Scanning Rate (r): The only term that is

affected by r is fhit = r × dt × V
N . Since all the

incremental terms on the equation (like dx(t), dα(t) etc.)
are direct multiples of fhit, the infection time is inversely
proportional to the scanning rate. Thus, if the scanning
rate is doubled, the infection time will be halved.

• Effect of Varying k for a k-Jump Worm: Figure
7 shows that increasing value of k helps to achieve
faster infection. However, beyond a certain value of k
(8 in this case), the incremental gain is negligible. On
the other hand, with higher values of k, the onset of
retirement for active hosts happens at increasingly later
time. In fact, for k=8 in our experimental setup, almost
all the infected hosts are active when we achieve nearly
full infection, which implies a big network footprint.
Therefore, it makes little sense to compromise stealth by
deploying a k-worm with a very high value of k.

VII. LIMITATION, EXTENSION AND CONCLUSION

In this paper, we have successfully modeled the propa-
gation characteristics of the permutation-scanning worm, a
worm with a very high damage potential. In order to design
this model, we have introduced the concept of scanzones,
which is a completely novel way to understand the scanning
dynamics of sequentially-scanning worms. By extending our
model to different varieties of permutation-scanning worms,
we have shown that our model is quite flexible and holds
promise for modeling even other kinds of worms. We have
compared the results from our model with those obtained
from actual worm simulations (Figures 4 and 6), and found
the propagation curves to be completely overlapping. This is
perfectly understandable, because when a worm permutes the
real IP space, every existing structure of the network (like
clusters) gets destroyed except the node density (V

N) and as
a result, the permutation ring gets a uniform distribution of
vulnerable hosts. Since the permutation-scanning worm scans
on, and jumps to random locations on this ring, its behavior
is completely probabilistic and can be fully analyzed. In fact,

we expect nothing less than a near-perfect match (with the
simulation results) for any model that captures the worm’s
behavior accurately, as we achieve in this paper.

Our analytical model (and also the worm simulator that we
use to verify it) assumes full network connectivity, no delays
and no host failures. However, we believe that this model
should be effective in modeling most real world worms that are
scanning at a very low rate to avoid detection even when such
conditions do not always hold true. In our future work, we
hope to extend our model to take practical constraints (like
congestion, delay etc.) into account so that we can model
worms with high scanning rate more effectively.

REFERENCES

[1] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniford, and
N. Weaver, “Inside the Slammer Worm,” In Proc. of IEEE Security and
Privacy, vol. 1, no. 4, pp. 33–39, July 2003.

[2] S. Chen and Y. Tang, “Slowing Down Internet Worms,” Proc. of 24th In-
ternational Conference on Distributed Computing Systems (ICDCS’04),
March 2004.

[3] X. Qin, D. Dagon, G. Gu, and a Lee, “Worm Detection Using Local
Networks,” Proc. of 20th Annual Computer Security Applications Conf.
(ACSAC 2004), 2004.

[4] S. Schechter, J. Jung, and A. W. Berger, “Fast Detection of Scanning
Worm Infections,” Proc. of Seventh International Symposium on Recent
Advances in Intrusion Detection, September 2004.

[5] N. Weaver, I. Hamadeh, G. Kesidis, and V. Paxson, “Preliminary
Results Using Scale-Down to Explore Worm Dynamics,” Proc. of ACM
Workshop on Rapid Malcode (WORM), March 2004.

[6] Z. Chen, L. Gao, and K. Kwiat, “Modeling the Spread of Active
Worms,” Proc. of IEEE INFOCOM’03, March 2003. [Online].
Available: citeseer.ist.psu.edu/chen03modeling.html

[7] C. C. Zou, W. Gong, and D. Towsley, “Code Red Worm Propagation
Modeling and Analysis,” Proc. of 9th ACM Conference on Computer
and Communication Security, pp. 138–147, November 2002. [Online].
Available: citeseer.ist.psu.edu/zou02code.html

[8] S. Staniford, V. Paxson, and N. Weaver, “How to 0wn the Internet in
Your Spare Time,” In Proc. of the 11th USENIX Security Symposium,
August 2002.

[9] J. O. Kephart and S. R. White, “Directed-Graph Epidemiological Models
of Computer Viruses,” Proc. of 1991 IEEE Symposium on Security and
Privacy, May 1991.

[10] S. Floyd and V. Paxson, “Difficulties in Simulating the Internet,”
IEEE/ACM Transactions on Networking, vol. 9, no. 4, pp. 392–403,
2001.

This full text paper was peer reviewed at the direction of IEEE Communications Society subject matter experts for publication in the IEEE INFOCOM 2008 proceedings.

2377

