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Generalized Energy-Efficient Algorithms for the
RFID Estimation Problem

Tao Li, Samuel S. Wu, Shigang Chen, and Mark C. K. Yang

Abstract—Radio frequency identification (RFID) has been
gaining popularity for inventory control, object tracking, and
supply-chain management in warehouses, retail stores, hospitals,
etc. Periodically and automatically estimating the number of RFID
tags deployed in a large area has many important applications
in inventory management and theft detection. Prior works focus
on designing time-efficient algorithms that can estimate tens of
thousands of tags in seconds. We observe that for an RFID reader
to access tags in a large area, active tags are likely to be used due
to their longer operational ranges. These tags are battery-powered
and use their own energy for information transmission. However,
recharging batteries for tens of thousands of tags is laborious.
Hence, conserving energy for active tags becomes critical. Some
prior works have studied how to reduce energy expenditure of
an RFID reader when it reads tag IDs. We study how to reduce
the amount of energy consumed by active tags during the process
of estimating the number of tags in a system. We design two en-
ergy-efficient probabilistic estimation algorithms that iteratively
refine a control parameter to optimize the information carried in
transmissions from tags, such that both the number and the size
of transmissions are reduced. These algorithms can also take time
efficiency into consideration. By tuning a contention probability
parameter , the new algorithms can make tradeoff between
energy cost and estimation time.

Index Terms— Radio frequency identification (RFID) tags.

I. INTRODUCTION

R ADIO frequency identification (RFID) technology has
been widely used in various commercial applications,

including inventory control, object tracking, and supply-chain
management. RFID tags (each storing a unique ID) are attached
to merchandizes at retail stores, equipment at hospitals, or
goods at warehouses, allowing an authenticated RFID reader
to quickly access properties of each individual item or collect
statistical information about a large group of items.
This paper focuses on an RFID-enabled function that is very

useful in inventory management. Imagine a large warehouse
with thousands of laptops, cell phones, electronics, apparel,
bags, or furniture pieces. A national retail survey showed that
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administration error, vendor fraud and employee theft caused
about 20 billion dollars lost a year [1]. Hence, it is desirable
to have a quick way of counting the number of items in the
warehouse or in each section of the warehouse. To timely detect
theft or management errors, such counting may be performed
frequently.
If each item is attached with an RFID tag, the counting

problem can be solved by an RFID reader that receives the
IDs transmitted (or backscattered) from the tags [2]. However,
reading the actual tag IDs can be time-consuming because
so many of them have to be delivered in the same low-rate
channel, and collisions caused by simultaneous transmis-
sions by different tags make the matter worse. To address
this problem, Kodialam and Nandagopal [3], [4] showed that
reading time can be greatly reduced through probabilistic
methods that estimate the number of tags with an accuracy
that can be arbitrarily set. This is called the RFID estimation
problem. The follow-up work by Qian et al. [5] significantly
reduces estimation time when compared to [3]. It can be shown
that even for applications that require reading the actual tag
IDs, estimating the number of tags as a preprocessing step will
help make the main procedure of reading tag IDs much more
efficient [3]. Another advantage of estimating the number of
tags without reading the IDs is that it ensures anonymity of
the tags, which may be useful in privacy-sensitive scenarios
involving RFID-enhanced passports or driver’s licences, where
counting the number of people present is needed but revealing
their identities is not necessary.
Is time efficiency the only performance metric for the estima-

tion problem in large-scale RFID systems that use active tags?
We argue that energy cost is also an important issue that must be
carefully dealt with. For any application that requires an RFID
reader to access tags in a large area, it is likely that battery-pow-
ered active tags will be used. Passive tags harvest energy from
radio signal of a reader and use such a minute amount of energy
to deliver information back to the reader. Their typical reading
range is only several meters, which does not fit well with the
big warehouse scenario. Active tags use their own power to
transmit. A longer reading range can be achieved by transmit-
ting at higher power. They are also richer in resources for imple-
menting advanced functions. Their price becomes less of a con-
cern if they are used for expensive merchandise or reused many
times as goods moving in and out of the warehouse. However,
active tags also have a problem. They are powered by batteries.
Recharging batteries for tens of thousands of tags is a laborious
operation, considering that tagged products may be stacked up,
making tags not easily accessible. To prolong the lifetime of tags
and reduce the frequency of battery recharge, all functions that
involve large-scale transmission by many tags should be made
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energy-efficient. Prior works focus on energy-efficient anti-col-
lision protocols that minimize energy consumption of a mobile
reader [6], [7] when the reader collects tag IDs. To the best of
our knowledge, this paper is the first to study energy-efficient
solutions for the estimation problem in large-scale RFID sys-
tems that use active tags.
Our paper has four major contributions. First, we observe that

there exists an asymmetry in energy cost. Solving the RFID esti-
mation problem incurs energy cost both at the RFID reader and
at active tags. The asymmetry is that energy cost at tags should
be minimized while energy cost at the reader is relatively less of
a concern because the reader’s battery can be replaced easily or
it may be powered by an external source. To exploit this asym-
metry, our new algorithms follow a common framework that
trades more energy cost at the reader for less cost at the tags. The
reader will continuously refine and broadcast a control param-
eter called contention probability, which optimizes the amount
of information the reader can extract from transmissions by tags.
This in turn reduces the number of transmissions by tags that are
necessary to achieve a certain estimation accuracy.
Second, the design of our estimation algorithms is based

on the maximum likelihood estimation method (MLE) that
is different from the probabilistic counting methods [8] used
by [3], [4]. Our estimation algorithms optimize their perfor-
mance by iteratively applying MLE with continuously refined
parameters. These new algorithms not only require fewer
transmissions by tags, but also minimize the size of each trans-
mission. The number of transmissions made by tags in our best
algorithm is less than one fourth achieved by the state-of-the-art
algorithms. In terms of the total number of bits transmitted by
tags, it is more than an order of magnitude smaller.
Third, we formally analyze the confidence intervals of esti-

mations made by our new algorithms and establish the termina-
tion conditions for any given accuracy requirement.We perform
extensive simulations to demonstrate that the measured results
match well with the analytical results and that the new algo-
rithms perform far better in terms of energy saving than the best
existing algorithms.
Fourth, our algorithms are generalized with a tunable param-

eter , specifying the contention probability that tags use to
decide whether they will transmit. By modifying this param-
eter, the generalized algorithms can make a tradeoff between
energy cost and estimation time (i.e., the time it takes to com-
plete the process of estimating the number of tags). Even though
our main goal is to reduce energy cost, the ability for perfor-
mance tradeoff makes our algorithms more adaptable in prac-
tical settings that are sensitive not only to energy cost but also
to estimation time.
The rest of this paper is organized as follows. Section II

discusses the related work. Section III defines the problem to be
solved and the system model. Sections IV and V propose two
energy-efficient algorithms for the RFID estimation problem.
Section VI evaluates the algorithms through simulations.
Section VII draws the conclusion.

II. RELATED WORK

Most existing work focuses on how to efficiently read the
tag IDs. Collision occurs when multiple tags transmit their IDs

in the same time-slot. Collision arbitration protocols mainly
fall into two categories: the framed ALOHA-based proto-
cols [7], [9]–[11] and the tree-based protocols [6], [12]–[15].
In the former category, each polling request carries a frame
length, and every tag individually chooses a slot in the frame to
transmit its ID. The process repeats until all tags successfully
transmit their IDs to the RFID reader. In the latter category,
a reader first sends out an ID prefix string. The tags whose
ID matches the string will respond. If a collision happens, the
reader will append a “0” or “1” to the prefix string and send out
the new string. This process repeats until only one tag responds.
Essentially the approach traverses a binary tree with the tag IDs
being the leaf nodes.
Instead of identifying individual RFID tags, Floerkemeier

[16], [17] studies the problem of estimating the cardinality of
a tag set based on the number of empty slots. The proposed
scheme employs a Bayesian probability estimation to achieve
fast estimation. The scheme is similar to hash-based estima-
tors , [18], and the difference is discussed in [4]. In Kodialam
and Nandagopal’s approach [3], information from tags is col-
lected by an RFID reader in a series of time frames. Each frame
consists of a number of slots, and the tags probabilistically re-
spond in those slots. Using the probabilistic counting methods,
the reader estimates the number of tags based on the number
of empty slots or the number of collision slots in each frame.
Their best estimator is called the Unified Probabilistic Estimator
(UPE). A follow-up work by the same authors proposes the
Enhanced Zero-Based Estimator (EZB) [4], which makes its
estimation based on the number of empty slots. The focus of
the above estimators is to reduce the time it takes a reader to
complete the estimation process. Because their goal is not con-
serving energy for active tags, their design is not geared toward
reducing the number of transmissions made by the tags.
The Lottery-Frame scheme (LoF) [5] by Qian et al. employs a

geometric distribution-based scheme to determine to which slot
in a time frame each tag will respond. It significantly reduces
the estimation time when compared to UPE. However, every
tag must respond in each of the time frames, resulting in large
energy cost when active tags use their own power to transmit.
The First Non-Empty slots Based algorithm (FNEB) [19] uses
the slot number of the first reply from tags in a frame to count
RFID tags in both static and dynamic environments.
Also related is a novel security protocol proposed by Tan et al.

to monitor the event of missing tags in the presence of dis-
honest RFID readers [20]. In order to prevent a dishonest reader
from replaying previously collected information, they maintain
a timer in the server and periodically update the system clock.
Li et al. [21] design a series of efficient protocols that employ
novel techniques to identify missing tags in large-scale RFID
systems.
None of the above estimators are designed with energy

conservation in mind. In the following, we will present our
energy-efficient estimators.

III. PROBLEM DEFINITION AND SYSTEM MODEL

A. RFID Estimation Problem

The problem is to design efficient algorithms to estimate the
number of RFID tags in a deployment area without actually
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reading the ID of each tag. Let be the actual number of
tags and be the estimate. The estimation accuracy is speci-
fied by a confidence interval with two parameters: a probability
value and an error bound , both in the range of . The re-
quirement is that the probability for to fall in the interval

should be at least , i.e.,

Our goal is to reduce the energy overhead incurred to the tags
during the estimation process that achieves the above accuracy.
Prior works on the RFID estimation problem focus on time ef-
ficiency, which is the amount of time an RFID reader spends
in estimating the number of tags in the system. Our work fo-
cuses on energy efficiency, which is the amount of energy the
tags spend during estimation process.

B. Active Tags

The type of active RFID systems considered in this paper is
applicable to a large deployment area that is hundreds of feet
or more across. Passive tags are beyond the scope of this paper.
If they were used, one would have to take the RFID reader and
move around the whole area, collecting tag information once
every few feet. Active tags allow a reader to collect information
from one location.
Tagged goods (such as apparel) may stack in piles, and there

may be obstacles, such as racks filled with merchandise, be-
tween a tag and the reader. We expect active tags are designed
to transmit with significant power that is high enough to en-
sure reliable information delivery in such a demanding envi-
ronment. Hence, energy cost due to the tags’ transmissions is
the main concern in our algorithm design; it increases at least in
the square of the maximum distance to be covered by the RFID
system. Energy consumption that powers a tag’s circuit for com-
puting and receiving information is not affected by long distance
and obstacles. Our new estimators are designed for RFID sys-
tems where power consumption by tags is dominated by trans-
mission events due to long distances that the systems need to
cover. Energy consumed by the RFID reader is less of a con-
cern. We assume the reader transmits at sufficiently high power.

C. Communication Protocol

We use the following communication protocol between a
reader and tags. The reader first synchronizes the clocks of the
tags and then performs a sequence of pollings. Clock synchro-
nization only needs to happen at the beginning of the protocol
execution. RFID systems operate in low-rate wireless channels.
Our new estimators only take a few seconds to complete. Clock
drift should not be a major issue in a low-rate channel within
such a short period of time.
In each polling, the reader sends out a request, which is fol-

lowed by a slotted time frame during which the tags respond.
The polling request from the reader carries a contention proba-
bility and a frame size . Each tag will participate
in the current polling with probability . If it decides to partici-
pate, it will pick a slot uniformly at random from the frame and
transmit a bit string (called response) in that slot. The format of
the response depends on the application. If the tag decides to not

participate, it will keep silent. In our solutions, will be set in
the order of .
If we know a lower bound of , the contention prob-

ability can be implemented efficiently to conserve energy. For
example, a company’s inventory of certain goods may be in the
thousands and never before reduced below a certain number,
or the company has a policy on the minimum inventory, or
the RFID estimation becomes unnecessary when the number of
tags is below a threshold. In these cases, we will have a lower
bound , which can be much smaller than . If we know
such a value of , we can implement a contention proba-
bility without requiring all tags to participate in the contention
process. Since only a small number of tags actually participate
in contention, energy cost is reduced. The implementation is de-
scribed as follows. At the beginning of a polling, each tag makes
a probabilistic decision: It goes to a standby mode for the cur-
rent polling with probability and wakes up until
the next polling starts, or it stays awake to receive the polling re-
quest with probability and then decides to respond with
probability . For example, if and

, then only 10 tags stay awake in each polling.
In Section IV-E, another energy-reduction method, called re-
quest-less pollings, will be proposed to eliminate most polling
requests.
In the above communication protocol, the reader’s request

may include an optional prefix, and only tags that satisfy the
prefix will participate in the polling. For example, suppose all
tags deployed in one section of a warehouse carry the 96-bit
GEN2 IDs that begin with “000” in the Serial Number field. In
order to estimate the number of tags in this section, the request
carries a predicate testing whether the first three bits of a tag’s
Serial Number is “000.”

D. Empty/Singleton/Collision Slots

A slot is said to be empty if no tag responds (transmits) in the
slot. It is called a singleton slot if exactly one tag responds. It
is a collision slot if more than one tag responds. A singleton or
collision slot is also called a nonempty slot. The Philips I-Code
system [22] requires a slot length of 10 bits in order to distin-
guish singleton slots from collision slots. On the contrary, one
bit is enough if we only need to distinguish empty slots from
nonempty slots—“0” means empty and “1” means nonempty.
Hence, the response will bemuch shorter (or consumemuch less
energy) if an algorithm only needs to know empty/nonempty
slots instead of all three types of slots as required by [3].
In order to prolong the lifetime of tags, there are two ways

to reduce their energy consumption: reducing the size of each
response and reducing the number of responses. We will design
algorithms that require only the knowledge of empty/nonempty
slots and employ statistical methods to minimize the amount of
transmission needed from the tags.

IV. GENERALIZED MAXIMUM LIKELIHOOD ESTIMATION
ALGORITHM

Our first estimator for the number of RFID tags is called the
generalized maximum likelihood estimation (GMLE) algorithm.
It fully utilizes the information from all pollings in order to
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minimize the number of pollings it needs to meet the accuracy
requirement.

A. Overview

GMLE uses the polling protocol described in Section III-C.
The frame size is fixed to be one slot. The RFID reader
adjusts the contention probability for each polling. Let be the
contention probability of the th polling. GMLE only records
whether the sole slot in each polling is empty or nonempty.
Based on this information, it refines the estimate until
the accuracy requirement is met. Let be the slot state of the
th polling. When at least one tag responds, the slot is nonempty
and . When no tag responds, it is empty and . The
sequence of , , forms the response vector.
At the th polling, each tag has a probability to transmit

and, if any tag transmits, will be one. Hence,

(1)

where is the the actual number of tags.
If the contention probabilities of the pollings are picked

too small, the response vector will contain mostly zeros. If
the contention probabilities are picked too large, the response
vector will contain mostly ones. Both cases do not provide
sufficient statistical information for accurate estimation. As
will be discussed shortly, our analysis shows that the optimal
contention probability for minimizing the number of pollings is

. The problem is that we do not know (which
is the quantity we want to estimate).
In order to determine , GMLE consists of an initialization

phase and an iterative phase. The former quickly produces a
coarse estimation of . The latter refines the contention proba-
bility and generates the estimation result.

B. Initialization Phase

Wewant to pick a small value for the initial contention proba-
bility at the first polling. The expected number of responding
tags is . If is picked too large, a lot of tags will respond,
which is wasteful because one response or many responses pro-
duce the same information—a nonempty slot. Suppose we know
an upper bound of . This information is often avail-
able in practice. For example, we know is 10 000 if the
warehouse is designed to hold no more than 10 000 microwaves
(each tagged with an RFID), or the company’s inventory policy
requires that in-store microwaves should not exceed 10 000, or
the warehouse only has 10 000 RFID tags in use. can be
much bigger than . We pick such that the ex-
pected number of responding tags is nomore than one. If ,
we multiply the contention probability by a constant ,
i.e., for the second polling. We continue multi-
plying the contention probability by after each polling until
a nonempty slot is observed. When that happens (say, at the
th polling), we have a coarse estimation of to be . Then,
we move to the next phase. When is relatively large, the ini-
tialization phase only takes a few pollings to complete due to
the exponential increase of the contention probability.

C. Iterative Phase

This phase iteratively refines the estimation result after each
polling and terminates when the specified accuracy requirement
is met. Let be the estimated number of tags after the th
polling. To compute , the reader performs three tasks at the
th polling. First, it sets the contention probability as follows
before sending out the polling request:

(2)

where is the estimate after the previous polling and
is a system parameter, which will be extensively analyzed in
Section IV-C.1. Second, based on the received and the his-
tory information, the reader finds the new estimate of that
maximizes the following likelihood function:

(3)

where is the probability for
the observed state of the th polling to occur. Namely, we
want to find

(4)

Third, after computing , the reader has to determine if the
confidence interval of the new estimate meets the requirement.
In the following, we show how the above tasks can be achieved.
1) Compute the value of : We compute the new estimate

of that maximizes (3). Since the maxima is not affected by
monotone transformations, we use logarithm to turn the right
side of the equation from product to summation:

To find the maxima, we differentiate both sides:

(5)
We then set the right side to zero and solve the equation for the

new estimate . Note that the derivative is a monotone function
of N, we can numerically obtain through bisection search.
2) Termination Condition: Using the method [23], we

show in the Appendix that when is large, approximately
follows the Gaussian distribution

The variance of is

(6)
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Fig. 1. Middle curve shows the estimated number of tags with respect to the
number of pollings. The upper and lower curves show the confidence interval.
The straight line shows the true number of tags.

When is large and is small, we can approximate
as and as . The above variance becomes

(7)

Hence, the confidence interval of is

(8)

where is the percentile for the standard Gaussian distribu-
tion. For example, when , . Because is
undetermined, we use as an approximation when computing
the standard deviation in (8).
The termination condition for GMLE is therefore

(9)

where is the error bound. The above inequality can be
rewritten as

(10)

When is large, the estimation changes little from one polling
to the next. Hence, . We have

(11)

Hence, if is determined, we can theoretically compute the
approximate number of pollings that is required in order to meet
the accuracy requirement. For example, if , ,
and (which is the optimal value to be given shortly),
2372 pollings will be required. Note that (11) is independent
with the actual number of tags, . Hence, our approach has
perfect scalability.
Fig. 1 shows the simulation result of GMLE when

, , , and . The simula-
tion setup can be found in Section VI. The middle curve is the
estimated number of tags, , with respect to the number of
pollings. It converges to the true value represented by the cen-
tral straight line. The upper and lower curves represent the 95%
confidence interval, which shrinks as the number of pollings
increases.

Fig. 2. Solid line shows the number of pollings with respect to when
and . Dotted line shows the number of responses with respect to

for the same parameter settings.

D. Determine the Value of

We demonstrate the impact of the value on two perfor-
mance metrics: the number of pollings and the number of tag
responses (i.e., the number of tag transmissions). The former
measures the estimation time since each polling takes an equal
amount of time for request/response exchange. The latter mea-
sures the energy cost because each response corresponds to one
tag making one transmission in a slot.
1) Number of Pollings: According to (11), the number of

pollings for meeting the accuracy requirement is
. To find its minimum value, we differentiate it with

respect to and let the result be zero. Solving the equation, we
have . Hence, the optimal value of that minimizes
the number of pollings is

(12)

2) Number of Responses: We count the total number of re-
sponses during the estimation process. After a small number of
pollings, the estimation will closely approximate (see Fig. 1).
Hence, the expected number of responses for each polling is

. After pollings are
made, the total number of responses is roughly

(13)

Our simulation results in Section VI demonstrate that the
approximation in the above count is reasonably accurate. It is
an increasing function with respect to , which means that a
larger value of will lead to a larger number of responses. We
give the intuition as follows: A larger means a larger con-
tention probability and thus more collisions. Two or more re-
sponses in a collision slot produce the same amount of infor-
mation as one response in a singleton slot (see further explana-
tion in Section IV-F). In other words, in order to generate the
necessary amount of information for meeting the accuracy re-
quirement, more responses must be needed if there are more
collisions.
3) Summary: In Fig. 2, we plot the number of pollings and

the number of responses with respect to the value of . The
number of pollings is minimized at . When is
smaller than 1.594, its value controls the performance tradeoff
between the two metrics. When we decrease , the energy cost
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(i.e., the number of responses) drops at the expenses of the es-
timation time (i.e., the number of pollings). Our further simu-
lations in Section VI show that even at , the energy
cost of GMLE is far below those of the existing protocols.

E. Request-Less Pollings

We observe that, after a number of pollings, the value of
will stay in a very small range and does not change much. It
becomes unnecessary for the RFID reader to transmit it at each
polling. Hence, we improve GMLE as follows: If the percentage
change in during a certain number of consecutive pollings
is below a small threshold, the reader will broadcast a polling
request, carrying the latest value of , a flag indicating that it
will no longer transmit polling requests for a certain number
of slots, and the value of . Without receiving further polling
requests, the tags will respond with the same contention proba-
bility in the subsequent slots. This is called the request-less
pollings. After slots, the reader will recalculate the con-
tention probability, broadcast another polling request, carrying
the new probability value, a flag, and . This process repeats
until the termination condition in (9) is met. With the threshold
being 10%, , and , our simulation results
show that the performance difference caused by request-less
pollings is negligibly small even though the contention prob-
ability during request-less pollings may be slightly off the value
set by (2). Request-less pollings can also be applied to the algo-
rithm in Section V.

F. Information Loss Due to Collision

GMLE has a frame size of one slot. It obtains only binary in-
formation at each polling. No matter how many tags respond,
the information that the reader receives is always the same, i.e.,

, which implies information loss when two or more tags
decide to transmit at a polling. Let us compare two scenarios.
In one scenario, only one tag responds at a polling. In the other,
two tags respond. These two scenarios generate the same infor-
mation but the energy cost of the second scenario is twice of
the first. To address this issue, we design another algorithm that
reduces the probability of collision and, moreover, compensate
the impact of collision in its computation.

V. ENHANCED GENERALIZED MAXIMUM LIKELIHOOD
ESTIMATION ALGORITHM

The enhanced generalized maximum likelihood estimation
(EGMLE) algorithm is our second estimator for the number of
RFID tags. It also utilizes history information from previous
pollings and uses the maximum likelihood method to estimate
the number of tags. However, instead of only obtaining binary
information, it computes the number of responses in each
polling. Because more information can be extracted, it is able
to achieve much better energy efficiency than GMLE.

A. Overview

EGMLE uses the same polling protocol as GMLE does, ex-
cept that its frame size is larger than one in order to reduce the
probability of collision. The result of the th polling, , is no
longer a binary value. Instead, it is an estimate of the number of
tags that respond during the polling.

EGMLE takes two steps to solve the collision problem. First,
it increases the frame size such that the tags that decide to
respond at a polling are likely to respond at different slots in
the frame. We pick values for and such that the collision
probability is very small. Second, we compensate the remaining
impact of collision in our computation.
EGMLE also consists of an initialization phase and an iter-

ative phase. The initialization phase of EGMLE is the same as
the initialization phase of GMLE, except that when the RFID
reader obtains the first nonzero result at the th polling with
a contention probability , it computes a coarse estimation of
as . Then, it moves to the next phase, described as

follows.

B. Iterative Phase

This phase iteratively refines the estimation after each polling
and terminates when the specified accuracy requirement is met.
The reader performs four tasks during the th polling. First,
it computes the contention probability before sending out the
polling request

(14)

where is the estimate after the previous polling and is
one by default. As we will show in Section V-C, performance
tradeoff can be made by choosing other values for .
Second, the reader computes the number of responses in

the current frame.
Third, based on the received and the history information,

the reader computes the new estimate of that maximizes the
following likelihood function:

(15)

where is introduced to compensate for collision and the itera-
tive phase begins from the th polling. The above formula
and the value of will be derived shortly. The new estimate is

(16)

Fourth, after computing , the reader determines if the esti-
mate meets the accuracy requirement. In the following, we give
the details of the above tasks.
1) Compute the Number of Responses: At the th polling,

the reader measures the number of nonempty slots in the frame,
denoted as , which is an integer in the range of . Due
to possible collision, the actual number of responses, denoted
as , can be greater. Let . The value of is
determined as follows.
Since each tag independently decides to respond with proba-

bility , follows a binomial distribution, , i.e.,

(17)

Suppose takes the default value, 1. When is large,
approximates and thus . If is sufficiently
large, , ,
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Fig. 3. Collision probability with respect to the frame size .

, and the probability decreases
exponentially with respect to . is only about
0.0037.
Next, we compute the probability for collision to happen at

the th polling, which is denoted as .

where is the permutation function.
Fig. 3 shows the collision probability with re-
spect to . It diminishes quickly as increases. When
(which is what we use in the simulations), is
just 0.046. With such a small probability, the chance for more
than two tags involved in a collision or more than one collision
at a polling is exceedingly small and thus ignored. Therefore,
to approximate , we multiply by 1.046 to compensate the
impact of collision. Namely, .
2) Compute the Value of : Recall that the iterative phase

starts at the th polling. After the th polling, the reader has
collected the values of , . By our previous analysis,
we know that and it follows a binomial dis-
tribution . When is large enough, the binomial
distribution can be closely approximated by a Gaussian distri-
bution with parameters and

. Namely

(18)

Hence, the probability for the measured number of re-
sponses, , to occur under this distribution is

. The likelihood function for all measured numbers of
responses in the pollings, , , to occur is

(19)

Our goal is to find the value that maximizes the likelihood
function. We first take logarithm on both sides of (19).

(20)
We then differentiate both sides.

(21)

Finally, we set the right side to be zero and numerically com-
pute the value of .
3) Termination Condition: The fisher information1 of
is defined as follows:

(22)

According to (21), we have

(23)

(24)

Above, we have applied
in (23) because and

.
Following the classical theory for MLE, when is sufficiently

large, the distribution of is approximated by

(25)

Hence, the confidence interval is

(26)

Note that we use as an approximation for in the com-
putation when necessary since is unknown. The termination
condition for EGMLE to achieve the required accurary is

(27)

1The fisher information [24] is a way of measuring the amount of information
that an observable random variable carries about an unknown parameter
upon which the likelihood function of , , depends.
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Fig. 4. Middle curve shows the estimated number of tags with respect to the
number of pollings. Upper and lower curves show the confidence interval.
Straight line shows the true number of tags.

Fig. 4 shows the simulation result of EGMLE when
, , , and . The middle

curve is the value of , which converges to the value of
represented by the central straight line. The upper and lower
curves represent the 95% confidence interval, which shrinks
as the number of pollings increases. The algorithm terminates
after 1081 pollings.

C. Performance Tradeoff

According to (14), the contention probability is proportional
to . We study how the value of controls the tradeoff between
the estimation time and the energy cost, which are measured by
the number of pollings and the number of responses, respec-
tively.
1) Number of Pollings: Since the MLE approach provides

statistically consistent estimate, when is large, (24) can be ap-
proximated as follows:

(28)

where . According to (27), we have

(29)

Equations (28) and (29) give us the following inequality:

(30)

where and . Hence, the number of pollings it
takes to achieve the accuracy requirement is .
The solid line in Fig. 5 shows the number of pollings with re-

spect to when and . It is a decreasing func-
tion in . The reason is that a larger results in more responses
(and thus more information) in each polling. Consequently, a
less number of pollings is needed to achieve a certain accuracy
requirement.

Fig. 5. Solid line shows the number of pollings with respect to when
and . Dotted line shows the number of responses with respect to

for the same parameter settings.

2) Number of Responses: When is large, the expected
number of responses for each polling is .
After pollings are made, the total number of
responses is roughly

(31)

The dotted line in Fig. 5 shows the number of responses with
respect to when and . It is an increasing
function in , which means that a larger value of will lead to
a larger number of responses.
3) Summary: Fig. 5 demonstrates the performance tradeoff

under different values of . As we decrease , EGMLE
achieves better energy efficiency by requiring a fewer number
of responses, at the expense of time efficiency by requiring a
larger number of pollings.

VI. SIMULATION RESULT

We evaluate the performance of GMLE and EGMLE by
simulations. In order to demonstrate the performance tradeoff
between energy cost and estimation time, we choose two
different contention probability parameters for each of the
two algorithms. We use 0.5 and 1.594 for GMLE, i.e.,

and . Note that 1.594 is the op-
timal value of for time efficiency in GMLE. We denote the
corresponding variants of the algorithm as GMLE(0.5) and
GMLE(1.594).
For EGMLE, Fig. 5 shows that the number of pollings and

the number of responses are both monotonic functions with re-
spect to , which means there is no optimal for either en-
ergy efficiency or time efficiency. We choose 0.5 and 1.0
for EGMLE, i.e., and . The corre-
sponding variants of the algorithm are denoted as EGMLE(0.5)
and EGMLE(1.0). Section V-B shows how to compute the com-
pensation parameter for EGMLE(1.0), which is 0.046. Fol-
lowing the same steps, we obtain for EGMLE(0.5).
We compare the proposed algorithms to the state-of-the-art al-
gorithms in the related work. They are the UPE [3] and the EZB
estimator [4]. The original UPE, denoted as UPE-O, is very en-
ergy-inefficient because its contention probability begins from
100%, and thus all tags will respond. We modify it (denoted
as UPE-M) to begin from a small initial contention probability

and keep the remaining part of UPE-O. This section
shows the performance of both UPE-O and UPE-M. We run
each simulation 100 times and average the outcomes.



1986 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 20, NO. 6, DECEMBER 2012

TABLE I
NUMBER OF RESPONSES WHEN ,

TABLE II
NUMBER OF RESPONSES WHEN ,

TABLE III
NUMBER OF RESPONSES WHEN ,

TABLE IV
NUMBER OF RESPONSES WHEN ,

TABLE V
NUMBER OF RESPONSES WHEN ,

In the initialization phase of our algorithms, let
and . The frame size in EGMLE(0.5) and

EGMLE(1.0) is 10 slots. The parameters for UPE and EZB
are chosen based on the original papers whenever possible. All
algorithms except for UPE need only to identify empty and
nonempty slots. To set a nonempty slot apart from an empty
slot, a tag only needs to respond with a short bit string (one bit)
to make the channel busy. UPE has to identify empty, singleton,
and collision slots. To set a singleton slot apart from a collision
slot, many more bits (10 used by UPE) are necessary [25]. For
example, CRC may be used to detect collision.
The energy cost of an algorithm depends on: 1) the number of

responses that all tags transmit before the algorithm terminates;
and 2) the size of each response. We use “S” to mean that the
response is a short bit string (in the empty/non-empty case), and
“L” to mean a long bit string (in the empty/singleton/collision
case).
We do not include the simulation results for LoF [5] because

its energy cost is much higher than others. Its number of re-
sponses transmitted by the tags is , where is the number of
frames used in the estimation process.

A. Number of Responses

The first simulation studies the number of responses in each
algorithmwith respect to , , and . Table I shows the number
of responses with respect to when and .
The proposed algorithms require fewer responses than UPE and
EZB. As predicted, UPE-O is energy-inefficient; UPE-M works
much better. The best algorithm is EGMLE(0.5), whose number
of responses is about one fifth of what UPE-M requires and one
ninetieth of what EZB requires when is 20 000. Moreover,
each response in UPE is much longer.
GMLE(0.5) has a smaller energy cost than GMLE(1.594).

For example, , the ratio between the number of re-
sponses byGMLE(1.594) and that byGMLE(0.5) is 2.01, which
is close to the theoretically computed ratio of 1.90 in Fig. 2. Sim-
ilarly, EGMLE(0.5) is more energy-efficient than EGMLE(1.0).
When , the ratio between the number of responses
by GMLE(1.594) and that by GMLE(0.5) is 1.28, which is also
close to the theoretical value of 1.34 in Fig. 5.
We vary from 90% to 95% and to 99%, and vary from 9%

to 6% and to 3%. Tables II–IX show similar comparison under
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Fig. 6. Numbers of bits transmitted when , 9%, 6%, and 3%.

TABLE VI
NUMBER OF RESPONSES WHEN ,

TABLE VII
NUMBER OF RESPONSES WHEN ,

TABLE VIII
NUMBER OF RESPONSES WHEN ,

TABLE IX
NUMBER OF RESPONSES WHEN ,

different values of and values. In all cases, the number of re-
sponses increases when increases or decreases, and except
for EZB, the number does not vary much with respect to ,
meaning that all algorithms except for EZB achieve good scal-
ability. The ratio between the numbers for different algorithms
appears to be quite stable under different parameter settings.

B. Total Number of Bits Transmitted

The second simulation evaluates the energy cost of the
algorithms. As mentioned before, one bit is enough to separate
empty/nonempty slot. Hence, the response of GMLE, EGMLE,
and EZB is one bit long. A response in UPE-M is 10 bits
long [3]. We compare the total number of bits transmitted by
all tags before each algorithm terminates. We omit the results
for UPE-O, which are much worse than the results of UPE-M.
Fig. 6 shows the simulation results with respect to when

, 9%, 6% and 3%. For example, when ,
, and , the ratio between the number

of bits transmitted by UPE-M (EZB) and that by our best
estimator EGMLE(0.5) is 45.32 (71.28). Figs. 7 and 8 show
the comparison under different values when and
99%, respectively. Their results are similar to Fig. 6. It should
be noted that the number of bits transmitted is not an accurate
measurement of the energy cost because it ignores the energy
spent to power up the radio and synchronize with the reader.
However, combining the number of bits and the number of
transmissions (in Section VI-A) still gives a good idea on how
energy-efficient each algorithm is.

C. Estimation Time

The third simulation compares the time it takes for each al-
gorithm to complete the estimation of . Based on the spec-
ification of the Philips I-Code system [22], after the required
waiting times (e.g., gap between transmissions) are included, it
can be calculated that an RFID reader needs 0.4 ms to detect an
empty slot, 0.8 ms to detect a collision or a singleton slot, and
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Fig. 7. Numbers of bits transmitted when , 9%, 6%, and 3%.

Fig. 8. Numbers of bits transmitted when , , 6%, and 3%.

Fig. 9. Estimation times of the algorithms when , 9%, 6%, and 3%.

Fig. 10. Estimation times of the algorithms when , 9%, 6%, and 3%.

1 ms to broadcast a polling request. Hence, GMLE, EGMLE,
and EZB require a slot length of 0.4 ms, while UPE-M requires
a slot length of 0.8 ms. Recall that the contention probability
takes the form of , where is a known constant. Thus, the
reader transmits instead of the actual probability value in the
polling requests. If we assume is no more than a million,
then 20 bits for is sufficient. GMLE has a fixed frame size
of one slot. EGMLE has a fixed frame size of 10 slots. EZB and
UPE-M also have predetermined frame sizes. Let ,

9%, 6%, and 3%. The three plots in Fig. 9 show the estima-
tion times of the algorithms with respect to the number of tags
in the deployment. The times grow very slowly as the number
of tags increases, which suggests the algorithms all scale well.
In the first plot of Fig. 9, UPE-M takes the least amount of time,

only about 0.5 s, to estimate 20 000 tags, while the other al-
gorithms take between 0.7–2.0 s. GMLE(1.594) takes less es-
timation time than GMLE(0.5), and the ratio is 0.61, which is
consistent with the theoretical value of 0.58 in Fig. 2. Similarly,
EGMLE(1.0) takes less time than EGMLE(0.5), and the ratio
is 0.68, which is also consistent with the theoretical value of
0.67 in Fig. 5. Figs. 10 and 11 show similar simulation results
when 95% and 99%, respectively. Even though the new
algorithms take longer to complete, their estimation time is still
small. We believe the extra time needed can be well justified for
the large energy saving.
There exists a performance tradeoff between GMLE and

EGMLE. In Sections VI-A and VI-B, we have examined energy
cost in terms of number of responses and number of transmitted
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Fig. 11. Estimation times of the algorithms when , 9%, 6%, and 3%.

bits. EGMLE always performs better than GMLE. In this sec-
tion, we compare estimation time of our two methods. GMLE
performs better than EGMLE. Because this paper’s focus is on
energy efficiency, we regard EGMLE as our best estimator for
energy saving.

VII. CONCLUSION

This paper proposes two probabilistic algorithms for esti-
mating the number of RFID tags in a region. We believe the
algorithms are the first of its kind that targets at prolonging the
lifetime of the active RFIDs. Their energy cost is far less than
the state-of-the-art algorithms in the related work.Moreover, we
reveal a fundamental tradeoff between the energy cost and the
estimation time. By tuning a system parameter, the algorithms
can trade longer estimation time for less energy cost, or vice
versa.

APPENDIX
DISTRIBUTION AND VARIANCE OF

Let be a large positive integer. Consider the sequence of
Bernoulli random variables, , , whose success
probability is . Let , which
is the estimation of the success probability . It is known that
asymptotically follows a normal distribution

(32)

Because the MLE approach provides statistically consistent
estimate, when is large, we can consider the contention prob-
abilities in the later stage of the pooling process to be approx-
imately a constant. In addition, the number of polling results
before stabilization of the contention probability is limited, and
their impact will diminish as becomes large. That is, they can
be ignored when the asymptotic property of is considered.
Hence, for the asymptotic property, we can let , for

, and (5) becomes

(33)
Therefore, the MLE that solves

satisfies

(34)

Hence, from (32), asymptotically follows the fol-
lowing normal distribution:

(35)

According to the -method [23], if a random variable
satisfies

(36)

where and are finite constants and means convergence in
distribution, then we must have

(37)

for any function such that exists and takes a nonzero
value. Based on (36) and (37), taking the logarithm of (35), we
have

(38)
That is

(39)
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