
IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016 397

An Efficient Protocol for RFID Multigroup
Threshold-Based Classification Based on

Sampling and Logical Bitmap
Wen Luo, Yan Qiao, Shigang Chen, Senior Member, IEEE, and Min Chen

Abstract—Most existing research adopts a “flat” view of radio
frequency identification (RFID) systems to perform various
functions of collecting tag IDs, estimating the number of tags,
detecting the missing tags, etc. However, in practice, tags are
often attached to objects of different groups, which may represent
different product types in a warehouse, different book categories
in a library, etc. As we move from a flat view to an organized
group view, there arise many interesting problems. One of them,
called multigroup threshold-based classification, is the focus of this
paper. It is to determine whether the number of objects in each
group is above or below a prescribed threshold value. Solving this
problem is important for inventory tracking applications. If the
number of groups is very large, it will be inefficient to measure
the groups one at a time. The best existing solution for multigroup
threshold-based classification is based on generic group testing,
whose design is however geared toward detecting a small number
of populous groups. Its performance degrades quickly when the
number of groups above the threshold becomes large. In this
paper, we propose a new classification protocol based on tag sam-
pling and logical bitmaps. It achieves high efficiency by measuring
all groups in a mixed fashion. In the meantime, we show that the
new method is able to perform threshold-based classification with
an accuracy that can be preset to any desirable level, allowing
tradeoff between time efficiency and accuracy.
Index Terms—Multigroup threshold-based classification, radio

frequency identification (RFID), time efficiency.

I. INTRODUCTION

R ADIO frequency identification (RFID) has rich applica-
tion in cyber-physical systems for object tracking, auto-

matic inventory control, and supply chain management [1]–[3].
Practical RFID systems widely exist for automatic toll payment,
access control to parking garages, object tracking, theft preven-
tion, tracking, and monitoring.
An RFID system typically consists of three components:

readers, tags, and the middleware software. Small tags, each

Manuscript received June 05, 2013; revised December 31, 2013, June
24, 2014, and September 29, 2014; accepted October 04, 2014; approved
by IEEE/ACM TRANSACTIONS ON NETWORKING Editor A. X. Liu. Date of
publication November 25, 2014; date of current version February 12, 2016.
This work was supported in part by the National Science Foundation under
Grants CNS-1115548 and CNS-1409797.
W. Luo is with Optym, Inc., Gainesville, FL 32603 USA (e-mail: wluo@cise.

ufl.edu).
Y. Qiao is with Google, Inc., Mountain View, CA 94043 USA (e-mail:

yqiao@cise.ufl.edu).
S. Chen and M. Chen are with the Department of Computer and Information

Science and Engineering, University of Florida, Gainesville, FL 32611 USA
(e-mail: sgchen@cise.ufl.edu; min@cise.ufl.edu).
Digital Object Identifier 10.1109/TNET.2014.2367520

with a unique ID, are attached to objects, allowing an RFID
reader to quickly access the properties of each individual object
or collect statistical information about a large group of objects.
Much existing research work focuses on designing tag identi-
fication protocols that read the IDs from tags [4]–[12]. Other
work designs efficient protocols to estimate the number of tags
in a large RFID system [4], [5], [13]–[16], detects missing tags
[17]–[19], identifies unknown tags [20], searches wanted tags
[21], [22], or collects useful information [23].
This paper investigates a different problem. In practice, tags

are often attached to objects belonging to different groups—for
instance, different brands of shoes in a large shoe store, different
titles of books in a bookstore, and goods from different coun-
tries or manufacturers in a port. One challenge is to determine
whether the number of tags in each group is above or below
a prescribed threshold value. The threshold may be set high to
identify the populous groups, it may be set to a level that triggers
certain actions such as replenishing the stocks, or even multiple
thresholds can be used to classify groups based on the range of
their population sizes. Solving this multigroup threshold-based
classification problem gives us a basic tool to access a large pop-
ulation of numerous groups.
Precise classification requires us to know the precise number

of tags in each group. Tag identification protocols [4]–[11] can
do that, but it takes them significant time to complete if the
number of tags is very large. One way to improve efficiency
is relaxing the problem from accurate classification to approxi-
mate classification [2], where the classification accuracy can be
tuned to meet a predefined requirement. We may use cardinality
estimation protocols [4], [5], [13]–[15] to estimate the number
of tags in each group, and classify the group based on the esti-
mation. However, those protocols are efficient when estimating
a small number of large groups, but they are not efficient when
estimating a large number of small groups, as we will demon-
strate shortly. In [2], Sheng et al. apply group testing to approx-
imately detecting popular groups. When the number of groups
above the threshold is small, their performance is good. How-
ever, the performance of the group-testing-based solution de-
grades quickly (in terms of the execution time) when the number
of groups above threshold becomes large.
In this paper, we propose a new classification protocol that

is scalable to a large number of groups. Its design is drastically
different from traditional approaches that measure the size of
one group at a time. It measures the sizes of all groups together
at once in a mixed fashion. Yet, the new protocol is able to per-
form threshold-based classification with an accuracy that can be

1063-6692 © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

398 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

preset to any desirable level, allowing tradeoff between time ef-
ficiency and accuracy. Our main contributions are summarized
as follows.
1) We design a new protocol for threshold-based classifica-

tion in a multigroup RFID system based on tag sampling
and logical bitmaps, which share time-slots uniformly at
random among all groups during the process of measuring
their populations. We use the maximum likelihood esti-
mation method to extract per-group information from the
shared slots. Such slot sharing greatly reduces the amount
of time it takes to complete classification. Sampling further
improves the performance of the protocol significantly.

2) Given an accuracy requirement, we show analytically how
to compute optimal system parameters that minimize the
protocol execution time under the constraint of the re-
quirement. Our estimation method based on sampling and
logical bitmaps ensures that false positive/false negative
ratios are bounded, where false positive occurs when a
below-threshold group is reported as above-threshold and
false negative occurs when an above-threshold group is
not reported.

3) We comprehensively evaluate the proposed solution and
compare it to existing protocols. Our simulation results
match well with the analytical results, which demonstrate
that the new protocol performs far better in terms of exe-
cution time than the best existing work.

The rest of the paper is organized as follows.
Section II presents the system model and defines the problem to
be solved. Section III discusses the related work and gives the
motivation for our solution. Section IV proposes our two-phase
protocol for the RFID threshold-based classification problem.
Section V evaluates the new protocol through simulations.
Section VI draws the conclusion.

II. PROBLEM DEFINITION AND SYSTEM MODEL

A. System Model
There are three types of RFID tags. Passive tags are most

widely deployed today. They are cheap, but do not have internal
power sources. Passive tags rely on radio waves emitted from
an RFID reader to power their circuit and transmit information
back to the reader through backscattering. They have short op-
erational ranges, typically a few meters in an indoor environ-
ment. To cover a large area, arrays of RFID reader antennas
must be installed. Semi-passive tags carry batteries to power
their circuit, but still rely on backscattering to transmit informa-
tion. Active tags use their own battery power to transmit, and
consequently do not need any energy supply from the reader.
Active tags operate at a much longer distance, making them par-
ticularly suitable for applications that cover a large area, where
one or a few RFID readers are installed to access all tagged ob-
jects and perform management functions automatically. With
richer on-board resources, active tags are likely to gain more
popularity in the future, particularly when their prices drop over
time as manufacturing technologies are improved and markets
are expanded.
Communication between readers and tags is time-slotted.

Readers send out a request, which is followed by a slotted time
frame during which tags transmit in their selected slots. The

readers may take turns to transmit the request in order to avoid
interference, or a more sophisticated scheduling algorithm may
be used to allow readers that do not interfere to transmit simul-
taneously. When a tag transmits, as long as one reader receives
the transmission correctly, the transmission will be successful.
In our protocol design, we can logically treat all readers as one,
which transmits a request and then listens to the tags' responses.
We use two types of slots to carry tag responses. The first type
is called a long-response slot, whose length is denoted as ,
during which a tag transmits multiple bits, allowing the reader
to tell whether there is collision in a slot. The second type is
called a short-response slot, whose length is denoted as ,
which carries one-bit information: “0” for an empty slot when
no tag transmits, and “1” for an nonempty slot when one or
more tags transmit signal to make the channel busy.

B. Multigroup Threshold-Based Classification Problem
Consider a big warehouse with tens of thousands of items.

Each item is attached with an RFID tag for communication with
an RFID reader. The items are divided into different groups
based on certain properties, which can be the product subcate-
gory, production date, or production place. To support grouping,
each tag ID should contain two components: a group ID, which
identifies the group to which the tag belongs, and a member ID,
which identifies a specific tag in the group. Clearly, all tags in
a group must carry the same group ID, while tags in different
groups carry different group IDs. We assume that the RFID
reader knows the group IDs in the system.
We define the population or size of a group as the number of

tags in this group. As we have explained in Section I, while it
is possible to perform precise multigroup classification at high
cost, the focus of this paper is to study efficient solutions for
approximate multigroup classification. We formally define the
problem as follows: Let be the threshold, and be a large
probability value. We require that any group whose population
exceeds should be reported with a probability of at least .
Let be another integer parameter smaller than , and be
a small probability value. We also require that the probability
of reporting any group with or fewer tags should be no more
than . Let be the population of an arbitrary group . Our
performance objectives can be expressed in terms of conditional
probabilities as follows:

group is reported by the reader
group is reported by the reader (1)

We treat the report of a group with or fewer tags as a false
positive, and the non-report of a group with or more tags as
a false negative. Hence, the above objectives can also be stated
as bounding the false positive ratio by and the false negative
ratio by .
In practice, there may be multiple thresholds, each of which is

used to classify a subset of groups. For example, in a warehouse
that stores shoes, computers, and other products, the thresholds
for shoes and computers may be different because their expected
inventory levels may not be the same. When there are multiple
thresholds, we first place tag groups in subsets, each of which
corresponds to a threshold. We then perform single-threshold
classification within each subset. To do so, the reader broadcasts
the group IDs in the subset, and the classification is performed

LUO et al.: EFFICIENT PROTOCOL FOR RFID MULTIGROUP THRESHOLD-BASED CLASSIFICATION 399

TABLE I
NOTATIONS

among the tags that carry one of those IDs. Some notations used
in this paper are given in Table I for quick reference.

III. PRELIMINARY

A. Prior Work
Sheng et al. studied the multigroup threshold-based classi-

fication problem in [2]. They begin with a simple threshold
checking scheme (TCS) to approximately answers whether the
number of tags exceeds a threshold. Based on TCS, they propose
two probabilistic protocols. The first one is based on generic
group testing (GT), which consists of multiple rounds. In each
round, the reader shuffles all groups into different categories,
each of which may contain tags from multiple groups. TCS is
then applied to check the number of tags in each category. The
categories with sufficient tags are labeled as potential populous
categories, which may include above-threshold groups. In the
end, the testing history is used to classify all above-threshold
groups. The second protocol is a combination of group testing
and divide-and-conquer, which ignores the categories that fail to
pass the TCS tests in the previous round, divides the remaining
categories into multiple subcategories, and applies TCS to each
subcategories in the remaining rounds.
Another possible solution for the multigroup threshold-based

classification problem is to use a reader to collect the actual tag
IDs from tags [4]–[11], where each ID contains bits that identify
the group of the tag. Applied to the problem in this paper, these
ID-collection protocols do not work well for large-scale RFID
systems due to their long identification time.
Many methods were proposed to estimate the whole popula-

tion of an RFID system. They are essentially single-group es-
timators. We can use them to first estimate individual group
sizes (one group at a time) and then use the sizes for classifi-
cation purpose. Kodialam and Nandagopal propose the first set
of single-group estimators, including the Zero Estimator (ZE),
the Collision Estimator (CE), and the Unified Probabilistic Es-
timator (UPE), which collect information from tags in a se-
ries of time frames and estimates the whole population of tags

in the system based on the number of empty slots and/or the
number of collision slots [13]. A follow-upwork by the same au-
thors proposes the Enhanced Zero-Based Estimator (EZB) [14],
which is an asymptotically unbiased estimator and makes esti-
mation only based on the number of empty slots. Qian et al. pro-
vide a replicate-insensitive estimation algorithm called the Lot-
tery-Frame scheme (LoF) [15]. The Enhanced First Non-Empty
slots Based Estimator (Enhanced FNEB) [24] can be used to es-
timate tag population in both static and dynamic environments
by measuring the position of the first nonempty slot in each
frame. Li et al. [25] study the estimation problem for large-scale
RFID systems from the energy angle based on an Enhanced
Maximum Likelihood Estimation Algorithm (EMLEA). They
design several energy-efficient probabilistic algorithms that it-
eratively refine a control parameter to optimize the information
carried in the transmissions from tags, such that both the number
and the size of the transmissions are minimized. The Average
Run based Tag estimation (ART) scheme [16] further reduces
the execution time for population estimation, based on the av-
erage run length of ones in the bit string received in the stan-
dardized frame-slotted Aloha protocol. Finally, the Zero-One
Estimator (ZOE) [26] provides fast and reliable cardinality by
tuning the system parameters and converging to the optimal set-
tings through a bisection search.

B. Motivation

We first show the performance of some existing single-group
estimators through simulation. From the simulation results, we
argue that these estimators are not time-efficient when they
are applied to the multigroup threshold-based classification
problem.
Fig. 1 presents the execution time of five existing single-

group estimators [13], [14], [16], [24], [25], with respect to the
number of tags in the group; details about the simulation set-
ting and parameters can be found in Sections V-A. While these
estimators are designed to measure the size of a single group,
they may be applied to performing multigroup threshold-based
classification by estimating one group at a time. Their estima-
tion accuracy is specified by a confidence interval: The proba-
bility for the estimate to deviate from the true group size by
percentage or more should not exceed , where and are
two prespecified system parameters. They are set to 99% and
1%, respectively, in our simulation. From the figure, we observe
that the estimation time changes very little with respect to the
number of tags. For example, ART takes about 10 s to estimate
the tag population in the range from 500 to 50 000. If there are
two groups of 25 000 tags each, the total estimation time for the
two groups will be 20 s. However, if there are 100 groups of
500 tags each, the total estimation time will be 1000 s. Hence,
these estimators are not suitable when there are numerous small
groups.
The group testing method in GT [2] can significantly

reduce the execution time for populous group discovery.
However, simulation results show that their execution time
is approximately proportional to the number of groups above
the threshold. Hence, the performance of the protocol will
deteriorate if the number of groups above the threshold is large.
In addition, the RFID reader must be able to distinguish three
types of slots: 1) empty slot, during which no tag transmits;

400 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 1. Estimation time with respect to the group size for UPE, EZB, Enhanced
FNEB, EMLEA, and ART, when and .

2) singleton slot, during which only one tag transmits; and
3) collision slot, during which more than one tag transmits.
We follow two general design principles when designing our

time-efficient classification protocol. First, we want to minimize
the length of each time-slot. Based on the parameters of the
EPCglobal Gen-2 standard [27], in order to transmit a 96-bit
ID from a tag to an RFID reader, we need a slot of 2608.8 s.
However, if the reader is not interested in IDs but wants to dis-
tinguish collision slots from singleton or empty slots [2], tags
should transmit 10-bit-long responses, using slots of 470.5 s
each. Furthermore, if the reader does not need to distinguish col-
lision slots from singleton slots but only wants to know whether
the slots are empty or not, tags can transmit one-bit short re-
sponses, using slots of 290.8 s each to carry one bit informa-
tion (channel busy or idle); this is the type of slot we will use in
our protocol design. Note that 266.4 s waiting time is included
in each slot to separate it from neighboring slots.
Second, we want to minimize the number of slots.

Fig. 1 clearly shows that traditional approaches of measuring
one group at a time will not work well when there are a large
number of groups. We take a new design that is drastically
different from traditional ones: measuring the groups all at
once and probabilistically sharing each slot by multiple groups.
This design has an interesting feature that its execution time is
largely insensitive to the number of groups if the total number
of tags is about the same. It makes our protocol particularly
suitable for situations where there are a large number of small
or medium-sized groups.

IV. EFFICIENT THRESHOLD-BASED CLASSIFICATION
PROTOCOL

This section presents an efficient Threshold-Based Classifi-
cation (TBC) Protocol, which is a combination of dynamic slot
sharing among groups and maximum likelihood estimation of
group sizes.

A. Dynamic Slot Sharing
We share all slots among all groups. Notably, we abandon the

approach of applying a single-group estimator [2], [13], [14],
[24], [25] to measure one group at a time, but instead measure
the sizes of all groups together in one time frame whose slots are
shared: Each group ID is pseudo-randomly hashed to a certain
number of slots in the time frame. Each tag in the group will
probabilistically pick one of these slots to transmit. Listening to
the channel, the reader converts the time frame into a bitmap.
For each group, it extracts the bits that the group ID is hashed
to. Those bits form the logical bitmap of the group, from which

the group size is estimated. In this approach, each bit and the
corresponding slot may be shared by more than one group. This
sharing introduces noise; the logical bitmap of one group may
carry some bits that are set to “1” not by transmissions of tags
in this group, but by transmissions of tags from other groups
that happen to be hashed to the same time-slots. Fortunately, in
a bird's-eye view, all slots are shared by all groups uniformly at
random (through independent hashing), which means the noise
is uniformly distributed in the whole time frame. Such uniform
noise is measurable. To estimate the size of a group, we will use
the logical bitmap of that group, but subtract the noise that tags
from other groups introduce.
To further improve performance, the reader repeats the above

approach multiple times to gather multiple independent logical
bitmaps for each group, and estimation based onmultiple logical
bitmaps reduces the variance of the result.
Sharing slots saves time. For example, if we share each slot

among 30 groups on average (as we observe in a typical sim-
ulation of Sections V), we will be able to achieve a factor of
30 reduction in execution time. However, sharing slots cause
noise among groups during size estimation. Although the noise
is statistically uniformly distributed, its variance requires us to
repeat for additional logical bitmaps in order to average out the
noise variance, which means long execution time. Fortunately,
the time saved by sharing outweighs the time needed for noise
removal as we will demonstrate later.

B. Overview
Our TBC protocol consists of three phases: the param-

eter-precomputing phase, the frame phase, and the report phase.
The parameter-precomputing phase computes system param-
eters for optimal performance of the protocol. Using these
parameters, the frame phase makes polling requests,
each of them followed by a time frame, during which tags of all
groups transmit in selected slots. The reader converts each time
frame into a bitmap, from which logical bitmaps are extracted.
Using these logical bitmaps, the report phase employs the
Maximum Likelihood Estimation (MLE) method to report the
above-threshold groups.
There are four system parameters: 1) is the number of

pollings (or time frames);2) is a sampling probability; 3) is
the size of each time frame, i.e., the number of slots in a frame
or the number of bits in the bitmap that the frame is converted
to; and 4) is the size of each logical bitmap. Clearly, .
The sampling probability is introduced so that not all tags have
to participate in each polling unless ; each tag will have a
probability of to be sampled and transmit in a polling. The ex-
ecution time of TBC is dominated by the time frames, which
have time-slots in total.Wewant to find the optimal values
for , , , and such that the constraints in (1) are met and
the value of is minimized.
Before presenting the parameter-precomputing phase for how

the optimal system parameters are computed, we will first de-
scribe the frame phase and the report phase because deriving the
formulas for optimal system parameters relies on the knowledge
of how the frame phase works.

C. Frame Phase
The frame phase is composed of pollings, which are per-

formed in a similar way: In the th polling (where),

LUO et al.: EFFICIENT PROTOCOL FOR RFID MULTIGROUP THRESHOLD-BASED CLASSIFICATION 401

an RFID reader first broadcasts a request message, including a
random number and the system parameters, , , and . The
request message also serves the purpose of synchronizing the
clocks of all tags for starting a time frame of slots right after
the request.
Consider an arbitrary tag in an arbitrary group . The tag

decides with a probability for whether to participate in the
current polling. If it decides not to, it will keep silent until the
next polling request. If the tag decides to participate, it computes
a hash value as the index of
the time-slot selected for its transmission, where is a hash
function whose range is , is the tag's group ID,
is the tag's member ID, and is a pseudo-random number
generator that takes two input parameters: and . uses
as the seed, generates random numbers, and outputs the th

number. The transmissions from all participating tags form a
bitmap .
Clearly, for tags of group , the indices of their se-

lected slots in the frame can only be ,
. These

slots—or, more precisely, the bits converted from these
slots—form the logical bitmap of , denoted as .
Note that the value of gives the index of the

corresponding bit in the logical bitmap. For example, if a tag
selects the th slot to transmit,
the th bit in the logical bitmap will be set to
“1.” Essentially, we embed the logical bitmaps of all in .
We point out that the complexity of our protocol is mostly

placed at the RFID reader, which has to compute the optimal
system parameters, initiate the protocol, receive tag transmis-
sions, and perform classification (see Sections IV-D and IV-E).
The tag's operation is relatively simple: receiving a request from
the reader, performing hash, and transmitting in a time-slot. To
compute , we expect tags to
implement a pseudo-random number generator as required
by [27]. A hash function may be implemented from by using
the hash input as the input to . There are other simple ways of
implementing a hash function for tags, such as [17], which uses
a prestored bit ring to produce hash output.
An Aloha-based anti-collision polling scheme has been stan-

dardized by EPCglobal, where the reader begins each interro-
gation round by informing all the tags about the frame size.
Each tag then chooses a time-slot at random and transmits only
within that time-slot. More specifically, in EPCglobal C1G2
standard [27], a reader initiates each communication round with
tags. The reader transmits an operation code (e.g., Query, Write,
Select, ACK, etc.) indicating the expected operation of tags, the
backscatter bit rate, and tag encoding schemes (e.g., FM0 or
Miller). For example, the reader may initiate communication
by sending tags a Query command, which includes a field that
sets the number of slots in the round. In addition, this com-
mand also involves other parameters that can be used to nego-
tiate with the tags about the length of each slot and the waiting
time between consecutive slots. Upon receiving the Query, each
tag should pick a random value in the range and load
this value into its slot counter. It decrements the slot counter
each time when receiving a QueryRep from the reader. If its
slot counter is decreased to zero, it replies to the reader; other-
wise, the tag shall remain silent.

Our protocol cannot be directly supported by today's off-the-
shelf C1G2-compatible tags because the current standard does
not support operations on group IDs (such as hashing based on
a group ID for the index of a slot). However, we believe future
tags (or standards) may be enhanced to support such a protocol.
In our case, a new operational code called Classification needs
to be defined, group IDs need to be standardized, and operations
based on group IDs (such as hashing) need to be implemented
on tags.

D. Report Phase
After pollings, the reader obtains bitmaps, ,
. It sends the bitmaps to an offline data processing module.

There, the logical bitmaps of each group is extracted. For an
arbitrary group , we extract a logical bitmap from as
follows: Set the th bit of to be the th
bit in , i.e., , where

and .
Let be the number of zeros observed in . Let

be the total number of tags in the system, and be the actual
population of group . Below, we derive the formula to compute
an estimate of the population.
Consider the th polling in the frame phase and an arbitrary

bit in . A tag in group has a probability of to
select this bit and set it to “1” because the tag is sampled with
probability , and if sampled, it only sets one of the bits in the
logical bitmap of . Any tag in other groups has a probability of

to set this bit to “1” due to dynamic slot sharing across the
whole frame. Hence, the probability for to remain zero is

(2)

Hence, the likelihood function for us to observe bits of
zeros in is

(3)

The likelihood function for us to observe all values,
, in the logical bitmaps is . That is

(4)

We want to find an estimate that maximizes , namely

(5)

Since the maximum is not affected by monotone transforma-
tions, we take the logarithm of both sides of (4)

(6)

402 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Differentiating both sides of the above equation, we have

(7)

After setting the right side to zero and simplifying it, we have
the following estimator:

(8)

In (7), and are given parameters whose values are pre-
computed by the reader. The values of , , are
obtained from . The total number of tags can be esti-
mated from the bitmaps, , . Let be the number
of zeros in . The probability for each tag to be sampled and
set a certain bit in to “1” is . The probability for each bit
to remain zero is approximately . The likelihood
function for us to observe zeros in , , is

(9)

Using the maximum likelihood estimation, we take the loga-
rithm of both sides, differentiate it, and then let the right side be
zero. We have

(10)

where , , are obtained from .
For each group , after we estimate its population based

on (8), we report the group (as an above-threshold group) if
, where is another system parameter that will be deter-

mined in Section IV-E based on the probabilistic performance
objectives (1).

E. Parameter-Precomputing Phase
We first develop the constraints that the system parameters

must satisfy in order to achieve the probabilistic performance
objectives. Based on the constraints, we determine the optimal
values for the length of logical bitmaps, the number of
pollings, the frame size , and the parameter .
A group whose estimated population is will be reported if

(11)
That is

(12)

Let . There-
fore, the probability for the reader to report a group is

.

From (2), we know that follows the binomial distribution
with parameters and :

(13)

Since a binomial distribution can be excellently
approximated by a normal distribution
when is large enough (which is the case for), (13) can be
approximately written as

(14)
According to (14), we know

(15)
Let and

,
then we have

(16)

Thus

(17)

The first performance objective in (1) can be translated into
, which is

(18)

where . Since the left side of the inequality is an increasing
function of , we can replace the term with . Then, we have
the first constraint for the system parameters

(19)

where and
.

Similarly, the second performance objective in (1) can be
translated into the following constraint:

(20)

where and
.

LUO et al.: EFFICIENT PROTOCOL FOR RFID MULTIGROUP THRESHOLD-BASED CLASSIFICATION 403

We want to find optimal system parameters that minimize the
execution time required by TBC, i.e., , subject to the above
two constraints

Minimize

subject to

(21)

The parameters and are given by the performance
objectives (1). To solve the above constrained optimization
problem, we need to determine the optimal values of the re-
maining five system parameters , and , such that

is minimized. We can approximately solve (21) through
searching a preset parameter space. See Sections V for the
search algorithm used in our simulations and the resulting
protocol performance. The value of can be estimated through
an estimation protocol [13], [16], [26]. Moreover, once the
performance objectives are decided, we can precompute the
system parameters (, , , , and) for different values of
(e.g., at steps of 500). After the current number of tags in

the whole system is estimated, the system parameters can be
quickly looked up from the precomputed results.

V. NUMERICAL RESULTS

A. Setting
We evaluate the performance of TBC and compare it to

the GT [2], the ART scheme [16] and the ZOE [26]. GT is
the most related work. It probabilistically identifies populous
groups whose sizes are larger than a threshold. We denote the
proposed protocol TBC with the optimal sampling probability

as , and TBC with as TBC(100%),
which is a special case of TBC where sampling is not applied,
as is published in the conference version of this paper [28]. We
want to see how much improvement can be achieved through
optimal sampling. ZOE and ART are designed for RFID popu-
lation estimation, not for satisfying the probability performance
objectives in (1). However, the estimation results from these
two estimators can be used for classification by reporting those
groups whose estimated sizes are above a threshold. More
specifically, they estimate the group sizes one group at a time.

TABLE II
OPTIMAL VALUES FOR THE FIVE SYSTEM PARAMETERS WHEN ,

, AND

For each group, they progressively improve the size estimation
. We will reject a group when and the

probability of is no greater than . We will
accept a group when and the probability of

is no greater than .
Our simulation parameters are set based on the typical setting

of the EPCglobal Gen-2 standard [27]. Any two consecutive
transmissions (from a reader to tags or from a tag to the reader)
are separated by a waiting time of 266.4 s. According to the
specification, the transmission rate from a tag to the reader is
the same as the transmission rate from the reader to a tag. The
rate from a tag to the reader is 40.97 kb/s; it takes 24.4 s for
a tag to transmit one bit. The length of a slot is calculated as
the sum of a waiting time and the time for the tag to transmit
a certain number of bits. The type of slots used by TBC, ART,
and ZOE, denoted as , contains only one bit. Its length is
290.8 s. The type of slots used by GT needs to detect collision
and contains 10 bits. Its slot length is s. The slot
length for carrying a 96-bit ID is s. Compared
to the total amount of time used by all tags to transmit to the
reader, the time used by the reader to broadcast information to
the tags is negligible in all three protocols.
For , we approximately compute (21) with five

loops for from 0 to 1 at steps of 0.001, from to ,
from 0 to , from 0 to , and from 0 to . Note
that and are inner loops after . The range of is deter-
mined as follows: It does not make sense to run our protocol
if its frame size is larger than the straightforward solution
of collecting all tag IDs, which will give the exact size of
each group. The optimal ALOHA ID-collection solution takes

, where is used for acknowledgment.
This is about slots based on the parameters in the
previous paragraph. Hence, we can set the range of from 0 to

. There is no point to consider beyond . The reason is
that if the optimal value of is equal to or greater than , we
should not use the proposed protocol because a straightforward
solution will perform better. Next, we consider and . The
execution time of our protocol is slots. Hence, we should
set . The range of is thus from 0 to .
We know that . Hence, the range of is from 0 to .
An example of the computed optimal parameters is given in
Table II.1
Once we find the best value of , the execution time

is known, which is plus the time of estimating

1In our simulations, the optimal value of is consistently below 50, and the
optimal value of is consistently below 1000.

404 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

TABLE III
ESTIMATION TIME COMPARISON WHEN AND

TABLE IV
ESTIMATION TIME COMPARISON WHEN AND

the value of using ZOE. Note that even though is pre-
determined for each simulation, we assume that the reader
does not know this value beforehand, and it runs ZOE once
to estimate with error at 95% confidence level. There
is a special case: If there is only a single group to be clas-
sified, will be the group size, and no further action will
be needed for the purpose of classification. In this case, our
protocol becomes ZOE, and we will set the accuracy require-
ments of ZOE in the same way as previously described in the
first paragraph of Section V-A.
TBC(100%) works just like , except that it is oper-

ated under the sampling probability . GT will also com-
pute its optimal system parameters, including the time frame
size , the number of rounds, and the number of shuffled
groups . The execution time required by GT is

. The parameters of ART and ZOE are set based on their
original papers.
In our simulations, , the range of group sizes

is (0, 500], , and the value of varies. There are
2000 groups. The number of above-threshold groups (whose
sizes are greater than) may vary in some simulations, but its
default value is 1000. Besides randomly choosing the size of
each above-threshold group from [250, 500] and that of each
below-threshold group from [1, 249] in one simulation, our
default way of determining group sizes is given as follows:
We first randomly choose the sizes for the above-threshold
groups from [250, 500]. After that, we distribute the re-
maining tags into the below-threshold groups. For the first
below-threshold group, we generate a random number between
1 and to be its population, which is
denoted as . For the second below-threshold group, we select
a random value between 1 and
as its population, which is denoted as . Similarly, we assign a
random value between 1 and
as the population for the third below-threshold group. This
process is repeated for all remaining below-threshold groups.
If there are still tags left unassigned, we assign them arbitrarily
to below-threshold groups as long as their sizes are below 250.

TABLE V
ESTIMATION TIME COMPARISON WHEN AND

TABLE VI
ESTIMATION TIME COMPARISON WHEN AND

B. TBC in Single Threshold Scenario

1) Execution Time Required With Respect to , , and :
We compare TBC(100%), , GT, ART, and ZOE in
terms of execution time. Tables III–VI present our simulation
results under different values of , , and . As an example,
Table II gives the optimal values for the five system parameters
when and .
Table III shows the execution time required when

and . From the table, we can see that TBC(100%)
has a much smaller execution time than GT, ART, and ZOE.
For example, GT takes when , which is about
triple of the time taken by TBC(100%). When sampling is intro-
duced, the performance of TBC improves, i.e., takes
less time to classify the above-threshold groups under the same
setting—only 27.2% of the time taken by GT. ART and ZOE
consume an order of magnitude or more time than .
When becomes larger, TBC(100%), , GT, ART,

and ZOE need more time to classify the above-threshold groups.
This is because a larger ratio of means a higher accuracy re-
quirement for classification. The performance gain by
over GT, ART, ZOE, and TBC(100%) shrinks as increases,
but remains significant. For example, when , the exe-
cution time required by is 31.2% of the time by GT.
When , the time by is 34.1% of that by GT.
GT uses a simple, fast threshold checking scheme to prob-

abilistically identify populous groups with size larger than a
threshold. However, it incurs a large variance in its estimated
result. To satisfy a high accuracy requirement, a large number
of executions is required, which lengthens execution time. In
addition, GT has to identify whether a slot is empty, singleton,
or collision, resulting in longer slots. TBC(100%) estimates all
group sizes together and shares slots among all groups. In ad-
dition, it only needs to know whether each slot is empty or not.
Hence, its execution time is shorter. Sampling is turned on in

, which requires only a fraction of tags to participate in
a protocol execution.When the sampling probability is chosen
to be a small value, the number of participating tags is largely

LUO et al.: EFFICIENT PROTOCOL FOR RFID MULTIGROUP THRESHOLD-BASED CLASSIFICATION 405

TABLE VII
FALSE NEGATIVE RATIO AND FALSE POSITIVE RATIO WHEN AND

TABLE VIII
FALSE NEGATIVE RATIO AND FALSE POSITIVE RATIO WHEN AND

reduced, which in turn reduces the frame size for each polling.
It is not efficient to invoke ART and ZOE to estimate the size of
each group one at a time.
Tables IV and VI compare the execution times of the five pro-

tocols when , ; , ; and
, , respectively. These three tables show that

outperforms other protocols under different param-
eter settings. When compared to Table III, we see that given the
same values of and , the execution times of all protocols are
reduced when decreases or increases. However, the perfor-
mance gain by remains significant.
2) FPR and FNR with respect to , , and : We call a

group whose size is no more than (no less than) as a below-
(above-) group. The false positive ratio (FPR) is defined as
the fraction of below- groups that are mistakenly reported. The
false negative ratio (FNR) is defined as the fraction of above-
groups that are not reported. Tables VII and VIII present our
simulation results of FNR and FPR under different values of
, , and . For Table VII, and . The

FNR values of TBC(100%), and GT are consistently
smaller than , and their FPR values are consistently smaller
than , which means that these protocols meet the performance
objectives in (1). In addition, we observe that our protocol has
smaller FNR and FPR than GT. The results for and

are in Table VIII, where the values of FPR and FNR
also meet the objectives.
3) Execution Time Required With Respect to the Number

of Above-Threshold Groups: In the previous comparison, the
number of above-threshold groups is set at the default value
1000. We further compare TBC(100%), , and GT by
varying the number of above-threshold groups, denoted as .
Let and . In Fig. 2, we keep
and vary the number of above-threshold groups from 250 to
1250. From the figure, the execution time of GT is linear in
, but TBC(100%) and are different. Not only do

they outperform GT, but also their execution times are both
insensitive to . As long as the total number of tags in the
system is the same, their execution times can be approximately
viewed as constants even when the number of groups is dif-
ferent. Such an observation agrees with (21), which does not

Fig. 2. Execution timewith respect to the number of groups that are supposed
to be reported when , , and . The total number of
tags is fixed to be 500 000 at each point.

include in its formulation. Furthermore, thanks to sampling, it
takes less time to classify the above-threshold groups
than TBC(100%), for any value of .
In Fig. 3, we fix the number of groups to 2000, while allowing

the total number of tags to change. Each below-threshold group
takes a random population in the range of , and each
above-threshold group takes a random population in the range
of . From the figure, we observe that the execution
times of TBC(100%), , and GT are approximately pro-
portional to the number of above-threshold groups. However,
the lines of and TBC(100%) have somewhat smaller
slopes than the line of GT.
4) Execution Time Required With Respect to the Number of

Groups: We let the number of groups in the system increase
from 250 to 2000, with their group sizes randomly selected
from . Fig. 4 shows the execution times of the five pro-
tocols with respect to the number of groups. All the protocols
take longer time to classify more groups. However, the execu-
tion times of and TBC(100%) increase with smaller
slopes, and therefore they are more scalable than ZOE, ART,
and GT. For example, when there are 4000 groups, the time for
ART is 27 974 s, the time for ZOE is 15 582 s, the time for GT
is 753 s, and the time for TBC(100%) is 451 s, and the time for

is 315 s.

406 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 24, NO. 1, FEBRUARY 2016

Fig. 3. Execution timewith respect to the number of groups that are supposed
to be reported when , , and . The total number of
tags for all the groups increases along with .

Fig. 4. Execution time with respect to the number of groups when ,
, , , and increases with the number of groups.

Fig. 5. Execution time with respect to the number of groups when ,
, , , and is fixed at 500 000.

Next, we show an interesting property of TBC when we fix
the total number of tags in the system at 500 000 but vary the
number of groups. Fig. 5 shows the execution times of the five
protocols with respect to the number of groups. The times of
ART and ZOE still grow roughly linearly with the number of
groups. We replot the curves of GT, , and TBC(100%)
in Fig. 6 for a better view. The execution time of GT grows
with respect to the number of groups. However, the times of

and TBC(100%) stay flat, insensitive to the number of
groups when the total number of tags is unchanged. The reason
is simple: Each group is assigned a certain number of slots, and
each tag in other groups may cause noise in one of those slots
due to sharing. For TBC, the overall noise only depends on the
total number of tags in other groups, not the number of other
groups.

Fig. 6. Zoom-in of Fig. 5 for TBC and GT.

TABLE IX
ESTIMATION TIME COMPARISON WHEN AND

C. TBC With Multiple Thresholds
Finally, we consider the case of multiple thresholds. The 2000

tag groups are randomly divided into subsets, each of which
is assigned a different threshold , where and are ran-
domly picked from . The proposed protocol
will be executed for each subset of groups at a time.
Table IX compares the execution times of the five protocols

when and . The first column shows the
different values of . When , each subset has a
single group. That is, each group has a distinct threshold. As
we have explained previously, TBC becomes ZOE in this case.
When is smaller than 2000 and thus there are subsets with
more than one group, TBC(100%) and TBC perform better
than others. The smaller the value of is, the larger the average
subset per threshold will be, and the more the performance gain
by TBC over others will be.

VI. CONCLUSION
This paper proposes a new solution for multigroup threshold-

based classification in a large RFID system. While much of the
prior work focuses on estimating the total number of tags in a
system, it is inefficient to apply those solutions to sequentially
estimating the size of each tag group and see if it is above a
threshold. In this paper, we propose a new protocol based on
logical bitmaps that allow the sizes of all groups to be estimated
together for classification. Slot sharing is exploited to reduce the
execution time. Furthermore, sampling is introduced to reduce
the number of participating tags (and thus collision), which in
turn cuts down the execution time. Reducing the number of par-
ticipating tags also saves the overall energy expenditure by the
tags if battery-powered active tags are used. Our new protocol
is able to perform multigroup classification with any preset ac-
curacy. We evaluate the proposed solution and demonstrate that

LUO et al.: EFFICIENT PROTOCOL FOR RFID MULTIGROUP THRESHOLD-BASED CLASSIFICATION 407

it compares favorably to the best existing work. We also present
the method of computing the optimal system parameters.

REFERENCES
[1] L. Ni, Y. Liu, and Y. C. Lau, “LANDMARC: Indoor location sensing

using active RFID,” in Proc. IEEE PerCom, 2003, pp. 407–415.
[2] B. Sheng, C. C. Tan, Q. Li, and W. Mao, “Finding popular categories

for RFID tags,” in Proc. ACM MobiHoc, May 2008, pp. 159–168.
[3] Q. Yao et al., “Randomizing RFID private authentication,” in Proc.

IEEE PerCom, 2009, pp. 1–10.
[4] H. Vogt, “Efficient object identification with passive RFID tags,” in

Proc. Pervasive, 2002, pp. 98–113.
[5] J. Zhai and G. N. Wang, “An anti-collision algorithm using two-func-

tioned estimation for RFID tags,” in Proc. ICCSA, 2005, pp. 702–711.
[6] J. Cha and J. Kim, “Novel anti-collision algorithms for fast object iden-

tification in RFID system,” in Proc. IEEE ICPADS, 2005, vol. 2, pp.
63–67.

[7] D. Klair, K. Chin, and R. Raad, “On the energy consumption of pure
and slotted Aloha based RFID anti-collision protocols,” Comput.
Commun., vol. 32, no. 5, pp. 961–973, 2009.

[8] D. Hush and C. Wood, “Analysis of tree algorithm for RFID arbitra-
tion,” in Proc. IEEE ISIT, 1998, p. 107.

[9] J. Myung andW. Lee, “An adaptive memoryless tag anti-collision pro-
tocol for RFID networks,” in Proc. IEEE ICC, 2005.

[10] H. Choi, J. Cha, and J. Kim, “Fast wireless anti-collision algorithm
in ubiquitous ID system,” in Proc. IEEE VTC, Sep 2004, vol. 6, pp.
4589–4592.

[11] V. Namboodiri and L. Gao, “Energy-aware tag anti-collision protocols
for RFID systems,” in Proc. IEEE PerCom, 2007, pp. 23–36.

[12] L. Yang et al., “Season: Shelving interference and joint identification
in large-scale RFID systems,” in Proc. IEEE INFOCOM, Apr. 2011,
pp. 3092–3100.

[13] M. Kodialam and T. Nandagopal, “Fast and reliable estimation
schemes in RFID systems,” in Proc. ACM MobiCom, Los Angeles,
CA, USA, 2006, pp. 322–333.

[14] M.Kodialam, T. Nandagopal, andW. Lau, “Anonymous tracking using
RFID tags,” in Proc. IEEE INFOCOM, 2007, pp. 1217–1225.

[15] C. Qian, H. Ngan, and Y. Liu, “Cardinality estimation for large-scale
RFID systems,” in Proc. IEEE PerCom, 2008, pp. 30–39.

[16] M. Shahzad and A. Liu, “Every bit counts: Fast and scalable RFID
estimation,” in Proc. ACM MobiCom, Aug. 2012, pp. 365–376.

[17] S. C. T. Li and Y. Ling, “Identifying the missing tags in a large RFID
system,” in Proc. ACM MobiHoc, 2010, pp. 1–10.

[18] B. Sheng, Q. Li, and W. Mao, “Efficient continuous scanning in RFID
systems,” in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[19] C. Tan, B. Sheng, and Q. Li, “How to monitor for missing RFID tags,”
in Proc. IEEE ICDCS, Jun. 2008, pp. 295–302.

[20] X. Liu et al., “A fast approach to unknown tag identification in large
scale RFID systems,” in Proc. ICCCN, 2013, pp. 1–7.

[21] M. Chen, S. C. W. Luo, Z. Mo, and Y. Fang, “An efficient tag search
protocol in large-scale RFID systems,” in Proc. IEEE INFOCOM, Apr.
2013, pp. 899–907.

[22] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID
systems,” IEEE/ACM Trans. Netw., vol. 21, no. 3, pp. 924–934, Jun.
2012.

[23] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for Sensor-augmented RFID networks,” in Proc. IEEE
INFOCOM, Apr. 2011, pp. 3101–3109.

[24] H. Han et al., “Counting RFID tags efficiently and anonymously,” in
Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9.

[25] T. Li, S. Wu, S. Chen, and M. Yang, “Energy efficient algorithms for
the RFID estimation problem,” in Proc. IEEE INFOCOM, Mar. 2010,
pp. 1–9.

[26] Y. Zheng and M. Li, “ZOE: Fast cardinality estimation for large-scale
RFID systems,” in Proc. IEEE INFOCOM, Apr. 2013, pp. 908–916.

[27] EPCglobal, “EPC radio-frequency identity protocols Class-1 genera-
tion-2 UHF RFID protocol for communications at 860 MHz–960 MHz
version 1.0.9,” 2005 [Online]. Available: http://www.epcglobalinc.org/
standards/uhfc1g2/uhfc1g2_{1}_0_9-standard-20050126.pdf

[28] W. Luo, Y. Qiao, and S. Chen, “An efficient protocol for RFID multi-
group threshold-based classification,” in Proc. IEEE INFOCOM, Apr.
2013, pp. 890–898.

Wen Luo received the B.S. degree in computer sci-
ence and technology from the University of Science
and Technology of China, Hefei, China, in 2008, and
the Ph.D. degree in computer and information sci-
ence and engineering from the University of Florida,
Gainesville, FL, USA, in 2014.
He has since worked for Optym, Inc., Gainesville,

FL, USA. His research interests include RFID tech-
nologies and Internet traffic measurement.

Yan Qiao received the B.S. degree in computer
science and technology from Shanghai Jiao Tong
University, Shanghai, China, in 2009, and is cur-
rently pursuing the Ph.D. degree in computer and
information science and engineering at the Univer-
sity of Florida, Gainesville, FL, USA.
Her advisor is Dr. Shigang Chen. Her research

interests include network measurement, algorithms,
and RFID protocols.

Shigang Chen (A'03–M'04–SM'12) received the
B.S. degree from the University of Science and
Technology of China, Hefei, China, in 1993, and
the M.S. and Ph.D. degrees from the University of
Illinois at Urbana-Champaign, Urbana, IL, USA, in
1996 and 1999, respectively, all in computer science.
After graduation, he worked with Cisco Systems,

San Jose, CA, USA, for three years before joining
the University of Florida, Gainesville, FL, USA, in
2002, where he is currently an Associate Professor
with the Department of Computer and Information

Science and Engineering. He served on the technical advisory board for Pro-
tego Networks from 2002 to 2003. He published more than 100 peer-reviewed
journal/conference papers. He holds 11 US patents. His research interests in-
clude computer networks, Internet security, wireless communications, and dis-
tributed computing.
Dr. Chen is an Associate Editor for the IEEE/ACM TRANSACTIONS

ON NETWORKING, Computer Networks, and the IEEE TRANSACTIONS ON
VEHICULAR TECHNOLOGY. He served in the steering committee of IEEE
IWQoS from 2010 to 2013. He received IEEE Communications Society Best
Tutorial Paper Award in 1999 and an NSF CAREER Award in 2007.

Min Chen received the B.E. degree in information
security from the University of Science and Tech-
nology of China, Hefei, China, in 2011, and is cur-
rently pursuing the Ph.D. degree in computer and in-
formation science and engineering at the University
of Florida, Gainesville, FL, USA.
His advisor is Dr. Shigang Chen, and his research

interests include RFID technologies and network
security.

