2013 Proceedings IEEE INFOCOM

An Efficient Protocol for RFID Multigroup
Threshold-based Classification

Wen Luo

Yan Qiao

Shigang Chen

Department of Computer & Information Science & Engineering, University of Florida

Abstract—RFID technology has many applications such as
object tracking, automatic inventory control, and supply chain
management. They can be used to identify individual objects or
count the population of each type of objects in a deployment
area, no matter whether the objects are passports, retail
products, books or even humans. Most existing work adopts a
“flat” RFID system model and performs functions of collecting
tag IDs, estimating the number of tags, or detecting the
missing tags. However, in practice, tags are often attached to
objects of different groups, which may represent a different
product type in a warehouse, a different book category in a
library, etc. An interesting problem, called multigroup threshold-
based classification, is to determine whether the number of
objects in each group is above or below a prescribed threshold
value. Solving this problem is important for inventory tracking
applications. If the number of groups is very large, it will
be inefficient to measure the groups one at a time. The best
existing solution for multigroup threshold-based classification
is based on generic group testing, whose design is however
geared towards detecting a small number of populous groups.
Its performance degrades quickly when the number of groups
above the threshold become large. In this paper, we propose a
new classification protocol based on logical bitmaps. It achieves
high efficiency by measuring all groups in a mixed fashion.
In the meantime, we show that the new method is able to
perform threshold-based classification with an accuracy that
can be pre-set to any desirable level, allowing tradeoff between
time efficiency and accuracy.

I. INTRODUCTION

Radio-frequency identification (RFID) has rich application
in cyber-physical systems for object tracking, automatic
inventory control, and supply chain management [1], [2],
[3]. Practical RFID systems widely exist for automatic toll
payment, access control to parking garages, object tracking,
theft prevention, tracking and monitoring. An RFID system
typically consists of three components: readers, tags and the
middleware software. Small RFID tags, each with a unique
ID, are attached to objects, allowing an RFID reader to
quickly access the properties of each individual object or
collect statistical information about a large group of objects.
Much of the existing work on RFID systems is to design
tag identification protocols that read the IDs from tags [4],
[5], [6], [7], [8], [9], [10], [11]. Other work designs efficient
protocols to estimate the number of tags in a large RFID
system [4], [5], [12], [13], [14], detects missing tags [15],
[16], [17], or collects useful information [18].

This paper investigates a different problem. In practice,
tags are often attached to objects belonging to different
groups, for instance, different brands of shoes in a large shoe
store, different titles of books in a bookstore, and goods from

978-1-4673-5946-7/13/$31.00 ©2013 |EEE

different countries or manufacturers in a port. One challenge
is to determine whether the number of tags in each group is
above or below a prescribed threshold value. The threshold
may be set high to identify the populous groups, it may be
set to a level that triggers certain actions such as replenishing
the stocks, or even multiple thresholds can be used to classify
groups based on the range of their population sizes. Solving
this multigroup threshold-based classification problem gives
us a basic tool to access a large population of numerous
groups.

Precise classification requires us to know the precise
number of tags in each group. Tag identification protocols
[41, [51, [6], [7], [8], [9], [10], [11] can do that, but it takes
them significant time to complete if the number of tags is very
large. One way to improve efficiency is relaxing the problem
from accurate classification to approximate classification [2],
where the classification accuracy can be tuned to meet a
pre-defined requirement. We may use cardinality estimation
protocols [4], [5], [12], [13], [14] to estimate the number
of tags in each group, and classify the group based on
the estimation. However, those protocols are efficient when
estimating a small number of large groups, but they are not
efficient when estimating a large number of small groups,
because their execution time for each group is largely
indifferent in group size, as we will demonstrate shortly.
In [2], Sheng et al. apply group testing to approximately
detect popular groups. When the number of groups above
the threshold is small, their performance is good. However,
the performance of the group-testing-based solution degrades
quickly (in terms of the execution time) when the number of
groups above threshold becomes large.

In this paper, we propose a new classification protocol
that is scalable to a large number of groups. Its design is
drastically different from traditional approaches that measure
the size of one group at a time. It measures the sizes of
all groups together at once in a mixed fashion. Yet, the
new protocol is able to perform threshold-based classification
with an accuracy that can be pre-set to any desirable level,
allowing tradeoff between time efficiency and accuracy. Our
main contributions are summarized as follows:

1. We design an iterative protocol for threshold-based
classification in a multi-group RFID system based on logical
bitmaps that share time slots uniformly at random among all
groups during the process of measuring their populations.
We use the maximum likelihood estimation method to
extract per-group information from the shared slots. Such
slot sharing greatly reduces the amount of time it takes to

890

2013 Proceedings IEEE INFOCOM

complete classification.

2. Given an accuracy requirement, we show analytically
how to compute optimal system parameters that minimize
the protocol execution time under the constraint of the
requirement. Our estimation method based on logical bitmaps
ensures that false positive/false negative ratios are bounded,
where false positive occurs when a below-threshold group is
reported as above-threshold and false negative occurs when
an above-threshold group is not reported.

3. We comprehensively evaluate the proposed solution and
compare it with existing protocols. Our simulation results
match well with the analytical results, which demonstrate that
the new protocol performs far better in terms of execution
time than the best existing work.

The rest of the paper is organized as follows. Section II
presents the system model and defines the problem to be
solved. Section III discusses the related work and gives the
motivation for our solution. Section IV proposes our two-
phase protocol for the RFID threshold-based classification
problem. Section V evaluates the new protocol through
simulations. Section VI draws the conclusion.

II. PROBLEM DEFINITION AND SYSTEM MODEL
A. System Model

There are three types of RFID tags. Passive tags are
most widely deployed today. They are cheap, but do
not have internal power sources. Passive tags rely on
radio waves emitted from an RFID reader to power their
circuit and transmit information back to the reader through
backscattering. They have short operational ranges, typically
a few meters in an indoor environment. To cover a large
area, arrays of RFID reader antennas must be installed. Semi-
passive tags carry batteries to power their circuit, but still
rely on backscattering to transmit information. Active tags
use their own battery power to transmit, and consequently
do not need any energy supply from the reader. Active tags
operate at a much longer distance, making them particularly
suitable for applications that cover a large area, where one
or a few RFID readers are installed to access all tagged
objects and perform management functions automatically.
With richer onboard resources, active tags are likely to gain
more popularity in the future, particularly when their prices
drop over time as manufactural technologies are improved
and markets are expanded.

Communication between readers and tags is time-slotted.
Readers send out a request, which is followed by a slotted
time frame during which tags transmit in their selected
slots. The readers may take turns to transmit the request
in order to avoid interference, or a more sophisticated
scheduling algorithm may be used to allow readers that do not
interfere to transmit simultaneously. When a tag transmits,
as long as one reader receives the transmission correctly,
the transmission will be successful. In our protocol design,
we can logically treat all readers as one, which transmits
a request and then listens to the tags’ responses. There are
different types of time slots [9], among which two types are

of interest in this paper. The first type is called a tag-ID slot,
whose length is denoted as Tiqy, during which a reader is
able to broadcast a 96-bit tag ID. The second type is called a
short-response slot, whose length is denoted as T, Which
carries one-bit information: ‘0’ for an empty slot when no tag
transmits, and ‘1’ for an non-empty slot when one or more
tags transmit a signal to make the channel busy.

Significant asymmetry exists between readers and tags:
Tags are supposed to be used in large quantities, and they
must be cheap. The cost for a reader is less of a concern
because its number in use is much fewer. Therefore, unlike
tags, the reader is not limited in storage space, computation
power, or energy supply. If necessary, it can be connected to
a powerful server for resources. With a high-quality antenna,
a reader is able to receive weak signals from tags. With low-
quality antennas, although tags can receive strong signals
from the reader, they cannot receive each other’s weak
signals. They may not even sense whether the channel is
busy or idle, i.e., whether another tag is transmitting. Nor can
they sense if collision has occurred when two tags transmit
simultaneously. Hence, a CSMA/CA-like MAC protocol [19]
cannot be assumed in an RFID system. But the reader can
detect whether the channel is idle or whether collision occurs.
Such asymmetry points out a design principle that we should
follow: pushing the complexity to the reader while leaving
the tags simple.

B. Multigroup Threshold-based Classification Problem

Consider a big warehouse with tens of thousands of items.
Each item is attached with an RFID tag for communication
with an RFID reader. The items are divided into different
groups based on certain properties, which can be the
product sub-category, production date, or production place.
To support grouping, each tag ID should contain two
components: a group ID, which identifies the group the tag
belongs to, and a member ID, which identifies a specific tag
in the group. Clearly, all tags in a group must carry the same
group ID, while tags in different groups carry different group
IDs. We assume that the RFID reader knows the group IDs
in the system.

We define the population or size of a group as the
number of tags in this group. As we have explained in
the introduction, while it is possible to perform precise
multigroup classification at high cost, the focus of this paper
is to study efficient solutions for approximate multigroup
classification. We formally define the problem as follows:
Let h be the threshold and « be a large probability value.
We require that any group whose population exceeds h
should be reported with a probability of at least o Let [
be another integer parameter smaller than h and /S be a
small probability value. We also require that the probability
of reporting any group with [or fewer tags should be no
more than 5. Let k£ be the population of an arbitrary group
g. Our performance objectives can be expressed in terms of

891

2013 Proceedings IEEE INFOCOM

140

UPE ——

EZB -
120 - Enhanced FNEB -

g EMLEA @

T o100 f |

2

= 80 roBePaa B0y aPplagBegyBad]

s 60 1

=

=40

20 R T i
0 Il Il Il Il

0 10000 20000 30000 40000 50000

Group size
Fig. 1. The estimation time with respect to the group size for UPE, EZB,
Enhanced FNEB and EMLEA, when o/ = 99% and 8’ = 1%.
TABLE I
NOTATIONS
Symbols | Descriptions
l-«a upper bound of false negative ratio
B8 upper bound of false positive ratio
bit length of logical bitmap
n number of tags
S number of above-threshold groups
k actual number of tags in an arbitrary group
k estimated number of tags in an arbitrary group
i random number in the ith polling
f length of the time frame each polling
H() hash function whose range is [0, f — 1]
m;q a tag’s member ID
Jid a tag’s group ID
h a prescribed higher bound threshold value
l a prescribed lower bound threshold value
w number of pollings

conditional probabilities as follows:

Prob{ group g is reported by the reader |k > h} > « N

Prob{ group g is reported by the reader |k <1} < f

We treat the report of a group with [or fewer tags as a
false positive, and the non-report of a group with h or more
tags as a false negative. Hence, the above objectives can also
be stated as bounding the false positive ratio by S and the
false negative ratio by 1 — a.

III. PRELIMINARY
A. Prior Work

One possible solution for the multigroup threshold-based
classification problem is to use a reader to collect the
actual tag IDs from tags, where each ID contains bits that
identify the group of the tag. For a reader to successfully
collect tag IDs in proximity, collision arbitration protocols
must be considered so that replies from multiple tags
will not be garbled due to collision. In general, collision
arbitration protocols can be classified into two categories.
The first category is ALOHA-based [4], [5], [6], [7]. In
these protocols, communication is initialized when a reader

broadcasts a polling request, followed by a slotted time
frame during which tags respond. Receiving the request, each
tag independently picks up a time slot to transmit its ID.
To address collision, the reader has to repeat this process
for a certain number of pollings before all tag IDs can be
successfully received. The second category is tree-based [8],
[9], [10], [11]. These protocols resolve collision by traversing
a binary tree with the IDs of the tags being the leaf nodes. The
reader first broadcasts an ID prefix string. The tags whose
IDs match the string will respond. If collision happens, the
reader will append an ‘0’ or ‘1’ to the prefix string and send
out the new string. This process repeats until only one tag
responds. Applying to the problem in this paper, these two
types of protocols do not work well for large-scale RFID
systems due to their long identification time.

A probabilistic analytical model is proposed by Kodialam
and Nandagopal for anonymously estimating tag population
[12] . Their estimators are the Zero Estimator (ZE), Collision
Estimator (CE), and the Unified Probabilistic Estimator
(UPE), which collect information from tags in a series of
time frames and estimates the population of tags based on
the number of empty slots and/or the number of collision
slots. A follow-up work by the same authors proposes
the Enhanced Zero-Based Estimator (EZB) [13], which is
an asymptotically unbiased estimator and makes estimation
only based on the number of empty slots. Qian et al.
provide a replicate-insensitive estimation algorithm called the
Lottery-Frame scheme (LoF) [14]. The Enhanced First Non-
Empty slots Based Estimator (Enhanced FNEB) [20] can be
used to estimate tag population in both static and dynamic
environments by measuring the position of the first non-
empty slot in each frame. Li et al. [21] study the estimation
problem for large-scale RFID systems from the energy
angle based on Maximum Likelihood Estimation (MLE).
They design several energy-efficient probabilistic algorithms
that iteratively refine a control parameter to optimize the
information carried in the transmissions from tags, such
that both the number and the size of the transmissions are
minimized.

B. Motivation

We first show the performance of some existing work
through simulation. From the simulation results, we argue
that these protocols are not time-efficient when they are
applied to the multigroup threshold-based classification
problem.

Figure 1 presents the execution time of four existing
protocols [12], [13], [20], [21] with respect to the number
of tags in a group; details about the simulation setting and
parameters can be found in Section V-A. The protocols
are designed to estimate the size of a single group. To
perform multigroup threshold-based classification, they have
to estimate one group at a time. Their estimation accuracy
is specified by a confidence interval: The probability for the
estimate to deviate from the true group size by 3’ percentage
or more should not exceed o, where o’ and 3’ are two pre-
specified system parameters. They are set to 99% and 1%

892

2013 Proceedings IEEE INFOCOM

respectively in our simulation. From the figure, we observe
that the estimation time changes very little with respect to the
number of tags. For example, UPE takes about 20 seconds to
estimate the tag population in the range from 500 to 50,000. If
there are two groups of 25,000 tags each, the total estimation
time for the two groups will be 40 seconds. However, if
there are 100 groups of 500 tags each, the total estimation
time will be 2,000 seconds! Hence, these protocols are not
suitable when there are numerous small groups.

Sheng, Tan and Li studied how to reduce the execution
time for identifying populous groups whose sizes are
larger than a threshold [2]. They start with a simple fast
threshold checking scheme (TCS), which approximately
answers whether the number of involved tags exceeds a
threshold with high probability. Based on TCS, they propose
two probabilistic protocols. The first one is based on generic
group testing (GT), and the second protocol is a combination
of group testing and divide-and-conquer. Simulations show
that their best protocol can significantly reduce the execution
time for populous group discovery. However, it is also
shown in the simulation results that their execution time is
approximately proportional to the number of groups above
the threshold. Hence, the performance of the protocol will
deteriorate if the number of groups above the threshold
is large. In addition, the RFID reader must be able to
distinguish three types of slots: (1) empty slot, during which
no tag transmit; (2) singleton slot, during which only one tag
transmits, and (3) collision slot, during which more than one
tag transmits.

We follow two general design principles when designing
our time-efficient classification protocol. First, we want
to minimize the length of each time slot. Based on the
parameters of the Philips I-Code specification [22], in order
to transmit a 96-bit ID from a tag to an RFID read, we need
a slot of 2.11 ms. However, if the reader is not interested in
IDs but wants to distinguish collision slots from singleton or
empty slots [2], tags should transmit 10-bit long responses,
using slots of 0.491 ms each. Furthermore, if the reader
does not need to distinguish collision slots from singleton
slots but only wants to know whether the slots are empty or
not, tags can transmit one-bit short responses, using slots
of 0.321 ms each to carry one bit information (channel
busy or idle); this is the type of slots we will use in our
protocol design. Note that 0.302 ms idle time is included
in each slot to separate it from neighboring slots. Second,
we want to minimize the number of slots. Figure 1 clearly
shows that traditional approaches of measuring one group at
a time will not work well when there are a large number
of groups. We take a new design that is drastically different
from traditional ones: measuring the groups all at once. This
design has an interesting feature that its execution time is
largely insensitive to the number of groups if the total number
of tags is about the same. It makes our protocol particularly
suitable for situations where there are a large number of small
or medium-sized groups.

IV. AN EFFICIENT THRESHOLD-BASED CLASSIFICATION
PrROTOCOL

This section presents an efficient Threshold-Based
Classification (TBC) Protocol, which is a combination of
dynamic slot sharing among groups and maximum likelihood
estimation of group sizes.

A. Dynamic Slot Sharing

Let’s begin with a single group and use a well known
approach [12] of estimating the group population for our
discussion: The RFID reader broadcasts a polling request,
asking tags to respond in a subsequent time frame of f slots.
Upon receiving the request, each tag randomly selects a slot
in the frame to transmit. Listening to the channel, the reader
converts the time frame into a bitmap. Each bit corresponds
to a slot, ‘0’ for an empty slot and ‘1’ for a non-empty slot.
The reader then counts the number of ‘0’ bits. Intuitively,
when there are more tags transmitting, fewer slots will be left
empty, which means fewer ‘0’ bits. A functional relationship
can be established between the number of tags in the group
and the number of ‘0’ bits in the bitmap [12], and we can
use this function to estimate the former from the latter. When
there are multiple groups, we can repeat the above scheme,
using a different time frame for each group.

Analysis has shown that ‘0’ bits must account for a
reasonable portion of the bitmap in order to ensure accuracy.
Hence, to handle a large tag group, we should conservatively
set the frame size to be large enough such that a reasonable
number of ‘0’ bits will remain after all tags pick their slots
to transmit. But when there are a mix of large and small
groups, there is no one-frame-size-fit-all: A small frame size
for all groups will not do well for large groups; a large
frame size is good for large groups, but it is wasteful for
small groups. This is particularly true when the majority of
all groups are small but there are a few large ones. Can we
choose a different frame size for each group based on its
population? No, because per-group population is not given
but what we want to know.

One way to solve the above dilemma is to share all
slots among all groups. To do so, we have to abandon the
traditional approach of one time frame per group [2], [12],
[13], [20], [21], and instead use a single time frame for all
groups — a new approach that measures the sizes of all
groups together: Each group ID is pseudo-randomly hashed
to a certain number of slots in the time frame. Each tag in
the group will probabilistically pick one of these slots to
transmit. Listening to the channel, the reader converts the
time frame into a bitmap. For each group, it extracts the bits
that the group ID is hashed to. Those bits form the logical
bitmap of the group, from which the group size is estimated.
In this approach, each bit and the corresponding slot may
be shared by more than one group. This sharing introduces
noise; the logical bitmap of one group may carry some bits
that are set to ‘1’ not by transmissions of tags in this group,
but by transmissions of tags from other groups that happen to
be hashed to the same time slots. Fortunately, in a bird’s-eye

893

2013 Proceedings IEEE INFOCOM

view, all slots are shared by all groups uniformly at random
(through independent hashing), which means the noise is
uniformly distributed in the whole time frame. Such uniform
noise is measurable. To estimate the size of a group, we will
use the logical bitmap of that group, but subtract the noise
that other groups introduce into the bitmap.

To further improve performance, the reader repeats the
above approach multiple times to gather multiple independent
logical bitmaps for each group, and estimation based on
multiple logical bitmaps reduces the variance of the result.

B. Overview

Our threshold-based classification (TBC) protocol consists
of three phases: the parameter-precomputing phase, the frame
phase, and the report phase. The parameter-precomputing
phase computes system parameters for optimal performance
of the protocol. Using these parameters, the frame phase
makes w(> 1) polling requests, each of them followed by
a time frame, during which tags of all groups transmit in
selected slots. The reader converts each time frame into a
bitmap, from which logical bitmaps are extracted. Using
these logical bitmaps, the report phase employs the Maximum
Likelihood Estimation (MLE) method to report the above-
threshold groups.

There are three system parameters: 1) w is the number of
pollings (or time frames), 2) f is the size of each time frame,
i.e., the number of slots in a frame or the number of bits in
the bitmap that the frame is converted to, and 3) m is the
size of each logical bitmap. Clearly, m < f. The execution
time of TBC is dominated by the w time frames, which have
w x f time slots in total. We want to find the optimal values
for w, f and m such that the constraints in (1) are met and
the value of w x f is minimized.

Before presenting the parameter-precomputing phase for
how the optimal system parameters are computed, we will
first describe the frame phase and the report phase because
deriving the formulas for optimal system parameters relies
on the knowledge of how the frame phase works.

C. Frame Phase

The frame phase is composed of w pollings, which are
performed in a similar way: In the ¢th polling (where 1 <
1 < w), an RFID reader first broadcasts a request message,
including a random number r; and the system parameters,
f and m. The request message also serves the purpose of
synchronizing the clocks of all tags for starting a time frame
of f slots right after the request.

Consider an arbitrary tag ¢ in an arbitrary group g. The
tag computes a hash value H(g;q @ F(r;, H(t;q) mod m))
as the index of the time slot selected for its transmission,
where H(-) is a hash function whose range is [0, f — 1],
gia 1s the tag’s group ID, t;q is the tag’s member ID, and
F(z,y) is a pseudo-random number function that takes two
input parameters: = and y. F'(z,y) uses = as the seed,
generates y random numbers, and outputs the yth number.
The transmission from all participating tags forms a bitmap
B;.

Clearly, for tags of group ¢, the indices of their
selected slots in the frame can only be H(g;q @ F(r;,0)),
H(gia® F(ri,1)), ... , H(gia @ F(r;,m — 1)). These slots
or more precisely, the bits converted from these slots, form
the logical bitmap of g, denoted as LB;(g).

Note that the value of H(t;4) mod m gives the index of
the corresponding bit in the logical bitmap. For example, if
a tag selects the H(g;q @ F(ri, H(tiq) mod m))th slot to
transmit, the (H(t;4) mod m)th bit in the logical bitmap
will be set to ‘1’. Essentially, we embed the logical bitmaps
of all in B;.

D. Report Phase

After w pollings, the reader obtains w bitmaps, B;,
1 < ¢ < w. It sends the bitmaps to an offline data
processing module. There, the logical bitmaps of each group
is extracted. For an arbitrary group g, we extract a logical
bitmap LB;(g) from B; as follows: Set the jth bit of LB;(g)
to be the H(g,a @ F(rs,j))th bit in B;, i.e., LB;(g)[j] =
Bi[H(gia@® F(7i,7))], where 1 <: < wand 0 < j < m—1.

Let x; be the number of zeros observed in LB;(g). Let
n be the total number of tags in the system and k be the
actual population of group g. Below we derive the formula
to compute an estimate k of the population.

Consider the th polling in the frame phase and an arbitrary
bit b in LB;(g). A tag in group g has a probability of L to
select this bit and set it to ‘1’ because the tag only sets one of
the m bits in the logical bitmap of g. Any tag in other groups
has a probability of 1 to set this bit to ‘1’ due to dynamic
slot sharing across the whole frame. Hence, the probability
for b to remain zero is

1 1

¢=(1-F)" =k @

Hence, the likelihood function L; for us to observe x; bits
of zeros in LB;(g) is

1 1

Li=(1- ?)nfk(l - E)k)xi
=1 @)

The likelihood function L for us to observe all z; values,
1 <7 < w, in the w logical bitmaps is L = H;“Zl L;. That
is,

=T - prra— o
== @

We want to find an estimate & that maximizes L, namely,

k = arg max{L}
. :

Since the maximum is not affected by monotone
transformations, we take the logarithm of both sides

5)

894

2013 Proceedings IEEE INFOCOM

of (4):
- 1 1
2 [1n(1—?)—|—kln(1— E))
Mn(l = (1— Synk(— Ly 6
+ (m — ;) In(1 —(—7) A== (©
Differentiating both sides of the above equation, we have
oL zw: [(xi —m(l—)" (1 - %)k)
Ok = 1-(1—) h1-)k
1 1
x (In(1 — E) —1In(1 - f))]. @)

After setting the right side to zero and simplifying it, we
have the following estimator,

7J' (8)

In (7), m and f are given parameters whose values are
pre-computed by the reader. The values of z;, 1 < i < m,
are obtained from LDB;(g). The total number n of tags can
be estimated from the bitmaps, B;, 1 < ¢ < w. Let X; be the
number of zeros in B;. The probability for each tag to set a
bit in B; to ‘1’ is % The probability for each bit to remain
zero is approximately (1 — %)" The likelihood function for
us to observe X; zeros in B;, 1 <17 < w, is

nXl Linys-x
-(1=2)" ©

L=

[0~ 7

Using the maximum likelihood estimation, we take the
logarithm of both sides, differentiate it, and then let the right
side be zero. We have

ZX

1
wf(l—=)"=0
f
n 7211} i
n=——-">>—, (10)
In(1 — %)
where X;, 1 < i < w, are obtained from B;. .

For each group g, after we estimate its population k based
on (8), we report the group (as an above-threshold group) if
k > T, where T is another system parameter that will be
determined in the next subsection based on the probabilistic
performance objectives (1).

E. Parameter-Precomputing Phase

We first develop the constraints that the system parameters
must satisfy in order to achieve the probabilistic performance
objectives. Based on the constraints, we determine the
optimal values for the length m of logical bitmaps, the
number w of pollings, the frame size f, and the parameter
T.

A group g whose estimated population is k will be reported
if

E>T an

That is,
iz =T
In(=1)

> m <wm(—3)T1-)" (12)

- -5 f

i=1 f
Let C = wm(llié)T(l —)" Therefore, the probability

]

for the reader to report a group is Prob(k > T) =

Prob(} x; < C).
From (2), we know that x; follows the binomial
distribution with parameters m and (1 —)" (1 — ;)"
1 1
x; ~ Bino(m, (1 — ?)”—’“(1 - E)k)' (13)

Since a binomial distribution Bino(a, b) can be excellently
approximated by a normal distribution Norm(ab, ab(1 — b))
when q is large enough (which is the case for m), (13) can
be approximately written as

o _ l n—k _ l k
xi ~ Norm(m(1 f) (1 m) ,
1 n—k 1 k 1 n—k 1 k
m(l—?) =) (1—(1—}) 1=)")- (4
According to (14), we know
- 1o 1
Zlcci ~ Norm(mw(l — ?) F1— E)k7
1 n—k 1 k 1 n—k 1 k
mu(l - 1= M- 1= - Ly,
15)
Let = mw(l —)" "1 -)% and 0 = mw(l -
%)”*k(l - Lykra-(1- %)”*k(l — L)F), then we have
Prob(i x;=j)= ! e~ 5t (16)
= V2mo?
Thus,
Prob(k >T) = Pro(z x; <O)
=1
- zcj L = (17)
V2mro?

The first performance objective in (1) can be translated
into Prob(k > T|k > h) > «, which is

—G=m?
202 >«

1
e (18)
jgo V2mo?
where £ > h. Since the left side of the inequality is an
increasing function of k, we can replace the term k& with h.
Then, we have the first constraint for the system parameters.

¢ 1 —Gow)
e 217 >aq (19)
=V 2702

895

2013 Proceedings IEEE INFOCOM

where (11 = mw(1— %)"‘h(l —LYrand o2 = (1—(1—
Lyrh(1— L)k,

Similarly, the second performance objective in (1) can be
translated into the following constraint,

< 1 f<jw22)2 <3 20)
e 202
2 —_)
= \V2mwog
where p15 = mw(1 — %)"’l(l — 1Y and 022 = pp(1— (1 —

Lrta - L.

Our goal is to find optimal system parameters that
minimize the execution time required by TBC, i.e., w X f,
subject to the above two constraints.

Minimize w X f, 21
c
1 —G=r1)
subject to e 217 >q
) jgo V2mo2 -
c 1 7(]’7#22)
e 209 <
jgo V2192 <P
1-1 1
C = m\T 1— 2
1 1
pa = mw(l — ?)n_h(l - E)h
1 1
2 n—h h
= 1—(1=2= 1— —
7= (1= (1=)" (1=)
1 1
p2 = mw(l — ?)nfl(l - E)l
1 1
2 — 1—(1-2= n—I1 1 T\ .
72® = ol = (1= 1=)

The parameters h, [, « and /3 are given by the performance
objectives (1). To solve the above constrained optimization
problem, we need to determine the optimal values of the
remaining four system parameters w, f,m and 7', such that
w X f is minimized. Since all these parameters are bounded
integers, we may find the optimal set of parameters by
exhaustive search, which occurs offline before the TBC
protocol is executed. The computation process includes four
loops to enumerate all possible discrete values for the four
parameters.

V. NUMERICAL RESULTS
A. Setting

We evaluate the performance of TBC and compare it
with the existing work, including the Unified Probabilistic
Estimator (UPE) [12], the Enhanced First Non-Empty slots
Based Estimator (Enhanced FNEB) [20], and the Group
Testing (GT) [2]. UPE and Enhanced FNEB are designed for
RFID population estimation, not for satisfying the probability
performance objectives in (1). However, the estimation results
from these two estimators can be used for classification by
reporting those groups whose estimated sizes are above a
threshold. GT is the most related work. It probabilistically

identifies populous groups whose sizes are larger than a
threshold.

Our simulation setting is based on the Philips I-Code
specification [22]. Any two consecutive transmissions (from
a reader to tags or from a tag to the reader) are separated by a
waiting time of 0.302 ms. According to the specification, the
transmission rate from a tag to the reader is different from
the transmission rate from the reader to a tag. The rate from
a tag to the reader is 53 Kb/sec; it takes 0.018 ms for a tag
to transmit one bit. The length of a slot is calculated as the
sum of a waiting time and the time for the tag to transmit
a certain number of bits. Since the type of slots used by
TBC and Enhanced FNEB, T},,,¢, contains only one bit, the
slot length is 0.321 ms. The type of slots used by UPE and
GT needs to detect collision and contains 10 bits. Their slot
length is T},,4 = 0.49ms. Comparing with the time used by
tags to transmit to the reader, the time used by the reader to
transmit to the tags are negligible in all four protocols.

In our simulation, n = 500, 000, the range of group sizes
is (0, 500], h = 250, and the value of [varies. There
are 2,000 groups, and the number = of above-threshold(h)
groups may vary in simulation, but its default value is
1,000. First, we randomly choose the sizes for the above-
threshold groups from [250, 500]. After that, we distribute the
remaining M tags into the below-threshold groups. For the
first below-threshold group, we generate a random number
between 1 and min{249, 54"} to be its population, which
is denoted as s;. For the second below-threshold group, we
select a random value between 1 and min{249, 4-=*L} as
its population, which is denoted as s5. Similarly, we assign
a random value between 1 and min{249, 4=51=52} a5 the
population for the third below-threshold group. This process
is repeated for all remaining below-threshold groups. If there
are still tags left unassigned, we assign them arbitrarily to
below-threshold groups as long as their sizes are below 250.

For each simulation, TBC will compute the optimal value
of w x f (together with the optimal system parameters).
Once w X f is determined, the execution time is known,
which is Tsport X w X f plus the time for broadcasting
polling requests. GT will also compute its optimal system
parameters, including the time frame size f, the number R
of rounds, and the number W of shuffled groups W. The
execution time required by GT' is Tjong X f X W x R. UPE
and Enhanced FNEB work under the settings based on their
original papers. Their execution times are the sum of the
times for measuring the populations of individual groups.

B. Execution time required in terms of o, 3 and l/h

We compare TBC, GT, UPE and Enhanced FNEB in terms
of execution time. Tables II — IV show our simulation results
under different values of I/h, o and f.

Table II shows the execution time required when oo = 99%
and 8 = 1%. From the table, we can see that TBC has a much
smaller execution time than GT, UPE and Enhanced FNEB.
GT takes 1'14” when | = 0.1h, which is 3.09 times of TBC.
UPE and Enhanced FNEB consume an order of magnitude
or more time than GT and TBC.

896

2013 Proceedings IEEE INFOCOM

250 TBIC T T T T T T T
— .
, 200 f GT ==~ P
3 S
& x7
S 150 o 1
g %
E 100 -//):(/ } } } } } } } |
= st .
O 1 1 1 1 1 1 1 1

100 200 300 400 500 600 700 800 9001000
Number of above-threshold groups S

Fig. 2. Execution time with respect to the number of groups S which are
supposed to be reported when oo = 99%, 8 = 1% and I = 0.1h. The total
number of tags n is fixed to be 500,000 at each point.

GT uses a simple, fast threshold checking scheme (TCS)
to probabilistically identify populous groups with size larger
than a threshold. However, TCS incurs a large variance in
its estimated result. To satisfy a high accuracy requirement,
a large number of TCS executions are required, which
lengthens execution time. In addition, GT has to identify
whether a slot is empty, singleton or collision, resulting in
longer slots. It is not efficient to invoke UPE and Enhanced
FNEB to estimate the size of each group one at a time. In
addition, UPE requires tags to transmit 10-bit responses to
distinguish singleton slots from collision slots. TBC estimate
all group sizes together and share slots among all groups. It
only needs to know whether each slot is empty or not. Hence,
its execution time is the shortest.

In Table II, when [/h becomes larger, both TBC and
GT need more time to classify the above-threshold groups.
This is because a larger ratio of [/h means a higher
accuracy requirement for above-threshold classification. The
performance gain by TBC over GT shrinks as {/h increases,
but remains significant. For example, when [= 0.1h, the
execution time required by GT is 3.09 times that of TBC.
When [= 0.9h, the time by GT becomes 1.9 times that of
TBC.

Tables III and IV compare the execution time of the four
protocols when o = 95%, 8 = 5%, and o = 90%, 8 = 10%,
respectively. These two tables show that TBC outperforms
other protocols under different parameter settings. When
comparing with Table II, we see that given the same values
of h and [, the execution times of all protocols are reduced
when « decreases or 3 increases.

C. Execution time required in terms of the number of above-
threshold groups

In the previous comparison, the number of above-threshold
groups is set at the default value 1,000. We further compare
TBC and GT by varying the number of above-threshold
groups, denoted as S. Let & = 99% and 5 = 1%. In Fig. 2,
we keep n = 500,000 and vary the the number of above-
threshold groups from 100 to 1,000. As we see in the figure,
TBC outperforms GT, and the execution time of TBC is
insensitive to S. As long as the total number of tags in the
system is the same, the execution time can be approximately

Fig. 3.

TABLE I
ESTIMATION TIME COMPARISON WHEN a = 99% AND 8 = 1%

Estimation Time in minutes(/), seconds(//)
TBC GT UPE Enhanced FNEB
l=0.1h | 1'14” 3749 556’50 336’36
1 =0.3h | 142" 4/26" 556’50 336'36"
1 =0.5n | 305" 6’15" 556’50 336’36
l=0.7h | 451" 912" 556/50" 336/36"
1=009h | 621”7 | 11’58"” | 556’50" 336’36"
TABLE III
ESTIMATION TIME COMPARISON WHEN a = 95% AND 8 = 5%
Estimation Time in minutes(/), seconds(//)
TBC GT UPE Enhanced FNEB
[=0.1h 44" 1'55" 17'31" 10'27"
1=0.3h 16" 2'9" 17'31” 10'27"
I =0.5n | 147" | 257" | 556'50" 336'36"
1=0.7h | 239" | 411" | 556'50" 336’36
1=09h | 44" 6'36" | 556'50" 336/36"
TABLE IV
ESTIMATION TIME COMPARISON WHEN a = 90% AND 3 = 10%
Estimation Time in minutes(/), seconds(//)
TBC GT UPE Enhanced FNEB
1=0.1h 38" 133" 10'37" 7’5"
l=0.3h 52/ 151" 10’37 7’5"
l=05h | 17177 | 218" | 556'50” 336’36
1 =0.7h | 1’56" 3’6" 556’50 336'36"
1=0.9h | 250" | 4/55"” | 556'50" 336’36
250 T T T T T T T
TBC —— P
5 200 | OT —= L
3 150 | e 1
= X
é 0or * -
& 50 p- —
0 P T T SR

100 200 300 400 500 600 700 800 9001000
Number of above-threshold groups S

Execution time with respect to the number of groups .S which are
supposed to be reported when o = 99%, 8 = 1% and I = 0.1h. The total

number of tags n for all the groups increases along with S.

viewed as a constant even when the number of groups is
different. Such an observation agrees with (21), which does
not include S in its formulation. In Fig. 3, we allow the total
number of tags to change. Each below-threshold group takes
a random population in the range of (0, 250) and each above-
threshold group takes a random population in the range of
[250, 500]. From the figure, we observe that the classification
times of TBC and GT are approximately proportional to the
number of above-threshold groups. However, the line of GT

897

2013 Proceedings IEEE INFOCOM

300 - n=10k b
=50k -

g 20T n=100k oo i
g | =200k :
g 20T nao0k 7
& 150 | n=500k -
Q T - ////
E 100 F T s

Fig. 4. Execution time with respect to the value of {/h when o = 99%,

B=1%

has a larger slope than that of TBC.

D. Execution time required in terms of the total tag number

Finally, we evaluate the performance of TBC under
different numbers of tags. The results are shown in Fig. 4,
where a = 99%, 8 = 1%, I/h varies from 0.1 to 0.6, and n
varies from 10k to 500k. Each value of n corresponds to a
curve in the figure. The execution time of TBC increases as n
increases, which is expected. For all values of n, we observe
that the execution time of TBC increases as [/h increases,
confirming the results in Tables II-IV.

VI. CONCLUSION

This paper proposes a new solution for multigroup
threshold-based classification in a large RFID system. While
much of the prior work focuses on estimating the total
number of tags in a system, it is inefficient to apply those
solutions to sequentially estimate the size of each tag group
and see if it is above a threshold. In this paper, we propose
a new protocol based on logical bitmaps that allow the
sizes of all groups to be estimated together for classification.
Slot sharing is exploited to reduce the execution time. The
new method is able to perform tag-group classification with
any pre-set accuracy. Our protocol can be configured for
tradeoff between time efficiency and accuracy. We evaluate
the proposed solution and compare it with existing protocols
through simulations, which demonstrate that the new protocol
performs better in terms of execution time than the best
existing work.

VII. ACKNOWLEDGEMENT

This work was supported in part by the National Science
Foundation under grant CNS-1115548.

REFERENCES

[1] L. Ni, Y. Liu, and Y. C. Lau, “Landmarc: Indoor Location Sensing
using Active RFID,” Proc. of IEEE PerCom, 2003.

[2] B. Sheng, Chiu C. Tan, Q. Li, and W. Mao, “Finding Popular
Categories for RFID Tags,” Proc. ACM MOBIHOC, May 2008.

[3] Q. Yao, Y. Qi, J. Han, J. Zhao, X. Li, and Y. Liu, “Randomizing RFID
Private Authentication,” Proc. of IEEE PerCom, 2009.

[4] H. Vogt, “Efficient Object Identification with Passive RFID Tags,”
Proc. of IEEE PerCom, 2002.

[5] J. Zhai and G. N. Wang, “An Anti-Collision Algorithm Using Two-
functioned Estimation for RFID Tags,” Proc. of ICCSA, 2005.

[6] J. Cha and J. Kim, “Novel Anti-collision Algorithms for Fast Object
Identification in RFID System,” Proc. IEEE ICPADS, 2005.

[7]1 D. Klair, K. Chin, and R. Raad, “On the Energy Consumption of Pure
and Slotted Aloha based RFID Anti-Collision Protocols,” Computer
Communications, 2008.

[8] D. Hush and C. Wood, “Analysis of Tree Algorithm for RFID
Arbitration,” Proc. of IEEE ISIT, 1998.

[9] J. Myung and W. Lee, “An adaptive memoryless tag anti-collision
protocol for RFID networks,” Proc. IEEE ICC, 2005.

[10] H. Choi, J. Cha, and J. Kim, “Fast Wireless Anti-collision Algorithm
in Ubiquitous ID System,” Proc. IEEE VTC, Sep 2004.

[11] V. Namboodiri and L. Gao, “Energy-Aware Tag Anti-Collision
Protocols for RFID Systems,” Proc. of IEEE PerCom, 2007.

[12] M. Kodialam and T. Nandagopal, “Fast and Reliable Estimation
Schemes in RFID Systems,” Proc. of ACM MOBICOM, Los Angeles,
2006.

[13] M. Kodialam, T. Nandagopal, and W. Lau, “Anonymous Tracking
using RFID tags,” Proc. of IEEE INFOCOM, 2007.

[14] C. Qian, H. Ngan, and Y. Liu, “Cardinality Estimation for Large-scale
RFID Systems,” Proc. of IEEE PerCom, 2008.

[15] S. Chen T. Li and Y. Ling, “Identifying the Missing Tags in a Large
RFID System,” Proc. of ACM Mobihoc, 2010.

[16] B. Sheng, Q. Li, and W. Mao, “Efficient Continuous Scanning in RFID
Systems,” Proc. of IEEE INFOCOM, March 2010.

[17] C. Tan, B. Sheng, and Q. Li, “How to Monitor for Missing RFID
Tags,” Proc. of IEEE ICDCS, June 2008.

[18] S. Chen, M. Zhang, and B. Xiao, “Efficient Information Collection
Protocols for Sensor-augmented RFID Networks,” Proc. of IEEE
INFOCOM, April 2011.

[19] B. Bianchi, L. Fratta, and M. Oliveri, “Performance Evaluation and
Enhancement of the CSMA/CA MAC Protocol for 802.11 Wireless
LANS,” Personal, Indoor and Mobile Radio Communications, IEEE
International Symposium on, vol. 2, pp. 392-396, 1996.

[20] H. Han, B. Sheng, Chiu C. Tan, Q. Li, W. Mao, and S. Lu, “Counting
RFID Tags Efficiently and Anonymously,” Proc. IEEE INFOCOM,
March 2010.

[21] T.Li, S. Wu, S. Chen, and M. Yang, “Energy Efficient Algorithms for
the RFID Estimation Problem,” Proc. IEEE INFOCOM, March 2010.

[22] Philips Semiconductors, “I-CODE Smart Label RFID Tags,”
http://www.nxp.com/acrobat_download/other/identification/SL092030.pdyf,
Jan 2004.

898

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

