
Privacy-preserving RFID Authentication based on

Cryptographical Encoding

Tao Li Wen Luo Zhen Mo Shigang Chen

Department of Computer & Information Science & Engineering

University of Florida, Gainesville, FL, USA

Email: {tali, wluo, zmo, sgchen}@cise.ufl.edu

Abstract—Radio Frequency IDentification (RFID) technology
has been adopted in many applications, such as inventory
control, object tracking, theft prevention, and supply chain man-
agement. Privacy-preserving authentication in RFID systems
is a very important problem. Existing protocols employ tree
structures to achieve fast authentication. We observe that these
protocols require a tag to transmit a large amount of data in each
authentication, which costs significant bandwidth and energy
overhead. Current protocols also impose heavy computational
demand on the RFID reader. To address these issues, we design
two privacy-preserving protocols based on a new technique
called cryptographical encoding, which significantly reduces both
authentication data transmitted by each tag and computation
overhead incurred at the reader. Our analysis shows that the
new protocols are able to reduce authentication data by more
than an order of magnitude and reduce computational demand
by about an order of magnitude, when comparing with the best
existing protocol.

I. INTRODUCTION

Radio Frequency IDentification (RFID) technology has

been widely used in many applications, such as inventory

control, object tracking, theft prevention, and supply chain

management [1], [2], [3], [4], [5], [6], [7], [8], [9], [10]. A

RFID system consists of a number of tags and a reader. Each

tag is attached to an object, which can be a product in a

warehouse, a merchandize in a retail store, an animal in a

zoo, or a piece of medical equipment in a hospital. The tag

has an integrated antenna for receiving and transmitting radio-

frequency (RF) signal. By communicating with tags via RF

signals, the reader is able to obtain the ID or certain properties

of each object or collect aggregated information about a group

of objects.

Privacy-preserving authentication is a very important prob-

lem. In secure RFID systems, a reader will accept a tag’s

information only after it authenticates the tag. A tag may

be attached to a pharmaceutical product that carries patient

information, a passport that carries a person’s identification,

or a commercial product that carries information about man-

ufactured date, expiring date, ingredients, etc. Some appli-

cations require privacy-preserving authentication, in which a

tag should not give out any identifying information during

authentication process. Suppose a police tries to use a mobile

RFID reader to authenticate a driver’s license embedded with

a RFID tag, and the reader has access to a database of

all secret keys that are pre-installed in driver licenses. The

reader has to know which key it should use to perform

authentication. In a typical authentication protocol, the license

needs to transmit an identifying number to the reader, which

will use that number to search the database for the right key.

However, this leads to a security loophole. The identifying

number, transmitted wirelessly, reveals the presence of the

carrier. Fake readers may initiate the authentication process

at chosen locations and chosen times. They will terminate

the process after the identifying number is received. It allows

them to monitor the whereabout of the license’s carrier.

Can we design an authentication protocol that allows a

RFID reader to authenticate a tag without requiring the tag

to transmit any identifying data? Ideally, the information

transmitted from a tag should look totally different and

random each time the tag is authenticated. Weis et al. [11]

have designed a privacy-preserving authentication protocol,

in which the reader has to try all keys in the database in

order to see if there exists one that matches the authentication

data sent from the tag. The computation complexity of this

protocol for authenticating a single tag is O(N), where N is

the total number of tags, e.g., the number of all driver licences

in a state for the example in the previous paragraph. In order

to accelerate the authentication, other existing protocols [12],

[13], [14], [15] organize all keys in a tree structure. They are

able to reduce the computation overhead to O(σd), where σ is

the degree of the tree, i.e., the number of child nodes that each

internal node has; and d is the depth of the tree. Typically,

d is a multiple of logN . The problem of these protocols is

that each tag has to transmit O(d) cryptographic hash values.

Suppose the depth of the tree is 30. Each hash value is 160

bits if SHA-1 is used. The tree-based protocols require a

tag under authentication to transmit 30 × 160 = 4, 800 bits,

which is a lot in the context of RFID systems. For battery-

powered active tags, energy consumed by a large amount of

transmission shortens the lifetime of the tags.

Another drawback of the current tree-based protocols is

their high computational demand on the RFID reader. For

each authentication, the reader (or the authentication server

that is connected to the reader) has to compute dσ
2 cryp-

tographic hashes. When d = 30 and σ = 16 [15], the

reader computes 240 hashes for authenticating a single tag.

This can be a problem when the reader has to authenticate

numerous tags, for instance, in a large warehouse. In addition,

2012 Proceedings IEEE INFOCOM

978-1-4673-0775-8/12/$31.00 ©2012 IEEE 2174

high computation overhead at the server makes it vulnerable

to denial-of-service attacks, where fake tags continuously

prompt for authentication, preventing the reader from au-

thenticating real tags. For example, consider a highway toll

booth that authenticates vehicles wirelessly for automatic

payment through RFID passes. An adversary may plant a

device nearby, which continuously replies to the queries from

the booth’s reader and pretends that a large number of tags

are waiting to be authenticated, causing a denial-of-service

attack. Reducing computation overhead at the reader can help

alleviate such a problem.

In this paper, we propose a new technique called crypto-

graphical encoding, which compresses the authentication data

from a tag to a small fraction of its original size, without

revealing any identifying information. Based on the idea of

cryptographical encoding, we design two privacy-preserving

authentication protocols. Not only do they drastically reduce

the amount of authentication data, but also they cut the

overhead at the reader from
(σ+1)d

2 hash computations to

d+1 computations. By reducing the amount of authentication

data transmitted from each tag, we reduce the tags’ energy

consumption as well as the authentication time, considering

that RFID systems operate at very low transmission rates.

By reducing the reader’s computation load, we make the

authentication function more scalable for large RFID systems.

The rest of the paper is organized as follows. Section II

defines the problem and system models in this study. Sec-

tion III discusses the preliminary work. Section IV-V present

our two protocols. Section VI draws the conclusion.

II. PROBLEM STATEMENT

Consider a large RFID system, where each tag is pre-

installed a secret key and a reader has access to a database that

contains the keys of all tags. We assume high-end tags that

are capable of performing cryptographic hash and encryption.

These tags are likely to have batteries to power their relatively

rich on-tag resources. Communications between a reader and

tags are time-slotted. The reader initiates the authentication

process by transmitting a request message. The tag responds

with certain authentication data, based on which the reader

figures out which key from the database to use. Once the

reader finds the right key that is pre-installed in the tag, any

classical secret-key authentication protocol can be used for

mutual authentication between the reader and the tag.

The reader itself may not be able to store a large number

of keys and perform high-performance computations. In that

case, it should be connected to a back-end server that is re-

sponsible for information storage and processing. We assume

that the reader and the server are connected via a high-speed

network. To simplify our discussion, we logically treat the

reader and the server as one entity, still called the reader.

For the purpose of preserving privacy, neither a reader

nor a tag should transmit any information that may reveal

the tag’s identify. More specifically, our requirement is that

authentication data must look random each time a tag is

authenticated. The tag (or reader) should not transmit any

fixed number — which may serve for an identifying purpose

— between any two authentications. Our goal is to reduce the

amount of authentication data and computation for meeting

the above requirement. The thread model assumes that an

adversary may eavesdrop on any data exchanged between tags

and reader(s).

The above requirement makes sure that an eavesdropper

will not be able to determine whether two authentications

are performed on the same tag or different tags. Without

this requirement, it will not be the case. For example, in

the previous driver’s licence example, if a licence transmits a

fixed number, a fake reader planted by the garage at the house

of a driver will learn that number, and other fake readers

planted at certain locations will learn when the driver passes

these locations. But if authentication data look totally random,

even under a threat model where an adversary is able to gather

all authentication data communicated between tags and the

reader, the adversary will not be able to associate a tag with

a particular authentication.

III. PRELIMINARY

Existing RFID authentication protocols can be generally

divided into two categories: non-tree-based and tree-based.

A. Non-tree-based Protocols

Weis et al. [11] propose a privacy-preserving RFID au-

thentication protocol, Hash Lock. In this protocol, the RFID

reader generates a random number r and sends the number to

a tag as an authentication request. After receiving r, the tag

performs a hash operation H(r, id), and transmits the hash

value back to the reader, where H is a cryptographic hash

function and id is the tag’s identification number. The reader

searches its database for the tag whose identification, together

with r, can generate the same hash value, H(r, id). If such a

tag exists, the authentication is successful; otherwise, it fails.

Here, id itself is used as the authentication key.

In Hash Lock, the tag only transmits a small amount

of authentication data — one hash value — to the reader.

However, it has a serious efficiency problem. The reader

has to search its entire database and perform O(N) hash

computations on different identification numbers, where N
is the total number of tags in the system.

Yao et al. [12] design a Random Walk based authentication

Protocol (RWP). The protocol achieves O(1) authentication

overhead. It employs a reversible hash function, CuckooHash

[16], such that the reader is able to recover a key k from

its hash value H(r, k) in O(1) time. However, we know that

cryptographic hash functions are not reversible. CuckooHash

is not a cryptographic hash, and therefore is vulnerable when

used in an authentication protocol. While it allows the RFID

reader to recover a key from a hash value, it also makes

an adversary’s brute-force guessing attack easier to perform.

Furthermore, in order to assign a proper hash value for each

key so that the key can be recovered in constant time, the

2175

reader has to allocate a very large amount of memory to keep

the mapping information.

Lu et al. [17] propose a weak privacy model, where a tag

transmits a key index to the reader so that the correct key can

be located in O(1) time. After authentication, there exists a

secure communication channel protected by the common key

between the reader and the tag. Using this channel, the reader

uploads a new key and its corresponding new index to the tag

for the next authentication. The purpose is to make the index

information transmitted by the tag different. The problem

is that, between two authentications by the real reader, the

tag will always respond to fake readers with the same key

index, which serves as the identifying information and breaks

the privacy requirement. This can be a serious problem in

applications where significant time gap may exist between

two authentications by the real reader. For example, a driver’s

license may only be occasionally accessed wirelessly by

polices due to speeding. Between such police-access events,

the license will transmit the same key index to anyone that

exploits the authentication protocol to automatically locate

the license’s carrier through fake readers planted at certain

locations.

B. Tree-based Protocols

Dimitriou [13] proposes a balanced tree based protocol

that is able to decrease the reader’s computation overhead for

authentication from O(N) to O(σd), where σ is the degree of

the tree (i.e., number of child nodes that each in-tree node has)

and d is the depth of the tree, which is typically a multiple

of logN . As illustrated by a simple example of eight tags a
through h in Figure 1, a balanced tree is constructed, where

the secret keys, ka through kh, of tags are placed at the leaf

nodes, and additional auxiliary keys, k1,1, k1,2, ..., are placed

at the internal nodes. Without losing generality, let’s consider

tag a. All keys on the path from the root to the leaf node

ka are pre-installed in tag a; they are k1,1, k2,1, and ka. The

reader has access to the balanced tree during authentication.

To begin with, the reader sends a random number r1 to tag a.

The tag chooses another random number r2, and let r be the

concatenation of the two random numbers. It then transmits

d hash values, v1 = H(r, k1,1), v2 = H(r, k2,1), ..., together

with r. Upon receiving these hash values, the reader uses the

keys on the first level of the tree to compute hash values,

H(r, k1,1) and H(r, k1,2), and see which one matches v1. It

follows the link of the matching key to the next level, where

v2 is used in a similar way to find the link down one level

further. Hence, the hash values, v1, ..., vd, serve as indexing

information for the reader to navigate in the tree until reaching

the secret key ka. Because each authentication has a different

value of r, the hash values from a tag to the reader will be

different even when the same keys are used.

The above protocol is vulnerable to the compromising

attack [14], [15], which is able to partially break the privacy

in a large RFID system by only compromising a small

portion of the tags. The strong and lightweight RFID privacy

k1 , 1

ak
b

k
c

k
d

k
e

k
f

k gk hk

k1 , 2

k2 , 2k2 , 1 k2 , 3 k2 , 4

Fig. 1. Illustration for the balanced tree based protocol [13].

. . .
.

. . .

. . .

0

1 5

p [1] = 1

0

p [2] = 1

1 5

. . .

k

1

1

Fig. 2. Illustration for the ACTION protocol [15].

authentication protocol (SPA) [14] moves a tag’s secret key to

a different leaf node in the tree and updates the key material of

a tag after each authentication. However, it can only alleviate

the compromising attack problem due to the dependency of

key materials in the tree.

Lu et al. adopt a sparse tree in their ACTION protocol [15]

in order to reduce the dependency among key materials. Both

the degree and the depth of their sparse tree can be set large.

ACTION randomly assigns a path indicator p to each tag. The

path indicator is a binary string that is divided into d segments

of length log2 σ, denoted as p[1], p[2], ..., p[d]. As illustrated

in Figure 2, these segments serve as the link indices for the

reader to locate the leaf node that carries the secret key k of

the tag. The path indicator and the key are pre-installed in the

tag. During authentication, in order to protect privacy, the tag

cannot directly transmit its path indicator, a fixed value that

can serve as an identifier. Instead, it transmits d hash values,

H(r, p[1]), ..., H(r, p[d]). Upon receiving these hash values,

the reader can easily figure out p[1] from H(r, p[1]), p[2]
from H(r, p[2]), ..., p[d] from H(r, p[d]). It simply computes

H(r, 0), H(r, 1), ... H(r, 15) and sees which one matches

H(r, p[1]). For example, if H(r, 5) matches H(r, p[1]), then

p[1] must be 5. In a similar way, the reader can find p[2], ...,

p[d].

The key problem of ACTION is that any eavesdropper can

do the same thing and figure out the path indicator and break

the privacy. The size of the secret information p[i], 1 ≤ i ≤ d,

is too short, and the number of its possible values is too

few (e.g., 16) to be secure. After an eavesdropper captures

H(r, p[i]), it is trivial for it to figure out p[i]: Simply trying

out all possible values of p[i] to see which one matches the

2176

. . .
. . .

. . .

. . .

p[1]=1

p[2] =1

. . .

k

k1,1
k1,2 k1,16

k2,16k 2,2
k 2,1

a

. . .
. . .

. . .

.

k

s[1]

s[2]

(a) Dimitriou’s Protocol (b) CNP

a

p[1]=1

p[2] =1

x

.

Fig. 3. Per-node keys v.s. per-group keys.

received hash, just as what the reader does.

IV. COMPACT NAVIGATION PROTOCOL

In this section, we propose a compact navigation protocol

(CNP) for privacy-preserving authentication in RFID systems.

CNP is not only secure but also much more efficient than the

existing protocols, thanks to a new technique called crypto-

graphical encoding. We will present an enhanced version of

the protocol in the next section.

A. Motivation

We also use a sparse tree, which means the degree σ and

the depth d of the tree are large. A sparse tree is not suitable

for Dimitriou’s protocol because a tag has to transmit O(d)
hash values and the RFID reader has to perform O(σd) hash

computations. As shown in Figure 3 (a), in order for the

reader to figure out the first link to follow from the root of

the tree, a tag a needs to transmit H(r, k1,2) in Dimitriou’s

protocol. For ACTION, it would transmit H(r, p[1]). The

purpose of these two approaches are the same: they help

the reader figure out the index of the first link, p[1]. In this

example, p[1] = 1. Similarly, the purpose for tag a to transmit

H(r, k2,2) in Dimitriou’s protocol or H(r, p[2]) in ACTION

is to help the reader figure out the index of the next link, p[2],
which happens to be 1 again in this example.

The problem is that ACTION is not secure, whereas

Dimitriou’s protocol has too much overhead. We propose

a new technique, called cryptographical encoding, which is

both secure and efficient. Instead of assigning a key to each

node in the tree, we assign a key to a group of nodes. More

specifically, we treat the children of each node as a group,

and assign the group a key. Consider the 16 children of the

root in Figure 3 (a). Dimitriou’s protocol assigns one key to

every child, and there are in total 16 keys, k1,1, ..., k1,16 for

these children. Our approach is very different. As shown in

Figure 3 (b), we assign one key, s[1], to all children of the

root as a group. We also assign a separate key to the children

group of each internal node. For example, s[2] is assigned to

the children of x. These keys are called group keys.

Consider an arbitrary tag a. Let ka be its secret key. We

also use ka to represent the leaf node that carries this key. Let

Pa be the path from the root to ka. Tag a is pre-configured

with the following credential: 1) secret key ka, 2) link indices

p[1] through p[d], which together specify Pa, and 3) group

keys s[1] through s[d] along the path. We stress that s[i],
1 ≤ i ≤ d, is not assigned to any single node but instead to

the children group of the ith node on Pa.

During authentication, the tag computes H(r, s[i]), 1 ≤
i ≤ d. For each H(r, s[i]), instead of sending the whole hash

value (which may be 160 bits long), the tag only selects a

few bits based on p[i] and transmits those few bits to the

reader. The method of bit selection in Section IV-D makes

sure that the reader can figure out the value of p[i] from the

received bits. Essentially, those few bits of H(r, s[i]) encode

p[i] cryptographically.

In summary, instead of sending O(d) hash values, a tag

sends a few bits from each hash value as authentication data.

Instead of computing σ hashes in order to figure out each

link index p[i], the reader only computes one hash in most

cases.

B. Overview

Our compact navigation protocol (CNP) for privacy-

preserving authentication consists of three phases: initial-

ization phase, encoding phase, and decoding phase. The

initialization phase constructs a sparse tree of key materials.

We assign a path navigator p and a secret key k to each

tag in the RFID system. Based on the path navigator, we

insert a tree branch that connects to a leaf node storing k.

A separate group key is assigned to the children group of

every node on the branch. Each tag is also configured with

its key materials. In the encoding phase, a tag generates a set

of authentication data based on its key materials. It then sends

the authentication data to the reader. In the decoding phase,

the reader authenticates the tag based on received data. Data

from an authentic tag will successfully guide the reader to

traverse in the tree from the root to the correct leaf node; data

from a counterfeit tag will be detected and rejected during the

traversal process.

C. Initialization Phase

Initially the sparse tree is set to be empty. Let r be the

root node of the tree. Whenever a new tag a is added to the

system, we expand the tree by adding the key materials of

2177

tag a into the tree. We first assign a path navigator p and a

secret key k to the tag. We then divide p into d link indices of

length log2 σ, which are denoted as p[1], p[2], ..., p[d]. Let ‘||’
be the concatenation operation, and p = p[1]||p[2]||...||p[d].
We construct a tree branch based on these link indices and

insert this branch into the tree. First, we insert the children

of the root into the tree and add a key s[1] for this children

group if the children are not already in the tree. Second, we

move to the p[1]th child of the root. Let’s denote this node

as x. We insert all children of node x into the tree and add a

key s[2] for this children group if the children are not already

in the tree. Third, we move to the p[2]th child of node x. We

repeat the above step to add children and group keys until we

reach a leaf node after following the last link index p[d]. The

leaf node will be assigned the secret key k of the tag.

Before the tag is deployed, it must be pre-configured with

the key materials, including its secret key k, the path indices,

p[1], ..., p[d], and the group keys, s[1], ..., s[d].
The initialization phase sets the keys that are needed

when the reader authenticates a tag. The actual authentication

process involves the next two phases: First, the tag computes

authentication data in the encoding phase. Then, the reader

completes authentication through the decoding phase.

D. Encoding Phase

Before a reader and a tag can perform mutual authentica-

tion, they must identify a common secret key, i.e., the key

k that is pre-installed in the tag. To inform the reader about

which key to use, the simplest approach is for the tag to

transmit the link indices, p[1], ..., p[d]. The reader can use

these indices to traverse the tree to a leaf node carrying

k. However, the link indices are fixed values that can also

be used to identify the presence of a tag. In the following,

we explain our cryptographical encoding method that encode

p[1], ..., p[d] in compact authentication data based on the

group keys s[1], ..., s[d].
To begin the authentication process, the reader generates a

random number r1 and sends it to the tag as an authentication

request. After receiving r1, the tag also generates a random

number r2 and XORs it with r1. The result is denoted as

r. This number is different for each authentication. The tag

then computes H(r, s[i]), 1 ≤ i ≤ d, and selects a few bits

from H(r, s[i]) to encode p[i]. Below we only explain how to

selects bits from H(r, s[1]) to encode p[1]. Other p[i] values

can be similarly encoded.

The reader splits H(r, s[1]) into σ segments, denoted as

v[0], v[1],...,v[σ− 1]. If the hash value is 160 bits long, each

segment has 160
σ bits; when σ is 16, each segment has 10 bits.

We may simply use v[p[1]] to encode p[1]. For example, if

p[1] = 0, the tag will transmit v[0] to the reader; if p[1] = 1,

the tag will transmit v[1] to the reader; and so on. When

the reader receives these bits, it also computes H(r, s[1]) and

divides the result into σ segments. The reader compares the

received bits with these segments to find the matching one. If

the received bits match the ith segment, the reader traverses

to the ith child of the root in the tree.

The above approach works only when v[p[1]] is not equal

to any other segment v[i], i 6= p[1]. This is true with high

probability, 98.5% if σ = 16 and each segment is 10 bits long.

However, if the tag finds that v[p[1]] is not unique i.e., v[p[1]]
is equal to another segment, it has to expand v[0], v[1], ...,

v[σ−1] with more bits, such that v[p[1]] becomes unique. To

do so, the tag sets r′ = H(r, s[1]) and computes another hash

H(r′, s[1]). It divides the hash result into σ segments, denoted

as v′[0], v′[1], ..., v′[σ − 1], and appends these segments to

v[0], v[1], ..., v[σ − 1], respectively. After that, if v[p[1]] is

still not unique, the tag repeats the above procedure for more

bits: set r′′ = H(r′, s[1]), compute H(r′′, s[1]), divide the

hash result, ..., until v[p[1]] becomes unique.

In most cases, however, we do not need to add additional

bits to v[p[1]] in order to make it unique. In fact, we can often

remove bits from v[p[1]] and still keep it unique. The tag only

needs to transmit the shortest prefix of v[p[1]] that is different

from the prefixes of other segments. For example, suppose

p[1] = 1, σ = 4, and H(r, s[1]) = “0000||0101||1011||1100”.

We know that v[p[1]] = “0101” and it is unique. Its two-bit

prefix “01” is also unique because the two-bit prefixes of other

segments are “00”, “10”, and “11”, respectively. Hence, the

tag only needs to transmit “01”, instead of the entire v[p[1]].
In summary, the tag uses the shortest unique prefix of v[p[1]],
denoted as f1, to encode p[1].

Similarly, the tag computes fi to encode p[i] based on

group key s[i], i > 1. The authentication data that the tag

transmits to the reader are {r2, f1, f2, ..., fd, H(r, k)}.

E. Decoding Phase

After the reader receives the authentication data

{r2, f1, f2, ..., fd, H(r, k)} from the tag, it first reproduces

r by XORing r2 with r1. The reader then decodes fi,
1 ≤ i ≤ d, to recover the link indices p[i], based on which it

can traverse the tree to find the leaf node carrying the secret

key k of the tag. Below we only explain how to decode f1
for p[1]. Other p[i] values can be similarly derived.

To decode f1, the reader computes the hash value

H(r, s[1]) and divides it into σ segments, v[0], v[1], ...,
v[σ − 1]. If the length of f1 is equal to or smaller than the

segment size, the reader tries to find a segment that matches

f1 as a prefix. For an authentic tag, according to the design of

the encoding phase, there should be one and only one segment

v[j] that matches f1 as a prefix. In that case, p[1] = j. On

the other hand, if the reader cannot find any segment or it

finds multiple segments that match f1 as a prefix, it knows

that the tag is a counterfeit one.

If f1 is longer than the segment size, the reader needs to add

more bits to the segments by performing additional hashes: set

r′ = H(r, s[1]), compute H(r′, s[1]), divide the hash result

into σ segments, append them to v[0], ..., v[d], respective, ...,

until the segment size becomes equal to or larger than the

length of f1. After that, the reader tries to find a segment

v[j] that matches f1 as a prefix. If it is successful, it will set

p[1] = j.

2178

After the reader decodes fi, 1 ≤ i ≤ d, and finds all

path indices, it uses these indices to traverse the tree and

reach a leaf node that carries a key k′. It performs a keyed

hash H(r, k′), and compares it with the received H(r, k). If

they are the same, the reader knows that k′ = k and the tag

is authentic. To allow the tag to authenticate the reader, the

reader computes H(r2, k) and transmits it to the tag. The tag

compares the received hash with its version of H(r2, k). If

they match, the tag knows that the reader is authentic.

F. Adding and Removing Tags

In a dynamic system, new tags may be added and existing

tags may be removed. To add a new tag, the RFID reader

randomly selects a new secret key k′ and a new path identifier

p′, which is broken into d path indices. The reader then inserts

a new path into the tree based on the path indices in exactly

the same way as it adds a new tag into the system during the

initialization phase; see description in Section IV-C. After

that, the reader uploads the new key materials to the tag.

To remove a tag, the reader tries to delete the path specified

by p[1], p[2], ..., p[d] from the tree. Each node in the tree

carries a counter for the number of tags whose paths traverse

this node.1 The reader first removes the leaf node of the tag.

It then traverses backward along the path to be removed by

using the path indices in the reverse order. When it visits a

node, it decreases the node’s counter by one and removes the

node if its counter becomes zero. When a node is removed,

all its children is removed, too.

G. Correctness

First, we prove that an authentic tag will pass authentica-

tion. We only need to show that the RFID reader is able to

figure out the correct values of path indices p[i], 1 ≤ i ≤ d,

such that it can find the correct leaf node where the secret

key shared with the tag is stored. We prove by induction:

Suppose the reader has figured out the correct values of p[j],
j < i. Using these link indices, the reader traverses the tree

to a node on the ith level, and the node stores the key s[i]
for its children group. The tag uses H(r, s[i]) and p[i] to

compute fi. Using the same key s[i], the reader will compute

the same hash value H(r, s[i]). Since fi is a unique prefix

that the p[i]th segment of H(r, s[i]) possess, it can be used to

identify that segment and its index p[i]. Therefore, the reader

is able to figure out p[i]. The base case for induction is i = 1,

where the traversal begins from the root and the reader knows

s[1], which is the key for the children group of the root.

Second, a counterfeit tag cannot pass authentication. Be-

cause a counterfeit tag does not have a shared secret with

the reader, it cannot pass the final authentication based on

H(r, k) at the end of the decoding phase.

Finally, we need to show that our protocol meets the

privacy-preserving requirement, i.e., the authentication data,

1This counter is initialized to zero. It is increased by one whenever a tag
is added into the system and the newly created path for the tag traverses the
node.

{r2, f1, f2, ..., fd, H(r, k)}, look random each time a tag is

authenticated. It is well known that the output of a crypto-

graphic hash function appears totally random to someone who

does not know the secret key; intuitively, as the input changes,

any bit in the output has 50% chance to change [18]. In fact,

hash functions such as SHA-1 have been used to generate

random bit sequences [19]. We know that fi consists of bits

taken out from H(r, s[i]), 1 ≤ i ≤ d. Because the input r
to these hashes changes for each authentication, bits in the

hash output H(r, s[i]) will appear random to anyone who do

not know the keys s[i]. This is true for any bits in the hash

output, including fi, which is the prefix of the p[i]th segment

in H(r, s[i]). Hence, the privacy-preserving requirement is

met.

H. Efficiency

We evaluate protocol efficiency mainly based on two cri-

teria: size of authentication data and amount of computation.

First, we determine the expected size of the authentication

data that a tag transmits. The authentication data consists of

three components: (1) r2, which has a fixed length, e.g., 64

bits. (2) fi, 1 ≤ i ≤ d, which has a variable length. (3)

H(r, k), which has a fixed length, e.g., 160 bits. Let mi be

the length of fi. We derive the expected value of mi below.

Let l be a positive integer constant. Consider the prefix of

l bits in each segment v[i]. The probability for the prefix of

v[i] to be different from the prefix of another segment v[j] is

1 − 1
2l

. The probability for the prefix of v[i] to be different

from the prefix of any other segment v[j], 0 ≤ j < σ, j 6= i,
is (1− 1

2l)
σ−1. The following statement is obviously true: If

we can find a prefix of v[i] that is unique and has a length

smaller than l, then we must be able to find a prefix of v[i]
that is unique and has a length of l. Thus we have

Prob{mi ≤ l} = (1−
1

2l
)σ−1.

Because Prob{mi ≤ l − 1} = (1− 1
2l−1)

σ−1, we must have

Prob{mi = l} = (1 −
1

2l
)σ−1 − (1−

1

2l−1
)σ−1. (1)

Let E(mi) and V ar(mi) be the expected value and vari-

ance of mi, respectively. From (1), we have

E(mi) =

∞∑

l=1

l × Prob{mi = l}, (2)

V ar(mi) = E(m2
i)− E(mi)

2

=

∞∑

l=1

l2 × Prob{mi = l}

− (

∞∑

l=1

l × Prob{mi = l})2. (3)

Figure 4 shows Prob{mi = l} with respect to l when

σ = 16. It quickly approaches to 0 as l increases. E(mi) is

about 5.3 bits, and V ar(mi) is about 3.4 bits. This means that

2179

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 2 4 6 8 10 12 14 16 18

P
ro

b
ab

il
it

y

l

Fig. 4. Probability of mi = l with respect to l.

CNP only transmits 5.3 bits on average for each hash value

H(r, s[i]) that would have to be transmitted in its entirety by

Dimitriou’s protocol.

Let h be the number of bits in a hash output, |r| be the

number of bits in r, and denote E(mi) as e. We know e ≪
h. The expected size of the authentication data in CNP is

|r|+de+h. The size of the authentication data in Dimitriou’s

protocol is |r| + dh, and the size of the authentication data

in ACTION is |r| + (d + 1)h. Suppose |r| = 64, d = 30,

σ = 16, and h = 160. The ratio of the data size in CNP to

the data size in Dimitriou’s protocol is 0.079 : 1. The raio of

the data size in CNP to the data size in ACTION is 0.076 :

1.

Next, we study the computation overhead. The numbers of

hash computations by a tag for each authentication are d+1
for CNP, d for Dimitriou’s protocol, and d+1 for ACTION.

The amount of computation on the reader differs. For CNP,

the reader performs d+1 hash computations, exactly the same

hashes as the tag does. For Dimitriou’s protocol and ACTION,

the number of hash computations by the reader is O(σd). In

the worse case, Dimitriou’s protocol performs σ on each of

the d levels in the tree. In the best case, it performs one hash

on each level. On average, it needs to perform (σ + 1)/2
hashes on each of the d levels. If d = 30 and σ = 16, the

ratio of the reader’s hash computations in CNP to that in

Dimitriou’s protocol is 0.12 : 1.

I. Variable Length of fi

fi has a variable length, which complicates the message

format design for authentication data sent from a tag to a

reader. A simple solution is to first transmit the lengths of all

fi, 1 ≤ i ≤ d, before transmitting the bits of fi, 1 ≤ i ≤ d, in

concatenation. This solution adds extra bits to the data sent by

the tag. Another solution is to design a new cryptographical

encoding method that generates authentication data of a fixed

length. In the next section, we design an enhanced compact

navigation protocol (ECNP) to achieve this goal.

V. ENHANCED COMPACT NAVIGATION PROTOCOL

This section presents the enhanced compact navigation

protocol (ECNP). It also consists of three phases: initial-

ization phase, encoding phase, and decoding phase. The

initialization phase is the same as what CNP does. ECNP

differs from CNP in the way it computes authentication data

in the encoding phase and the way it recovers the path

indices in the decoding phase. Therefore, we only describe

the encoding phase and the decoding phase below.

A. Encoding Phase

At the beginning of the encoding phase, the reader sends a

random number r1 to a tag. The tag produces another random

number r2 and XORs it with r1 to produce r. After that, it

starts to encode its path indices, p[1], ..., p[d].
To encode p[1], the tag computes a hash value H(r, s[1])

and splits it into σ segments of equal length, denoted as

v[0], v[1], ..., v[σ−1]. The tag then sorts v[0], v[1], ..., v[σ−1]
in ascending order. The result is a sorted list, v′[0] ≤ v′[1] ≤
... ≤ v′[σ − 1]. It uses the index of v[p[1]] in the sorted list,

denoted as idx1, to encode p[1]. Namely, if v[p[1]] = v′[j],
then idx1 = j, which specifies how many other segments

are smaller than v[p[1]]. The tag will transmit j to the RFID

reader. Because 0 ≤ idx1 < σ, it has a fixed length of log2 σ
bits. When σ = 16, it is 4 bits long.

We use an example to illustrate the above idea. Suppose

σ = 4, H(r, s[1]) = “1100||0000||1111||0001”, and p[1] = 1.

We have

v[0] = “1100”

v[1] = “0000”,

v[2] = “1111”,

v[3] = “0001”.

v[p[1]] = v[1] = “0000”. After sorting, we have

v′[0] = v[1] = “0000”

v′[1] = v[3] = “0001”,

v′[2] = v[0] = “1100”,

v′[3] = v[2] = “1111”.

Because v[p[1]] = v′[0], the tag uses 0 to encode p[1]. Hence,

idx1 = 0.

What about v[p[1]] is not unique, i.e., it is equal to another

segment? In CNP, the tag has to compute more hash values

and make v[p[1]] longer in order to make it unique. This

is unnecessary in ECNP. We use the previous example but

change H(r, s[1]) to “1100||0000||1111||0000”. We have

v[0] = “1100”

v[1] = “0000”,

v[2] = “1111”,

v[3] = “0000”.

Still, v[p[1]] = v[1] = “0000”. If we use bobble sort, we have

v′[0] = v[1] = “0000”

v′[1] = v[3] = “0000”,

v′[2] = v[0] = “1100”,

v′[3] = v[2] = “1111”.

2180

0110 0010 0110 0001

0001 0010 0110 0110

v [0] v [1] v [2] v [3]

v[0] v [1] v [2] v [3]

Fig. 5. Relationship between the original segment list v[i], 1 ≤ i ≤ σ, and
the sorted list v′[i], 1 ≤ i ≤ σ.

Notice that bobble sort does not change the relative positions

of v[1] and v[3]. Before sorting, v[0] is ahead of v[3] in the

list. After sorting, v′[0] = v[1] is still ahead of v′[1] = v[3].
This helps us determine that v[p[1]], which is v[1] in the

original list, is mapped to v′[0] instead of v′[1], and therefore

idx1 is 0, not 1.

In general, suppose k segments of H(r, s[1]) has the same

value of v[p[1]]. Among these segments, suppose k′ is ahead

of v[p[1]] in the list before sorting. Then after sorting, we

select the (k′ +1)th segment whose value is v[p[1]], and use

its index in the sorted list as the value of idx1.

Similarly, the tag can compute idxi, 1 < i ≤ d, from

H(r, s[i]) to encode p[i]. It sends {r2, idx1, idx2,...,idxd,
H(r, k)} as authentication data to the reader.

B. Decoding Phase

After the reader receives the authentication data

{r2, idx1, idx2, ..., idxd, H(r, k)} from the tag, it first

reproduces r by XORing r2 with r1. The reader then

decodes idxi, 1 ≤ i ≤ d, to recover the link indices p[i],
based on which it can traverse the tree to find the leaf

node carrying the secret key k of the tag. Below we only

explain how to decode idx1 for p[1]. Other p[i] values can

be similarly derived.

To decode idx1, the reader repeats the same process as the

tag does in the previous phase. It computes the hash value

H(r, s[1]), divides it into σ segments, v[0], v[1], ..., v[σ − 1],
and then sorts them in ascending order by bobble sort. The

sorted list is denoted as v′[0], v′[1], ..., v′[σ−1]. Suppose v[j]
in the original segment list is mapped to v′[idx1] in the sorted

list. The reader knows that p[1] = j. Figure 3 shows the

relationship between an original segment list and its sorted

list. In this example, suppose idx1 = 3. The mapping between

the two lists shows unambiguously that v[2] is mapped to

v′[idx1]. Hence, p[1] = 2.

After the reader decodes idxi, 1 ≤ i ≤ d, and finds all

path indices, it uses these indices to traverse the tree and

reach a leaf node that carries a key k′. It performs a keyed

hash H(r, k′), and compares it with the received H(r, k). If

they are the same, the reader knows that k′ = k and the tag

is authentic. To allow the tag to authenticate the reader, the

reader computes H(r2, k) and transmits it to the tag. The tag

compares the received hash with its version of H(r2, k). If

they match, the tag knows that the reader is authentic.

C. Correctness

First, we prove that an authentic tag will pass authentication

in ECNP. Similar to Section IV-G, we only need to show that

the RFID reader is able to figure out the correct values of

path indices p[i], 1 ≤ i ≤ d. We prove by induction: Suppose

the reader has figured out the correct values of p[j], j < i.
Using these link indices, the reader traverses the tree to a

node on the ith level, and the node stores the key s[i] for

its children group. The tag computes H(r, s[i]), divides it

into σ segments, identifies the p[i]th segment, and then uses

the index location idxi of this segment in the sorted order as

encoded information, which is transmitted to the reader. Using

the same key s[i], the reader will compute the same hash value

H(r, s[i]), divide it into the same set of segments, and sort

them. The reader finds the idxith segment in ascending order,

and maps it back to the original order to find its location p[i]
there. Since the mapping of segments in the original order

to the ascending order is one-to-one, there is no ambiguity

in the process of recovering p[i]. The base case for induction

is i = 1, where the traversal begins from the root and the

reader knows s[1], which is the key for the children group of

the root.

Second, a counterfeit tag cannot pass authentication be-

cause it does not have a shared secret k with the reader,

which is needed to pass the authentication based on H(r, k).
Finally, we show that our protocol meets the privacy-

preserving requirement, i.e., the authentication data,

{r2, idx1, idx2, ..., idxd, H(r, k)}, look random each time a

tag is authenticated. We know that, for any input change,

the output of a cryptographic hash function will appear to

change randomly: Each bit has a chance of 50% of flip,

when observed by someone who does not have the key [18].

Because the input r changes for each authentication, bits in

the hash output H(r, s[i]), 1 ≤ i ≤ d, will change randomly.

Since bits in all σ segments of H(r, s[i]) change arbitrarily

and no segment is more special than any other, the p[i]th
segment may appear at any location in the sorted order. It

may be the largest, the smallest, or in any middle location,

with equal probabilities. Hence, idxi (the location index of

the p[i]th segment in the sorted order) will appear to be

random in the range of [0, σ). That is, the authentication

data look random each time the tag is authenticated. The

privacy-preserving requirement is met.

D. Efficiency

The size of the authentication data in ECNP is |r| +
d log2 σ + h, where h is the size of a hash output. Recall

that the expected size of the authentication data in CNP

is |r| + de + h, plus d values that specify the lengths of

fi, 1 ≤ i ≤ d. Note that e is the expected length of fi.
When σ = 16, e = 5.3. The size of the authentication

data in Dimitriou’s protocol is |r| + dh, and the size of the

2181

 0

 5000

 10000

 15000

 20000

 10 20 30 40 50 60

n
u
m

b
er

 o
f

b
it

s

degree σ

CNP
ECNP

Dimitriou’s protocol

Fig. 6. Size of authentication data transmitted by a tag in each authentication
with respect to σ.

authentication data in ACTION is |r| + (d + 1)h. Suppose

|r| = 64, d = 30, σ = 16, and h = 160. The ratio of the

data size in ECNP to the data size in Dimitriou’s protocol is

0.071 : 1. The ratio of the data size in ECNP to the data size

in ACTION is 0.068 : 1.

In the following, we give another numerical comparison

with respect to σ. Suppose the length of the path indicator p
is 160 bits, the length of a hash output is 160, and the length

of each random number is 64 bits. Each link index is log2 σ
bits long. Thus, the depth d of the tree is set to 160

log
2
σ .

In Dimitriou’s protocol, a tag sends its random number r2
and d hash values. The total length of its authentication data

is

64 + d× 160 = 64 +
25600

log2 σ
, as d =

160

log2 σ
. (4)

CNP requires a tag to transmit the authentication data

{r2, f1, f2, ..., fd, H(r, k)} with the total length of

64+

d∑

i=1

(mi+10)+160 = 224+

160/ log
2
σ∑

i=1

mi+
1600

log2 σ
, (5)

where mi is the length of fi and we assume 10 bits are

sent with fi to specify its length. We have discussed the

relationship between E(mi) and σ in (1) and (2).

In ECNP, a tag needs to transmit the authentication data

{r2, idx1, idx2, ..., idxd, H(r, k)}, whose total length is

64 + d log2 σ + 160 = 384, as d =
160

log2 σ
. (6)

We vary σ from 2 to 64. Figure 6 shows the number of

authentication bits transmitted by a tag in one authentication.

The number of bits decreases when σ increases for all

three protocols. Both CNP and ECNP require much smaller

numbers of bits than Dimitriou’s protocol. Even when σ is

64, the difference remains significant.

The numbers of hash computations in ECNP is the same

as that in CNP. See Section IV-H for analysis.

VI. CONCLUSION

This paper designs two privacy-preserving protocols based

on a new technique, called cryptographical encoding, which

can significantly reduce the authentication data transmitted by

each tag and computation overhead at the reader. The analysis

shows that the new protocols are able to reduce authentication

data by more than an order of magnitude and computational

demand by about an order of magnitude, when comparing

with the best existing protocol.

VII. ACKNOWLEDGEMENTS

This work was supported in part by the US National

Science Foundation under grant CPS-0931969. We would also

like to thank the anonymous reviewers for their constructive

comments.

REFERENCES

[1] T. Kriplean, E. Welbourne, N. Khoussainova, V. Rastogi, M. Balazin-
ska, G. Borriello, T. Kohno, and D. Suciu, “Physical Access Control
for Captured RFID Data,” IEEE Pervasive Computing, 2007.

[2] Y. Liu, L. Chen, J. Pei, Q. Chen, and Y. Zhao, “Mining Frequent
Trajectory Patterns for Activity Monitoring Using Radio Frequency Tag
Arrays,” Proc. of IEEE PerCom, 2007.

[3] L. Ni, Y. Liu, and Y. C. Lau, “Landmarc: Indoor Location Sensing
using Active RFID,” Proc. of IEEE PERCOM, 2003.

[4] Y. Li and X. Ding, “Protecting RFID Communications in Supply
Chains,” Proc. of ASIACCS, 2007.

[5] B. Sheng, C. Tan, Q. Li, and W. Mao, “Finding Popular Categories for
RFID Tags,” Proc. of ACM Mobihoc, 2008.

[6] Chiu C. Tan, Bo Sheng, and Qun Li, “How to monitor for missing
RFID tags,” Proc. of IEEE ICDCS, 2008.

[7] C. Wang, H. Wu, and N. F. Tzeng, “RFID-based 3-D Positioning
Schemes,” Proc. IEEE INFOCOM, 2007.

[8] C. H. Lee and C. W. Chung, “Efficient Storage Scheme and Query
Processing for Supply Chain Management Using RFID,” Proc. ACM

SIGMOD, 2008.
[9] A. Nemmaluri, M. Corner, and P. Shenoy, “Sherlock: Automatically

Locating Objects for Humans,” Proc. of ACM MobiSys, 2008.
[10] L. Ravindranath, V. Padmanabhan, and P. Agrawal, “Sixthsense: RFID-

based Enterprise Intelligence,” Proc. of ACM MobiSys, 2008.
[11] S. Weis, S. Sarma, R. Rivest, and D. Engels, “Security and Privacy

Aspects of Low-cost Radio Frequency Identification Systems,” Lecture

notes in Computer Science, 2004.
[12] Q. Yao, Y. Qi, J. Han, J. Zhao, X. Li, and Y. Liu, “Randomizing RFID

Private Authentication,” Proc. of IEEE PERCOM, 2009.
[13] Tassos Dimitriou, “A Secure and Efficient RFID Protocol that could

make Big Brother (partially) Obsolete,” Proc. of IEEE PERCOM, 2006.
[14] L. Lu, J. Han, L. Hu, Y. Liu, and L. Ni, “Dynamic Key-Updating:

Privacy-Preserving Authentication for RFID Systems,” Proc. IEEE

PERCOM, 2007.
[15] L. Lu, J. Han, R. Xiao, and Y. Liu, “ACTION: Breaking the Privacy

Barrier for RFID Systems,” Proc. of IEEE INFOCOM, 2009.
[16] U. Erlingsson, M. Manasse, and F. McSherry, “A Cool and Practical

Alternative to Traditional Hahs Tables,” Proc. of WDAS, 2006.
[17] L. Lu, Y. Liu, and X. Li, “Refresh: Weak Privacy Model for RFID

Systems,” Proc. of IEEE INFOCOM, 2010.
[18] C. Kaufman, R. Perlman, and M. Speciner, “Network Security: Private

Communication in a Public World,” Prentice Hall; 2 edition, 2002.
[19] “SHA1 Random Number Generation,” https://developer-content.emc.

com/docs/rsashare/share for java/1.1/dev guide/group JCESAMPLES

RNG SHA1.html.

2182

