
Category Information Collection in RFID Systems

Jia Liu†, Shigang Chen‡, Bin Xiao§, Yanyan Wang†, and Lijun Chen†
†State Key Laboratory for Novel Software Technology, Nanjing University, China

‡Department of Computer & Information Science & Engineering, University of Florida, USA
§Department of Computing, The Hong Kong Polytechnic University, China

Email:{jialiu, chenlj}@nju.edu.cn, sgchen@cise.ufl.edu, csbxiao@comp.polyu.edu.hk, cs.yywang@hotmail.com

Abstract—In RFID-enabled applications, when a tag is put
into use and associated with a specific object, the category-
related information (e.g., the brands of clothes) about this object
might be preloaded into the tag’s memory as required. Since
such information reflects the category attributes, all tags in
the same category carry the identical category information. To
collect this information, we do not need to repeatedly interrogate
each tag; one tag’s response in a category is sufficient. In this
paper, we investigate the new problem of category information
collection in a multi-category RFID system, which is referred
to as information sampling. We propose an efficient two-phase
sampling protocol (TPS). By quickly zooming into a category
and isolating a tag from this category, TPS is able to sample a
category by broadcasting only 7.5-bit polling vector (very efficient
when compared to the 96-bit tag ID). We theoretically analyze the
protocol performance and discuss the optimal parameter settings
that minimize the overall execution time. Extensive simulations
show that TPS outperforms the benchmark, greatly improving
the sampling performance.

I. INTRODUCTION

Radio frequency identification (RFID) is becoming ubiqui-

tously available in a variety of applications, including library

inventory [1], [2], warehouse management [3]–[5], object

tracking [6], [7], etc. Among these applications, RFID tags are

usually attached to objects that belong to different categories,

e.g., subjects of books in a library, classes of medicines in a

pharmacy, or brands of clothes in a clothing outlet. When a

tag is associated with a specific object, the category-related

information about this object1 is likely to be preloaded into

the tag’s memory. Since this information reflects the category

attributes, each tag in the same category carries identical

category-related information.

To collect category information in a multi-category RFID

system, we do not need to repeatedly interrogate each tag.

One tag’s response in a category will suffice. For example,

if we want to know the manufacturer of Horizon Organic

milk stocked in a warehouse, we just need to query one milk

box instead of all of them, as this kind of milk is produced

by the same manufacturer. In another example, consider a

chilled food storage chamber, where each food is affixed with

a sensor-augmented RFID tag (e.g., WISP [8]) equipped with

a thermal sensor. The reader periodically samples temperature

readings from tags to check whether any area goes beyond

the normal temperature. Since tagged objects belonging to

1In above examples, the category-related information is the subject of a
book, the class of a medicine, or the brand of clothes.

the same category are typically packed together or placed

closely, the temperature reports from these nearby tags lead

to high data redundancy. Hence, it is a waste to collect sensor

information from all tags in this case.

In this paper, we study the problem of category information

collection in a multi-category RFID system, which is referred

to as information sampling. To solve this problem, the existing

work [9]–[11] needs to either collect all tags’ information or

take the entire tag set into account each time when isolating

an interested tag from others, leading to time-consuming

collecting process. The major reason for this is that these

solutions are designed for some specific applications but not

tailored to the sampling problem that has two new features: (i)

Since tags in the same category carry identical category-related

information, we do not need to query each individual tag. One

tag’s response from each category is sufficient to report the

corresponding information. (ii) We do not care which tag in

a category responds to the reader; anyone in the category can

be a candidate for reporting.

By considering above two features, we propose an efficient

two-phase sampling protocol (TPS) that consists of two phas-

es. In the first phase, the reader separates a category from

others, which helps us quickly zoom into a category instead

of the entire tag set. In the second phase, the reader isolates

an arbitrary tag from the separated category by using the

geometry distribution of tags. Both efficient two steps make

TPS far superior to existing solutions. We analyze the protocol

performance and discuss the optimal parameter settings that

minimize the overall execution time. The theory analysis and

simulation results show that TPC is able to sample a category

by broadcasting only 7.5-bit polling vector, which is very

efficient when compared to the 96-bit tag ID.

The rest of the paper is organized as follows. Section II

formulates the sampling problem. Section III proposes a two-

phase sampling protocol. Section IV evaluates the performance

of the proposed protocols. Section V introduces related work.

Finally, Section VI concludes this paper.

II. PROBLEM STATEMENT

A. System Model

We consider an RFID system that consists of a reader

and a number of tags. Each tag has a unique tag ID that

exclusively represents an individual object it associates with.

The tag ID contains two components: category ID indicating

which category the tag belongs to, and member ID identifying

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.320

1069

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.320

2220

a specific member in this category. The tags with the same

category ID share some common information, which could

be static category-related information (such as the brand of

the tagged product) that is preloaded when the tag is put into

use, or dynamic monitoring information (such as sensor data)

that is measured by nearby tags in real time. We refer to

this information as category information. Notice the difference

between the category ID and the category information. The

former is a subset of tag ID and the latter is the common

attributes of a class of goods. Due to limited on-chip resources,

tags cannot communicate amongst themselves, but they can

communicate with a reader by one-hop transmissions.

B. Problem Definition

Let N be a pre-known tag set in the RFID system, where

n = |N |. According to category IDs, N is partitioned into

a family of disjoint sets C = {C1, C2, ..., Cm}, satisfying⋃m
i=1Ci = N . For simplicity, we use Ci to represent the

category ID as well as the set of tags in this category. There

are m = |C| categories in total; each tag in N belongs to one

of them. The sampling problem is to collect one or more bit

category information from each category in a time-efficient

way. Since the information in a category is identical, it is

unnecessary to collect it from all tags. An arbitrary tag’s

response in each category is sufficient to report the required

information.

III. TWO-PHASE SAMPLING PROTOCOL

A. Baseline Protocol

Basic Polling (BP), as a common anti-collision protocol,

provides a request-response way to single out a tag each time

in RFID systems. In BP, the reader broadcasts a tag’s ID; all

tags keep listening and only the uniquely matched tag replies

to the reader. The remarkable advantage of BP is that the

interrogating request and response are a one-to-one mapping;

no collision happens in the open wireless channel. However,

broadcasting a tag ID (96 bits long in the EPCglobal Gen2

standard [12]) for polling each tag is time-consuming. We refer

to the broadcasting bits (from the reader) to single out a tag as

polling vector. Clearly, in BP, the polling vector for each tag is

the 96-bit tag ID. We treat it as the benchmark for comparison.

B. Basic Idea

A more sophisticated solution of the sampling problem

is to randomly select m tags (denoted by M) each from

different categories, and then use the advanced work ETOP

[11] to collect information from the subset M . However, this

design has to take the entire tag set N into account each time

when interrogating a tag, lowering the sampling efficiency. For

example, the size of the ordering vector in ETOP has to be

set long enough to guarantee tags outside M are not selected.

Instead of doing so, we take a deeper look at the two features

of the sampling problem and propose a two-phase solution: 1)

separating a category from others, and 2) singling out one tag

in this category. The first step helps us quickly zoom into a

category instead of the entire tag set. The second step uses only

Fig. 1: Three kinds of slots in the ordering phase.

a 4-bit index to poll a single tag according to the geometry

distribution of tag IDs. Both efficient two steps make up our

TPS protocol that is far superior to BP and ETOP.

C. Protocol Description

TPS generally consists of several sampling rounds2, each

of which samples nearly 30% categories using two phases: an

ordering phase and a polling phase. The ordering phase tells

tags whether and when they will participate in this round, and

the polling phase uses a 4-bit index to separate a tag from a

category. Details are given below.

1) Ordering Phase: The reader first initializes a frame by

broadcasting a request with parameters 〈f ,r〉, where f is the

frame size and r is a random seed. The frame is a virtual
frame that will never be actually played out. It only serves as

a vehicle to find out useful slots in this frame; an actual frame

comprised of the useful slots only will be carried out later.

Upon receiving this request, each tag randomly picks a slot

in the frame at the position of H(cid, r) mod f , where cid
is the tag’s category ID and H(·) is a hash function shared

by all tags. Since each tag takes the category ID rather than

the tag ID as the hash seed, the tags from the same category

must reside in the same slot. Slots picked by no tag, tags only

from a single category, tags from more than one category,

are called empty slots, homogeneous slots, and heterogeneous
slots, respectively. Take Fig. 1 for example. There are three

categories in total; the tags in the same category hash to the

same slot. The second slot is homogeneous as it is picked by

tags from the single category C1. In contrast, the fourth slot

is heterogeneous as its three tags (t2, t5, and t6) are from two

different categories. The left are empty slots. Notice that, the

frame size f in this phase is related to only the number m of

categories, regardless of the number n of tags, greatly lowering

the communication overhead. For example, m = 0.05n when

each category has 20 tags on average. We will discuss the

parameter settings and protocol overhead shortly later.

The categories residing in homogeneous slots are called

homogeneous categories and the corresponding tags are called

homogeneous tags. Only homogeneous slots are likely to be

useful in the following protocol execution. A slot is useful if

and only if it is homogeneous and resolvable (we will give

the definition of resolvable slots in the polling phase). The

left slots failing to meet above requirements are referred to

as useless slots. Each tag does not know whether the slot it

picks is useful or not, but the reader does. With the tag ID

2The expected number of rounds is about 3.5, which will be discussed later.

10702221

(containing category ID) information, the reader can predict

which slots in the virtual frame are useful. It will remove

the useless slots before carrying out the actual frame. For this

purpose, the reader broadcasts an f -bit ordering vector V [11].

Each bit in V corresponds to a slot in the virtual frame: ‘0’

indicates useless and ‘1’ indicates useful. If V is too long,

the reader can split it into many 96-bit segments and transmit

each segment in a time slot of length tid [9].

From a tag’s perspective, the ordering vector V carries two

pieces of information. For one, the tag can learn whether it

has picked a useful slot by examining the corresponding bit

in V . Only if it is, the tag will participate in the following

polling phase. For the other, V tells the index of a useful slot

in the actual frame to be carried out. If a tag finds that there

are i ones in V preceding its bit (which is 1), the tag knows

that it picks the (i+ 1)th useful slot.

D. Polling Phase

A useful slot is definitely a homogeneous slot. Considering

a homogeneous category Ci (1 ≤ i ≤ m) in the useful slot,

we aim to single out a tag in an efficient way. In this phase,

each tag individually picks an index R(H(id, r) mod 2K),

where id is the tag ID, r is the same hash seed used in the

previous ordering phase, K is a constant, and R(·) is the

position of the right-most bit of 1 in binary representation

of the input. For example, R(8110) = R(010100012) = 1
and R(10410) = R(011010002) = 4. Indeed, the hash result

(H(·) mod 2K) of an arbitrary tag is a K-bit binary number.

When we check each bit of it from right to left, the value of

each bit can be viewed as a Bernoulli trail: ‘1’ is success and

‘0’ is failure. R(·) operator is actually the number of trails

needed to get the first ‘success’, i.e., R(·) follows geometric

distribution: Prob[R(·) = j] = 1
2j . The feature of geometric

distribution makes the number of tags decrease sharply as the

index increases. For instance, about a half of tags pick the

index 1 and only around 1
210 ≈ 0.1% of tags pick the index

10. If an index picked by exactly one tag, we refer to it as

a singleton index. Intuitively, the index around log2(|Ci|) has

high probability to be a singleton, where | · | is the cardinality

of a set and |Ci| indicates the number of tags in Ci.

Since the reader knows all tags’ IDs, it can predict each

tag’s hashing result. If a slot in the previous virtual frame

has one or multiple singleton indices, we call it a resolvable
slot. As aforementioned, a useful slot is homogeneous as

well as resolvable. The reader then plays out an actual frame

comprised of useful slots. In each slot, a log2 K-bit singleton

index is broadcast to isolate the corresponding tag (single tag),

and the exclusively matched tag transmits the information as

required. All tags in a category will keep silent once the

information is successfully sampled. The left categories not

sampled keep active and will participate in the following

sampling rounds. These two phases repeat round by round

until all categories are completely sampled. Note that a useful

slot may contain more than one singleton index. In this case,

we can randomly choose one of them as the polling vector to

interrogate the corresponding tag.

E. Performance Analysis

We derive the expected execution time of the TPS protocol.

Consider an arbitrary sampling round comprised of the order-

ing phase and the polling phase. The execution time t of this

round is:

t =
f

96
×tid + f×p×(tpoll + tinf), (1)

where f is the frame size (also the length of the ordering

vector V) in the ordering phase, p is the probability that a

slot in the frame is useful, tpoll is the time for the reader to

broadcast a log2 K-bit singleton index, and tinf is the length

of a time slot for a tag to transmit the required information.

Note that, the control message transmission for launching each

round is ignored here as this overhead covers only a couple

of bits, which are negligible compared with the following

frame transmission and index broadcasting by the reader. We

define the sampling efficiency, denoted as λ, as the ratio of

the number of sampled categories to the execution time of

this round. Since a useful slot corresponds to a category to

be sampled, the number of successfully sampled categories in

this round is equal to that of useful slots, i.e., f×p. We then

get the sampling efficiency:

λ =
f×p
t

=
p

tid
96 + p×(tpoll + tinf)

. (2)

Clearly, the bigger the value of λ is, the more categories

will be sampled in each unit of execution time. We thus

need to find the optimal p that maximizes λ. According to

(2), λ monotonically increases as p increases; the objective is

reduced to maximizing p. As aforementioned, a useful slot is

both homogenous and resolvable, which are two independent

events, we have:

p = ph×pr, (3)

where ph is the probability that a slot is homogenous and pr
is the probability that a slot is resolvable. To maximize p, the

goal further turns to maximizing both ph and pr, respectively.

Consider the probability ph. Since each tag takes the category

ID as the input to compute which slot it picks, the tags

belonging to the same category must reside in the same slot.

Hence, we can simplify the derivation of ph by treating a

category as ‘a super tag’. The homogenous slots are thus those

picked by only one super tag. We derive the probability:

ph =

(
m′

1

)
(
1

f
)(1− 1

f
)m

′−1≈m′

f
×e−m′−1

f , (4)

where e is the natural constant and m′ is the number of

categories to be sampled before this round. Letting
dλ(f)
df = 0,

we derive the maximal ph:

p∗h = e−1 when f = m′. (5)

For the probability pr, let us consider an arbitrary category

Ci in a useful slot. After the R(·) operation, each tag in Ci

picks the index j with the probability of 1
2j . Let qj be the

10712222

probability that the index j is a non-singleton index (j is

picked by none or multiple tags). We have:

qj = 1−
(|Ci|

1

)
× 1

2j
×(1− 1

2j
)|Ci|−1, (6)

where |Ci| is the cardinality of Ci, i.e., the number of tags in

Ci. Let q∗j be probability that the maximal singleton index is

j. We have:

q∗j =

{
1− qK , if j = K

qj+1,K − qj,K , if j ≤ K,
(7)

where K is the last index and qj,K is the probability that all

indices from j to K are non-singleton.

According to (6) and (7), we have the probability pr[K, |Ci|]
that the slot that only Ci picks is resolvable:

pr[K, |Ci|] =
K∑
j=1

q∗j

=
K−1∑
j=1

(qj+1,K − qj,K) + (1− qK) (8)

= 1− q1,K

≈ 1−
K∏
j=1

(1− |Ci|
2j
×e− |Ci|

2j).

Fig. 2 plots the relationship between pr and the number of

tags in Ci (|Ci|). As we can see, when K = 8, the probability

pr decreases as |Ci| increases. For example, pr ≈ 0.8 when

|Ci| = 20, whereas pr ≈ 0 when |Ci| = 10, 000. That is

because, with the increase of |Ci|, the case of K = 8 hardly

provides tags with sufficient indices to pick, leading to most

collisions and lowering the probability pr of a singleton index.

In contrast, when K = 16, pr sees only a slight decrease from

0.82 to 0.78 when |Ci| varies from 10 to 10,000. The case of

K = 32 almost remains stable at 0.82 regardless of |Ci|. The

main reason is that the values of K in these two cases are

big enough such that few tags in Ci can reach up to the last

indices. We have the maximal probability p∗ of a useful slot:

p∗ = p∗h×pr[K, |Ci|] = e−1×(1−
K∏
j=1

(1− |Ci|
2j
×e− |Ci|

2j)).

(9)

When this happens, the category Ci will be sampled in a useful

slot and will not participate in the following rounds. In the

ordering phase, the average number of bits for generating a

useful slot is 1
p∗ . In the polling phase, the reader broadcasts

log2 K-bit singleton index to interrogate a tag. Adding the

both overhead, we get the total overhead O(Ci) for singling

out a tag in Ci:

O(Ci) =
1

p∗
+ log2 K. (10)

The value of K plays an important role in the overall commu-

nication overhead. Table I depicts the setting of the optimal

K under different |Ci|. As we can see, K = 16 covers the

0 1 2 3 4 5 6 7 8 9 10
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

Number of tags in category Ci (x1000)

Pr
ob

ab
ili

ty
 p

r

K=8
K=16
K=32

Fig. 2: Relationship between the probability pr of a resolvable

slot and the number of tags in a category Ci.

interval [207, 52892], which can meet most of applications in

practice. In this case, the polling vector is only log2 K = 4 bits

long. Assume |Ci| = 10, 000, we have the maximum of O(Ci)
by letting pr[K, |Ci|] = 0.78, which is equal to e

0.78 +4 ≈ 7.5
bits. Compared with transmitting 96-bit tag ID in basic polling,

it is really a great performance boost.

TABLE I: Optimal K

K 4 8 16 32
log2 K 2 3 4 5
|Ci| [1,13] [14,206] [207,52892] >52892

Since an arbitrary category Ci is sampled with the prob-

ability of p∗ in a sampling round, the expected number of

sampling rounds that Ci participates is 1
p∗ . According to (9),

when K = 16 and |Ci| = 10, 000, we have p∗ ≈ 0.29. The

expected number of sampling rounds is 3.5.

IV. EVALUATION

A. Simulation Setting

Our simulation settings follow the specification of the C1G2

standard [12]. Any two consecutive communications, from the

reader to tags or vice versa, are separated by a time interval.

For one, after the reader transmits the commands, all tags

have to wait the transmit-to-receive turn-around time T1 before

replying to the reader. For another, upon receiving the reply

from tags, the reader needs to wait the receive-to-transmit

turn-around time T2 before talking to tags. According to the

specification, T1 is max(RTcal, 20Tpri) and T2 ranges from

3Tpri to 20Tpri, where RTcal is the reader-to-tag calibration

symbol that equals the length of the data-0 symbol plus the

length of the data-1 symbol, and Tpri is the backscatter-link

pulse-repetition interval. In our simulation, we set T = T1 =
T2 = 200 μs that complies with the C1G2 standard.

Depending on the physical implementation and the real en-

vironment, the transmission rates between the reader and tags

are not necessarily symmetric. The tag-to-reader transmission

rate varies with the data coding: 40 kbps to 640 kbps for FM0

and 5 kbps to 320 kbps for Miller-modulated subcarrier. We

get the intersection set 40 kbps to 320 kbps and adopt the

lower bound 40 kbps as the data rate. In other words, it takes

a tag 25 μs to transmit one bit. The data rate from the reader

10722223

1 2 3 4 5 6 7 8 9 10
0

5
10
15
20
25
30
35
40
45

Number of tags (n) x10000

E
xe

cu
tio

n
tim

e
(s

)

BP
ETOP
TPS

(a) w = 10

1 2 3 4 5 6 7 8 9 10
0

5
10
15
20
25
30
35
40
45

Number of tags (n) x10000

E
xe

cu
tio

n
tim

e
(s

)

BP
ETOP
TPS

(b) w = 20

Fig. 3: Execution time with respect to the number n of tags.

to tags ranges from 26.7 kbps to 128 kbps. Similarly, we set

the data rate to the lower bound 26.7 kbps, which takes 37.45

μs to transmit one bit by the reader. Besides, the length of the

category ID is set to 32 bits throughout the simulations. Note

that other parameter settings may change the absolute metric,

but the simulation conclusions can be drawn in a similar way.

According to the above parameter settings, the duration ts
of the 1-bit short response from tags is equal to 25+T = 225
μs; the duration tcid of transmitting a category ID by a tag

is 25 × 12 + T = 500 μs; the duration trcid of broadcasting

a category ID by the reader is 37.45 × 32 + T = 1398.4
μs; the duration trid of broadcasting a tag ID by the reader is

37.45× 96+ T = 3795.2 μs; For transmitting w-bit category

information by a tag, the duration tinf is equal to 25w+T μs.

All results are the average outcome of 100 simulation runs.

B. Execution Time

In this subsection, we evaluate the execution time of our

sampling protocol TPS in the case of knowing tag IDs. As

aforementioned in Section III, Basic Polling (BP) and ETOP

can be modified for the purpose of information sampling. To

achieve this goal, the reader first randomly picks a tag from

each category and these tags constitute a tag set S. After

that, for BP, the reader in turn broadcasts each tag’s ID in

S and then waits for their replies after each broadcasting.

All tags keep listening and only the exactly matched tag

transmits the required category information to the reader. The

sampling process terminates until all tags in S are interrogated.

For another, ETOP is specifically designed for collecting tag

information from a tag subset in an efficient way. In our

problem, we can treat S as the wanted subset ofN and execute

ETOP as-is to collect the category information as required. In

the simulations, we keep the same parameter settings of ETOP

as that in [11], i.e., the frame size is 24× |S|, the segment is

80 bits long, and each segment consists of 4 partitions.

Fig. 3 compares the execution time of BP, ETOP, and TPS

under different numbers of tags. In the simulations, we fix the

number of tags in each category at 10 and vary the number of

tags from 10,000 to 100,000 (the number of categories ranges

from 1000 to 10000). Two kinds of category information

with different lengths (w = 10, 20) are sampled under varied

parameter settings, as shown Fig. 3(a) and Fig. 3(b). Among

these figures, we observe that TPS outperforms the other two

protocols as it isolates a tag of each category from others by

5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

Number of tags in each category

E
xe

cu
tio

n
tim

e
(s

)

BP
ETOP
TPS

(a) w = 10

5 10 15 20 25 30 35 40 45 50
0

10
20
30
40
50
60
70
80
90

Number of tags in each category

E
xe

cu
tio

n
tim

e
(s

)

BP
ETOP
TPS

(b) w = 20

Fig. 4: Execution time with respect to the category size.

broadcasting only about 7.5-bit polling vector on average. For

example, to sample 10-bit category information from 50,000

tags (shown in Fig. 3(b)), BP takes the longest time 21.2s as it

needs to transmit tedious tag IDs. ETOP reduces the execution

time by 56.1% to 9.3s since it uses segmented Bloom filters

to isolate and order tags belonging to S, avoiding most ID

transmissions. TPS performs the best and consumes only 3.7s,

producing 5.7× and 2.5× performance gains, compared with

BP and ETOP respectively. The similar conclusion can also

be drawn on other parameter settings in the three figures: TPS

is the best, ETOP follows, and BP performs the worst.

In Fig. 4, we compare the execution time of BP, ETOP, and

TPS under different numbers of tags in each category. In the

simulation, we fix the number of tags at 100,000 and vary

the number of tags in each category from 5 to 50. Once the

length w of category information is fixed, we observe that

the execution time of these three protocols decreases as the

number of tags in each category increases. That is because

the number of categories decreases with the increase of the

number of tags in each category, thereby reducing the number

of samples and saving the communication overhead. Similar

to Fig. 3, the same conclusion can also be drawn here: TPS

is the most time-efficient, ETOP is worse, and BP is the most

time-consuming. For instance, when the length of category

information is 20 bits long and each category has 25 tags

(as shown in Fig. 4(b)), the execution time of BP is 17.0s,

which is the longest amongst the three protocols. By contrast,

TPS spends the minimal execution time. It takes less than

3.0s to achieve the same sampling task, producing a about 6×
performance gain. Although ETOP is far superior to BP, it

takes longer time than TPS, i.e., 7.4s.

Note that, the execution time of the three protocols increases

as w increases. This is intuitive as the tag needs to transmit

more category-related data when w is bigger. Based on above

simulation results, we conclude that, by transmitting a few bits

to pick a tag in each category, our protocol TPS outperforms

BP and ETOP, greatly improving the sampling efficiency.

V. RELATED WORK

A great number of research has been conducted on various

issues in RFID systems. Much prior work focuses on the

fundamental ID-collection problems. The key ideas are to

avoid tag-to-tag collisions in the open wireless channel, which

generally fall into two categories: the ALOHA-based [13],

10732224

[14] and the tree-based [15], [16]. The former collects a

tag’s ID by carrying out a slotted frame and isolating the

tag in a singleton slot (picked by exactly one tag) in the

frame. The tree-based solutions iteratively split a tag set into

smaller one by dynamically adjusting and broadcasting an ID

prefix. This process repeats until only one tag is left and

queried by the reader. In recent years, the research interests in

RFID systems have been shifted to some application-oriented

functions. For example, cardinality estimation [17], [18] is to

count the number of tags; missing tag identification [19], [20]

is to identify whether and which tags are absent; searching

problems [21]–[23] try to find a group of interested tags from

the existing tag set.

Information collection [9]–[11], as another branch of these

new functional research, has attracted wide attentions due to

its practical importance. Chen et al. [9] first formulate this

problem and propose a time-efficient multihash information

collection protocol (MIC) to collect sensor information from

all tags. By using multiple hash functions, MIC is able to

resolve most hash collisions in a slotted frame, greatly im-

proving the protocol performance. In the follow-up work, Yue

et al. [10] propose a Bloom filter based Information Collection

protocol (BIC) that is tailored to the information collection

under the case of multiple RFID readers. By distributively

constructing and transmitting a Bloom filter, each reader can

quickly identify which tags are under its coverage, speeding up

the overall information collection. Unlike prior work, Qiao et

al. [11] design an efficient polling-based protocol that collects

tag information from only a wanted tag subset. Although

these work achieve high performance, they need to collect all

tags’ information or take the entire tag set into account each

time, which is time-consuming for the category information

collection in multi-category RFID systems.

VI. CONCLUSION

In this paper, we study the problem of category information

collection in a multi-category RFID system. Considering the

new features of the problem, we propose a two-phase sampling

protocol (TPS) that first quickly zooms into a category and

then isolates an arbitrary tag from the category by using

the geometry distribution of tags. We theoretically analyze

the protocol performance and discuss the optimal parameter

settings that minimize the overall execution time. Extensive

simulations show that TPS is able to shorten the length of the

polling vector to only 7.5 bits, which is very efficient compared

with 96-bit tag IDs.

ACKNOWLEDGMENT

This research is financially supported by the National

Natural Science Foundation of China (No. 61272418), the

National Science and Technology Support Program of China

(No. 2012BAK26B02), the Future Network Prospective Re-

search Program of Jiangsu Province (No. BY2013095-5-02),

the Lianyungang City Science and Technology Project (No.

CG1420, JC1508), the Fundamental Research Funds for the

Central Universities, CNS-1409797, and HK PolyU B-Q38F.

This work is partially supported by Collaborative Innovation

Center of Novel Software Technology and Industrialization,

and Project funded by China Postdoctoral Science Foundation.

REFERENCES

[1] R. Li, Z. Huang, E. Kurniawan, and C. K. Ho, “AuRoSS: an autonomous
robotic shelf scanning system,” in Proc. of IEEE/RSJ IROS, 2015, pp.
6100–6105.

[2] J. Liu, F. Zhu, Y. Wang, X. Wang, Q. Pan, and L. Chen, “RF-Scanner:
Shelf scanning with robot-assisted RFID systems,” in Proc. of IEEE
INFOCOM, 2017.

[3] L. Xie, H. Han, Q. Li, J. Wu, and S. Lu, “Efficiently collectiing
histograms over RFID tags,” in Proc. of IEEE INFOCOM, 2014, pp.
145–153.

[4] X. Liu, K. Li, J. Wu, A. X. Liu, X. Xie, C. Zhu, and W. Xue, “Top-k
queries for multi-category RFID systems,” in Proc. of IEEE INFOCOM,
2016, pp. 1–9.

[5] K. Bu, M. Xu, X. Liu, J. Luo, S. Zhang, and M. Weng, “Deterministic
detection of cloning attacks for anonymous RFID systems,” IEEE
Transactions on Industrial Informatics, vol. 11, no. 6, pp. 1255–1266,
2015.

[6] L. Yang, Y. Chen, X.-Y. Li, C. Xiao, M. Li, and Y. Liu, “Tagoram:
Real-time tracking of mobile RFID tags to high precision using cots
devices,” in Proc. of ACM MobiCom, 2014, pp. 237–248.

[7] L. Xie, J. Sun, Q. Cai, C. Wang, J. Wu, and S. Lu, “Tell me what I see:
Recognize RFID tagged objects in augmented reality systems,” in Proc.
of ACM UbiComp, 2016, pp. 916–927.

[8] J. R. Smith, Wirelessly Powered Sensor Networks and Computational
RFID. Springer-Verlag New York, 2013.

[9] S. Chen, M. Zhang, and B. Xiao, “Efficient information collection
protocols for sensor-augmented RFID networks,” in Proc. of IEEE
INFOCOM, 2011, pp. 3101–3109.

[10] H. Yue, C. Zhang, M. Pan, Y. Fang, and S. Chen, “A time-efficient
information collection protocol for large-scale RFID systems,” in Proc.
of IEEE INFOCOM, 2012, pp. 2158–2166.

[11] Y. Qiao, S. Chen, T. Li, and S. Chen, “Energy-efficient polling protocols
in RFID systems,” in Proc. of ACM MobiHoc, 2011, pp. 25:1–25:9.

[12] Epcglobal. EPC radio-frequency identity protocols class-1 generation-2
UHF RFID protocol for communications at 860 mhz-960mhz version
1.2.0, Tech. Rep., 2008.

[13] S.-R. Lee, S.-D. Joo, and C.-W. Lee, “An enhanced dynamic framed
slotted ALOHA algorithm for RFID tag identification,” in Proc. of
MobiQuitous, 2005, pp. 166–172.

[14] H. Vogt, “Efficient object identification with passive RFID tags,” in Proc.
of IEEE PerCom, 2002, pp. 98–113.

[15] C. Qian, Y. Liu, R. Ngan, and L. Ni, “ASAP: Scalable collision
arbitration for large RFID systems,” IEEE Transactions on Parallel and
Distributed Systems (TPDS), vol. 24, no. 7, pp. 1277–1288, 2013.

[16] L. Pan and H. Wu, “Smart trend-traversal: A low delay and energy
tag arbitration protocol for large RFID systems,” in Proc. of IEEE
INFOCOM, 2009, pp. 2571–2575.

[17] X. Liu, X. Xie, K. Li, B. Xiao, J. Wu, H. Qi, and D. Lu, “Fast tracking
the population of key tags in large-scale anonymous RFID systems,”
IEEE/ACM Transactions on Networking, vol. 25, no. 1, pp. 278–291,
2017.

[18] M. Shahzad and A. X. Liu, “Every bit counts: Fast and scalable RFID
estimation,” in Proc. of ACM MobiCom, 2012, pp. 365–376.

[19] T. Li, S. Chen, and Y. Ling, “Identifying the missing tags in a large
RFID system,” in Proc. of ACM MobiHoc, 2010, pp. 1–10.

[20] Y. Zheng and M. Li, “P-MTI: Physical-layer missing tag identification
via compressive sensing,” in Proc. of IEEE INFOCOM, 2013, pp. 917–
925.

[21] M. Chen, W. Luo, Z. Mo, S. Chen, and Y. Fang, “An efficient tag search
protocol in large-scale RFID systems,” in Proc. of IEEE INFOCOM,
2013, pp. 899–907.

[22] Y. Zheng and M. Li, “Fast tag searching protocol for large-scale RFID
systems,” IEEE/ACM Transactions on Networking, vol. 21, no. 3, pp.
924–934, 2013.

[23] X. Liu, B. Xiao, S. Zhang, K. Bu, and A. Chan, “STEP: A time-efficient
tag searching protocol in large RFID systems,” IEEE Transactions on
Computers, vol. 64, no. 11, pp. 3265–3277.

10742225

